This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
The vector stencils library "Bearings" contains 59 symbols of ball bearings, roller bearings, shafts, springs, gears, hooks, spindles, and keys.
Use it to design engineering drawings of machine tools and mechanical devices.
"A bearing is a machine element that constrains relative motion and reduce friction between moving parts to only the desired motion. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Many bearings also facilitate the desired motion as much as possible, such as by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or to the directions of the loads (forces) applied to the parts." [Bearing (mechanical). Wikipedia]
The shapes example "Design elements - Bearings" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Bearing symbols
Bearing symbols, undercut, shaft, variable fillet radius, thrust ball bearing, through hole, threaded hole, tapered shaft, tapered key, gib head, taper roller bearing, roller bearing, spindle end, shaft, hollow shaft, shaft chamfer, chamfer, round key, round-end key, rolling bearing, needle roller bearing, roller bearing, hole chamfer, chamfer, gear, spur-gear, double row, spherical roller bearing, roller bearing, double row, self aligning, ball bearing, deep groove, ball bearing, cylindrical roller bearing, roller bearing, cutaway, revealing detail, countersunk hole, centering bore, hole, shaft, angular contact, ball bearing,
The vector stencils library "Valve assembly" contains 141 symbols of pressure and flow regulators, flow direction indicators, controls, and symbols to design flow paths of control valves.
Use these valve assembly shapes to design the engineering drawings of hydraulic and pneumatic valve assemblies in fluid power systems.
"Control valves are valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "setpoint" to a "process variable" whose value is provided by sensors that monitor changes in such conditions.
The opening or closing of control valves is usually done automatically by electrical, hydraulic or pneumatic actuators. Positioners are used to control the opening or closing of the actuator based on electric, or pneumatic signals.
A control valve consists of three main parts in which each part exist in several types and designs: Valve's actuator, Valve's positioner, Valve's body.
" [Control valves. Wikipedia]
The shapes example "" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Valve assembly symbols
Valve assembly symbols, variable arrow, valve, two-position, ports, valve, two-position, five ports, valve, three-position, ports, valve, three-position, five ports, valve, four-position, ports, valve, four-position, five ports, two-port, flow path, two-port, closed, flow path, three-port, flow path, three-port, crossover, flow path, spring, variable spring, non-variable spring, shaft, rod, shaft, direction, rotation, rotary connection, line junction, roller, one-way trip, rod, restriction, fluid flow, pull, push, button, pneumatic, fluid flow, plunger, variable plunger, non-variable plunger, pilot-operated, pedal, treadle, over - center, manual override, manual operation, lever, latch, junction, crossing, indication, temperature, temperature control, hydraulic, fluid flow, four-port, tandem, flow path, four-port, semi-connected, flow path, four-port, open, flow path, four-port, flow path, four-port, crossover, flow path, four-port, crossed, flow path, four-port, closed, flow path, fluid energy, pneumatic, hydraulic, energy source, fluid energy, pneumatic, energy source, fluid energy, hydraulic, energy source, flow path, flexible line, five-port, flow path, five-port, crossover, flow path, five-port, closed, flow path, electric, electrical, functional element, electric rotor, electric linear, solenoid, dot, line, junction, detent, curved arrow, direction, rotation, closed path, closed port, box, flow path, arrow, flow path, direction, rectilinear motion, air exhaust port, air bleed, connection,
The vector stencils library "Dimensioning and tolerancing" contains 45 symbols of geometric dimensions and mechanical tolerances, geometric symbols, callouts, and text boxes and inserts.
Use these geometric dimensioning and tolerancing (GD&T) shapes to create annotated mechanical drawings.
"Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances. It uses a symbolic language on engineering drawings and computer-generated three-dimensional solid models that explicitly describes nominal geometry and its allowable variation. It tells the manufacturing staff and machines what degree of accuracy and precision is needed on each controlled feature of the part. GD&T is used to define the nominal (theoretically perfect) geometry of parts and assemblies, to define the allowable variation in form and possible size of individual features, and to define the allowable variation between features." [Geometric dimensioning and tolerancing. Wikipedia]
The shapes example "Design elements - Dimensioning and tolerancing" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the ConceptDraw Solution Park.
Dimensioning and tolerancing symbols
Dimensioning and tolerancing symbols, total runout, text block, symmetry, surface, finish, roughness, surface profile, straightness, statistical tolerance, slope, position, positioning, perpendicularity, parallelism, material condition, line profile, flatness, diameter, depth, datum, reference, circle, datum, feature control, datum target, point, datum target, line, datum target, area, datum, cylindricity, countersink, counterbore, spotface, conical taper, concentricity, circularity, circular runout, callout, arc length, angularity,
"The symbols and conventions used in welding documentation are specified in national and international standards such as ISO 2553 Welded, brazed and soldered joints -- Symbolic representation on drawings and ISO 4063 Welding and allied processes -- Nomenclature of processes and reference numbers. The US standard symbols are outlined by the American National Standards Institute and the American Welding Society and are noted as "ANSI/ AWS".
