This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
"Carbohydrate catabolism is the breakdown of carbohydrates into smaller units. Carbohydrates literally undergo combustion to retrieve the large amounts of energy in their bonds. Energy is secured by mitochondria in the form of ATP.
There are several different types of carbohydrates: polysaccharides (e.g., starch, amylopectin, glycogen, cellulose), monosaccharides (e.g., glucose, galactose, fructose, ribose) and the disaccharides (e.g., maltose, lactose).
Glucose reacts with oxygen in the following redox reaction, C6H12O6 + 6O2 → 6CO2 + 6H2O, the carbon dioxide and water is a waste product and the chemical reaction is exothermic.
The breakdown of glucose into energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms." [Carbohydrate catabolism. Wikipedia]
This glucose catabolism pathways map shows glycolysis by orange color, Entner-Doudoroff phosphorylating pathway by green color, Entner-Doudoroff non-phosphorylating pathway by Yellow color.
This methabolic pathway map was redesigned from Wikimedia file: Glucose catabolism pathways.svg. [commons.wikimedia.org/ wiki/ File:Glucose_ catabolism_ pathways.svg]
The biochemical diagram example "Glucose catabolism pathways map" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Catabolic pathway map
Catabolic pathway map, pyruvic acid, pyruvate, phosphoenolpyruvic acid, PEP, phosphoenolpyruvate, lactic acid, lactate, milk acid, glycolysis, glycerate, glyceric acid, glyceraldehyde, glyceric aldehyde
, glyceraldehyde 3-phosphate, triose phosphate, 3-phosphoglyceraldehyde, G3P, GADP, GAP, TP, GALP, PGAL, glucose, D-glucose, dextrose, grape sugar, glucose 6-phosphate, Robison ester, gluconolactone, ghlucono delta-lactone, GDL, gluconic acid, gluconate, fructose 6-phosphate, fructose 1,6-bisphosphate, Harden-Young ester, dihydroxyacetone phosphate, DHAP, glycerone phosphate, acetyl coenzyme A, acetyl-CoA, acetic acid, acetate, ethanoic acid, Entner-Doudoroff pathway phosphorylating, Entner-Doudoroff pathway non-phosphorylating
, 6-phosphogluconolactone, 6-phosphoglucono-δ-lactone, 6-phosphogluconic acid, 6-phosphogluconate, 3-phosphoglyceric acid, 3PG, glycerate 3-phosphate, GP, 2-phosphoglyceric acid, 2PG, 2-phosphoglycerate, 2-keto-3-deoxygluconate, KDG, 2-dehydro-3-deoxy-D-gluconate,  2-keto-3-deoxy-D-gluconic acid, 2-keto-3-deoxy-D-gluconate, 3-deoxy-2-oxo-D-gluconate, 2-keto-3-deoxygluconate, 3-deoxy-D-erythro-hex-2-ulosonic acid, 2-keto-3-deoxy-6-phosphogluconate, KDPG, 13-bisphosphoglyceric acid, 13-bisphosphoglycerate, 13BPG,
The vector stencils library "Carbohydrate metabolism" contains 25 icons of metabolite symbols.
Use these shapes for drawing carbohydrate metabolism schematics, biochemical diagrams and metabolic pathways maps.
"Carbohydrates are a superior short-term fuel for organisms because they are simpler to metabolize than fats or those amino acids (components of proteins) that can be used for fuel. In animals, the most important carbohydrate is glucose. The concentration of glucose in the blood is used as the main control for the central metabolic hormone, insulin. Starch, and cellulose in a few organisms (e.g., some animals ... and ... microorganisms), both being glucose polymers, are disassembled during digestion and absorbed as glucose. Some simple carbohydrates have their own enzymatic oxidation pathways, as do only a few of the more complex carbohydrates. The disaccharide lactose, for instance, requires the enzyme lactase to be broken into its monosaccharides components; many animals lack this enzyme in adulthood." [Carbohydrate metabolism. Wikipedia]
The shapes example "Design elements - Carbohydrate metabolism" is included in the Biology solution from the Science and Education area of ConceptDraw Solution Park.
Carbohydrate metabolite symbols
Carbohydrate metabolite symbols, pyruvic acid, pyruvate, phosphoenolpyruvic acid, PEP, phosphoenolpyruvate, lactic acid, lactate, milk acid, glycolysis, glycerate, glyceric acid, glyceraldehyde, glyceric aldehyde
, glyceraldehyde 3-phosphate, triose phosphate, 3-phosphoglyceraldehyde, G3P, GADP, GAP, TP, GALP, PGAL, glucose, D-glucose, dextrose, grape sugar, glucose 6-phosphate, Robison ester, gluconolactone, ghlucono delta-lactone, GDL, gluconic acid, gluconate, fructose 6-phosphate, fructose 1,6-bisphosphate, Harden-Young ester, dihydroxyacetone phosphate, DHAP, glycerone phosphate, acetyl coenzyme A, acetyl-CoA, acetic acid, acetate, ethanoic acid, Entner-Doudoroff pathway phosphorylating, Entner-Doudoroff pathway non-phosphorylating
, 6-phosphogluconolactone, 6-phosphoglucono-δ-lactone, 6-phosphogluconic acid, 6-phosphogluconate, 3-phosphoglyceric acid, 3PG, glycerate 3-phosphate, GP, 2-phosphoglyceric acid, 2PG, 2-phosphoglycerate, 2-keto-3-deoxygluconate, KDG, 2-dehydro-3-deoxy-D-gluconate,  2-keto-3-deoxy-D-gluconic acid, 2-keto-3-deoxy-D-gluconate, 3-deoxy-2-oxo-D-gluconate, 2-keto-3-deoxygluconate, 3-deoxy-D-erythro-hex-2-ulosonic acid, 2-keto-3-deoxy-6-phosphogluconate, KDPG, 13-bisphosphoglyceric acid, 13-bisphosphoglycerate, 13BPG,