This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
"In biochemistry, metabolic pathways are series of chemical reactions occurring within a cell. In each pathway, a principal chemical is modified by a series of chemical reactions. Enzymes catalyze these reactions, and often require dietary minerals, vitamins, and other cofactors in order to function properly. Because of the many chemicals (a.k.a. "metabolites") that may be involved, metabolic pathways can be quite elaborate. In addition, numerous distinct pathways co-exist within a cell. This collection of pathways is called the metabolic network. Pathways are important to the maintenance of homeostasis within an organism. Catabolic (break-down) and Anabolic (synthesis) pathways often work interdependently to create new biomolecules as the final end-products." [Metabolic pathway. Wikipedia]
The biochemical diagram example "Metabolic pathway map" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Catabolic pathways
Catabolic pathways, proteins, polysaccharides, oxidative phosphorylation, nicotinamide adenine dinucleotide, NADH, nicotinamide adenine dinucleotide, NAD, monosaccharides, fatty acids, fats, energy generation, digestion, citric acid cycle, tricarboxylic acid cycle, TCA cycle, Krebs cycle, amino acids, adenosine triphosphate, ATP, adenosine diphosphate, ADP, acetyl coenzyme A,
"Metabolism is refer to all chemical reactions that occur in living organisms, including digestion and the transport of substances into and between different cells. Metabolism is usually divided into catabolism, that breaks down organic matter and harvests energy by way of cellular respiration, and anabolism that uses energy to construct components of cells such as proteins and nucleic acids.
The chemical reactions of metabolism are organized into metabolic pathways, in which one chemical is transformed through a series of steps into another chemical, by a sequence of enzymes." [Metabolism. Wikipedia]
The biochemical pathway map example "Key metabolic processes" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Metabolic pathway map
Metabolic pathway map, water, urea cycle, urea, pyruvic acid, proteins, pool, nitrogen, oxygen, lipids, lactic acid, glucose 6-phosphate, glucose, fatty acids, glycerol, citric acid cycle, tricarboxylic acid cycle, TCA cycle, Krebs cycle, chain, carbon dioxide, carbohydrates, beta-oxydation, ammonia, amino acids, adenosine triphosphate, ATP, adenosine diphosphate, ADP,
This biochemical chart display how proteins, polysaccharides and fats from food are digested into gastrointestinal tract into aminoacids, monosaccharides and fatty acids, and then broken down and oxidized to carbon dioxide and water in cellular processes of energy generation.
This metabolic pathway map was redesigned from Wikipedia file: Catabolism schematic.svg. [en.wikipedia.org/ wiki/ File:Catabolism_ schematic.svg]
The biochemical diagram example "Catabolism schematic" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Catabolic pathway map
Catabolic pathway map, proteins, polysaccharides, oxidative phosphorylation, nicotinamide adenine dinucleotide, NADH, nicotinamide adenine dinucleotide, NAD, monosaccharides, fatty acids, fats, citric acid cycle, tricarboxylic acid cycle, TCA cycle, Krebs cycle, amino acids, adenosine triphosphate, ATP, adenosine diphosphate, ADP, acetyl coenzyme A,
"Carbohydrate catabolism is the breakdown of carbohydrates into smaller units. Carbohydrates literally undergo combustion to retrieve the large amounts of energy in their bonds. Energy is secured by mitochondria in the form of ATP.
There are several different types of carbohydrates: polysaccharides (e.g., starch, amylopectin, glycogen, cellulose), monosaccharides (e.g., glucose, galactose, fructose, ribose) and the disaccharides (e.g., maltose, lactose).
Glucose reacts with oxygen in the following redox reaction, C6H12O6 + 6O2 → 6CO2 + 6H2O, the carbon dioxide and water is a waste product and the chemical reaction is exothermic.
The breakdown of glucose into energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms." [Carbohydrate catabolism. Wikipedia]
This glucose catabolism pathways map shows glycolysis by orange color, Entner-Doudoroff phosphorylating pathway by green color, Entner-Doudoroff non-phosphorylating pathway by Yellow color.