In engineering drawings, each weld is conventionally identified by an arrow which points to the joint to be welded. The arrow is annotated with letters, numbers and symbols which indicate the exact specification of the weld. In complex applications, such as those involving alloys other than mild steel, more information may be called for than can comfortably be indicated using the symbols alone. Annotations are used in these cases." [Symbols and conventions used in welding documentation. Wikipedia]
The example chart "Elements of welding symbol" is redesigned using the ConceptDraw PRO diagramming and vector drawing software from the Wikipedia file: Elements of a welding symbol.PNG.
[en.wikipedia.org/ wiki/ File:Elements_ of_ a_ welding_ symbol.PNG]
The diagram example "Elements location of a welding symbol" is contained in the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Welding joint symbol chart
Welding joint symbol chart, field weld, arrow,
This engineering drawing present weld type symbols and fillet weld symbols.
The weld type symbol is typically placed above or below the center of the reference line, depending on which side of the joint it's on. The symbol is interpreted as a simplified cross-section of the weld.
"Fillet welding refers to the process of joining two pieces of metal together whether they be perpendicular or at an angle. These welds are commonly referred to as Tee joints which are two pieces of metal perpendicular to each other or Lap joints which are two pieces of metal that overlap and are welded at the edges. The weld is aesthetically triangular in shape and may have a concave, flat or convex surface depending on the welder’s technique. Welders use fillet welds when connecting flanges to pipes, welding cross sections of infrastructure, and when fastening metal by bolts isn't strong enough." [Fillet weld. Wikipedia]
The engineering drawing example Welding symbols is included in the Mechanical Engineering solution from Engineering area of ConceptDraw Solution Park.
Welding joint symbols
Welding joint symbols, square groove, insert, consumable insert, flare bevel groove, flared-bevel groove, flare V groove, flared-V groove, fillet, weld, cutaway, revealing detail, bevel groove, back, backing, arrow, V-groove, U-groove, J-groove,
The vector stencils library "Dimensioning and tolerancing" contains 45 symbols of geometric dimensions and mechanical tolerances, geometric symbols, callouts, and text boxes and inserts.
Use these geometric dimensioning and tolerancing (GD&T) shapes to create annotated mechanical drawings in the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-mechanical
Datum (old)
Datum (old),
Box callout
Box callout, callout,
Datum symbol
Datum symbol, datum, reference, circle,
Callout
Callout, callout,
All around callout
All around callout, callout,
Text block
Text block, text block,
2 datum frame
2 datum frame, datum, feature control,
Simple frame
Simple frame,
Basic frame
Basic frame,
1 datum frame
1 datum frame, datum, feature control,
3 datum frame
3 datum frame, datum, feature control,
Straightness
Straightness, straightness,
Flatness
Flatness, flatness,
Line profile
Line profile, line profile,
Circularity
Circularity, circularity,
Cylindricity
Cylindricity, cylindricity,
Surface profile
Surface profile, surface profile,
Position
Position, position, positioning,
Concentricity
Concentricity, concentricity,
Symmetry
Symmetry, symmetry,
Parallelism
Parallelism, parallelism,
Perpendicularity
Perpendicularity, perpendicularity,
Angularity
Angularity, angularity,
Material condition
Material condition, material condition,
Arc length
Arc length, arc length,
Diameter
Diameter, diameter,
Counterbore/ spotface
Counterbore/ spotface, counterbore, spotface,
Countersink
Countersink, countersink,
Depth
Depth, depth,
Slope
Slope, slope,
Conical taper
Conical taper, conical taper,
Statistical tolerance
Statistical tolerance, statistical tolerance,
Datum (new)
Datum (new), datum,
Datum (new) 2
Datum (new) 2, datum,
Target point
Target point, datum target, point,
Target line
Target line, datum target, line,
Target area (circle)
Target area (circle), datum target, area,
Target area (rectangle)
Target area (rectangle), datum target, area,
Total runout
Total runout, total runout,
Total runout 2
Total runout 2, total runout,
Circular runout
Circular runout, circular runout,
Circular runout 2
Circular runout 2, circular runout,
Surface finish
Surface finish, surface, finish, roughness,
Surface finish, removal process
Surface finish, removal process, surface, finish, roughness,
Surface finish, no process permitted
Surface finish, no process permitted, surface, finish, roughness,
The vector stencils library "Hydraulic pumps and motors" contains 74 symbols of hydraulic pump vector stencils, hydraulic motor symbols for engineering drawings of fluid power and hydraulic control systems.
"Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic.
Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement (flow through the pump per rotation of the pump) cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted." [Hydraulic pump. Wikipedia]
"A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder.