This methabolic pathway map was redesigned from Wikimedia file: Glucose catabolism pathways.svg. [commons.wikimedia.org/ wiki/ File:Glucose_ catabolism_ pathways.svg]
The biochemical diagram example "Glucose catabolism pathways map" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Catabolic pathway map
Catabolic pathway map, pyruvic acid, pyruvate, phosphoenolpyruvic acid, PEP, phosphoenolpyruvate, lactic acid, lactate, milk acid, glycolysis, glycerate, glyceric acid, glyceraldehyde, glyceric aldehyde
, glyceraldehyde 3-phosphate, triose phosphate, 3-phosphoglyceraldehyde, G3P, GADP, GAP, TP, GALP, PGAL, glucose, D-glucose, dextrose, grape sugar, glucose 6-phosphate, Robison ester, gluconolactone, ghlucono delta-lactone, GDL, gluconic acid, gluconate, fructose 6-phosphate, fructose 1,6-bisphosphate, Harden-Young ester, dihydroxyacetone phosphate, DHAP, glycerone phosphate, acetyl coenzyme A, acetyl-CoA, acetic acid, acetate, ethanoic acid, Entner-Doudoroff pathway phosphorylating, Entner-Doudoroff pathway non-phosphorylating
, 6-phosphogluconolactone, 6-phosphoglucono-δ-lactone, 6-phosphogluconic acid, 6-phosphogluconate, 3-phosphoglyceric acid, 3PG, glycerate 3-phosphate, GP, 2-phosphoglyceric acid, 2PG, 2-phosphoglycerate, 2-keto-3-deoxygluconate, KDG, 2-dehydro-3-deoxy-D-gluconate,  2-keto-3-deoxy-D-gluconic acid, 2-keto-3-deoxy-D-gluconate, 3-deoxy-2-oxo-D-gluconate, 2-keto-3-deoxygluconate, 3-deoxy-D-erythro-hex-2-ulosonic acid, 2-keto-3-deoxy-6-phosphogluconate, KDPG, 13-bisphosphoglyceric acid, 13-bisphosphoglycerate, 13BPG,
"Citric acid cycle (tricarboxylic acid cycle, TCA cycle, Krebs cycle) is a series of chemical reactions used by all aerobic organisms to generate energy through the oxidation of acetate derived from carbohydrates, fats and proteins into carbon dioxide and chemical energy in the form of adenosine triphosphate (ATP)." [Citric acid cycle. Wikipedia]
This biochemical diagram example shows metabolic pathways map of citric acid cycle reactions.
This sample was redesigned from the Wikimedia Commons file: TCA cycle.svg. [commons.wikimedia.org/ wiki/ File:TCA_ cycle.svg]
This image is licensed under the Creative Commons Attribution 3.0 Unported license. [creativecommons.org/ licenses/ by/ 3.0/ deed.en]
The metabolic pathway map example "Citric acid cycle (TCA cycle)" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Tricarboxylic acid cycle
Tricarboxylic acid cycle, α-ketoglutarate, alpha-ketoglutarate, alpha-ketoglutaric acid, α-ketoglutaric acid, water, succinyl-CoA, succinyl-coenzyme A, SucCoA, succinate, succinic acid, butanedioic acid, spirit of amber, phosphate, phosphoric acid, orthophosphoric acid, dihydrogen phosphate, hydrogen phosphate, oxaloacetate, oxaloacetic acid, oxalacetic acid, nicotinamide adenine dinucleotide, NAD, guanosine-5'-triphosphate, GTP, guanosine triphosphate, guanosine-5'-diphosphate, GDP, guanosine diphosphate, fumarate, fumaric acid, trans-butenedioic acid, flavin adenine dinucleotide, FADH2, flavin adenine dinucleotide, FAD, coenzyme Q10, ubiquinone, ubidecarenone, coenzyme Q, CoQ10, CoQ, Q10, citric acid, citrate, citric acid cycle, tricarboxylic acid cycle, TCA cycle, Krebs cycle, carbon dioxide, acetyl coenzyme A, L-malate, malate, malic acid, L-malic acid, D-isocitrate, D-isocitric acid, isocitrate, isocitric acid, Coenzyme A,