Conceptually, a hydraulic motor should be interchangeable with a hydraulic pump because it performs the opposite function - much as the conceptual DC electric motor is interchangeable with a DC electrical generator. However, most hydraulic pumps cannot be used as hydraulic motors because they cannot be backdriven. Also, a hydraulic motor is usually designed for the working pressure at both sides of the motor.
Hydraulic pumps, motors, and cylinders can be combined into hydraulic drive systems. One or more hydraulic pumps, coupled to one or more hydraulic motors, constitutes a hydraulic transmission." [Hydraulic motor. Wikipedia]
The shapes example "Design elements - Hydraulic pumps and motors" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Hydraulic pump and motor symbols
Hydraulic pump and motor symbols, variable displacement pump, variable displacement hydraulic pump, variable displacement hydraulic motor, pressure compensator, hydraulic variable displacement pump motor, hydraulic variable displacement pump, hydraulic variable displacement motor, hydraulic pump motor, hydraulic pump, hydraulic motor, floating motor, fixed displacement pump motor, fixed displacement pump, fixed displacement motor, fixed displacement hydraulic pump, fixed displacement hydraulic motor,
The vector stencils library "Pneumatic pumps and motors" contains 39 symbols of pneumatic pumps, motors and pump-motors for designing the engineering drawings of pneumatic circuits.
"A pneumatic motor or compressed air engine is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed air energy to mechanical work through either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor or piston air motor." [Pneumatic motor. Wikipedia]
"A gas compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.
Compressors are similar to pumps: both increase the pressure on a fluid and both can transport the fluid through a pipe. As gases are compressible, the compressor also reduces the volume of a gas. Liquids are relatively incompressible; while some can be compressed, the main action of a pump is to pressurize and transport liquids." [Gas compressor. Wikipedia]
The shapes example "Design elements - Pneumatic pumps and motors" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Pneumatic pump and motor symbols
Pneumatic pump and motor symbols, variable displacement pump, variable displacement pneumatic pump motor, variable displacement pneumatic pump, variable displacement pneumatic motor, pump, pneumatic, pump, motor, pneumatic, pneumatic variable displacement pump motor, pneumatic variable displacement pump, pneumatic variable displacement motor, pneumatic pump motor, pneumatic pump, motor, pneumatic, fixed displacement pump motor, fixed displacement pump, fixed displacement pneumatic pump, fixed displacement pneumatic motor, fixed displacement motor,
The vector stencils library "Valves and fittings" contains 104 symbols of valve components.
Use these icons for drawing industrial piping systems; process, vacuum, and fluids piping; hydraulics piping; air and gas piping; materials distribution; and liquid transfer systems.
"A valve is a device that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. Valves are technically valves fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure.
The simplest, and very ancient, valve is simply a freely hinged flap which drops to obstruct fluid (gas or liquid) flow in one direction, but is pushed open by flow in the opposite direction. This is called a check valve, as it prevents or "checks" the flow in one direction. ...
Valves are found in virtually every industrial process, including water & sewage processing, mining, power generation, processing of oil, gas & petroleum, food manufacturing, chemical & plastic manufacturing and many other fields. ...
Valves may be operated manually, either by a handle, lever, pedal or wheel. Valves may also be automatic, driven by changes in pressure, temperature, or flow. These changes may act upon a diaphragm or a piston which in turn activates the valve, examples of this type of valve found commonly are safety valves fitted to hot water systems or boilers.
More complex control systems using valves requiring automatic control based on an external input (i.e., regulating flow through a pipe to a changing set point) require an actuator. An actuator will stroke the valve depending on its input and set-up, allowing the valve to be positioned accurately, and allowing control over a variety of requirements." [Valve. Wikipedia]
The example "Design elements - Valves and fittings" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Chemical and Process Engineering solution from the Engineering area of ConceptDraw Solution Park.
Valves and fittings symbols
Valves and fittings symbols, wedge gate valve, valve manifold, tundish, swivel joint, strainer, stop check valve, soldered, solvent, socket, spigot, socket,  spigot, socket weld, sleeve joint, separator, screwed sleeve, screwed joint, screw-down valve, screw-down check valve, relief valve, relief angle valve vacuum, relief angle valve pressure, reel valve, reducing valve, reducer, powered valve, plug valve straight through, plug valve T point, plug valve L point, plug valve 3 way, plug valve, parallel slide valve, open vent, needle valve, lock-shield valve, liquid seal, joint, hydrant, globe valve, gate valve, float operated valve, flanged valve, flanged joint, bolted joint, flame arrester, exhaust silencer, exhaust head, end cap socket and spigot, end cap screwed, end cap quick release, end cap flanged and bolted, end cap fillet welded, end cap butt welded, end cap	screwed and plugged, end cap, electrically insulated, electrically bonded, drain silencer, diaphragm valve, check valve, characterized port valve, butterfly valve, butt weld, bursting disc, bell mouth, ball valve, angle valve, Y strainer, 3-way plug valve,