
ConceptDraw DIAGRAM
Third Party
Developer’s Guide

CS Odessa corp.

ConceptDraw DIAGRAM Third Party Developer’s Guide

2

CONTENTS

1. CONCEPTDRAW DIAGRAM FOR DEVELOPERS. .. 7

INTRODUCTION ... 7

2. DEVELOPER TOOLS... 8

2.1 The data exchange structure in ConceptDraw DIAGRAM. ... 8

2.2. Data management in ConceptDraw DIAGRAM .. 10

2.3 Developer Tools ... 11
2.3.1. The principles of using a table and CDBasic in a particular situation ... 11

3. OBJECTS .. 12

3.1. Simple Drawing objects ... 12

3.2. Special Drawing objects .. 13

3.3. State drawing objects ... 15

3.4. Dynamic State Drawing objects .. 17

3.5. Live Objects ... 19

3.6. RapidDraw objects .. 22

3.7. Complex Object ... 23
3.7.1. The interaction of objects in the table of properties .. 23
3.7.2. The interaction of objects with the help of ConceptDraw Basic .. 24

4. TASK SOLVING. ... 26

4.1. Classification of problems solved by the developer. ... 26

4.2. Examples of solved tasks. .. 26
4.2.1. Custom Templates .. 26
4.2.2. Smart Objects ... 27
4.2.3. Live Objects .. 27
4.2.4. RapidDraw objects ... 27
4.3. Installing add-ons, developed, to the user's computer. .. 28

5. DATA MANAGEMENT ... 30

5.1. Managing the object's data via table ... 30
5.1.1. Ways to work with the table .. 30
5.1.2. The Table Ssections .. 40
5.1.3.Table Compiler Function ... 55

5.2. Managing Object Data through CDBasic script.. 56
5.2.1 The table Fields changes by CDBasic script ... 58

APPENDIX 1. FUNCTIONS AND OPERATORS TABLE OBJECT PROPERTIES .. 60

A. 1.1. Operators of the table object's properties .. 60
A.1.1.1. Arithmetic Operators .. 60
A.1.1.2. Comparison operators: ... 61
A.1.1.3. Logical Operators .. 61
A.1.1.4. Precedence of operators. .. 64

A.1.2. Table Compiler Functions .. 64
Math: ... 64
Trigonometric: ... 65
Logic: ... 65
Function of conversion and rounding: ... 66
Text: ... 66
Date and time: ... 66
Functions of page processing : .. 66

ConceptDraw DIAGRAM Third Party Developer’s Guide

3

Functions for a call of subprogrammes on ConceptDrawBasic. ... 66
Functions to calculate the coordinates of the text step connector. .. 67
Functions to calculate the coordinates of the starting and ending points of the connector. 67
Functions for working with named styles .. 67
Working with color: .. 68
Functions for working with data sources .. 68
Miscellaneous: ... 70

A.1.3. Compiler Options table alphabetically with a description of ... 70

APPENDIX 2. CDBASIC REFERENCE.. 115

ConceptDraw Basic Reference ... 115

Overview .. 115

Conceptual Information ... 116

Language Core Reference .. 120
Abs Function ... 120
ADDRESSOF Operator ... 121
+ Operator .. 122
AND Operator ... 123
Asc Function ... 125
Atn Function ... 125
Beep Statement .. 126
Bin Function ... 127
Call Statement .. 128
Type Conversion Functions .. 129
ChDir Statement ... 131
ChDrive Statement ... 132
Chr Function ... 133
Close Statement ... 134
Comparison Operators ... 134
& Operator ... 136
Language Core Constants ... 137
Const Statement ... 139
Cos Function ... 141
CurDir Function .. 141
Data Type Summary ... 142
Date Function ... 143
Date= Statement .. 144
Declare Statement .. 145
Dim Statement ... 147
Dir Function .. 149
/ Operator .. 151
Do...Loop Statement .. 152
End Statement .. 153
Enum Statement... 155
EOF Function .. 155
EQV Operator ... 156
Erase Statement ... 158
Erl Function .. 158
Error$ Function .. 159
Error Statement .. 160
Err Function .. 161

ConceptDraw DIAGRAM Third Party Developer’s Guide

4

Exit Statement .. 162
Exp Function ... 163
^ , ** Operators .. 164
FileAttr Function ... 165
FileCopy Statement .. 166
FileDateTime Function ... 167
FileLen Function ... 167
FormatDateTime Function ... 168
FormatNumber Function .. 169
Format Function ... 171
For...Next Statement .. 178
FreeFile Function .. 180
Functions Index .. 181
Functions .. 184
Function...End Function Statement .. 185
GetAttr Function .. 188
GetOpenFileName Function ... 189
GetSaveFileName Function .. 190
Get Statement .. 191
GoSub...Return Statement ... 193
GoTo Statement ... 194
Hex Function .. 195
If...Then...Else Statement ... 196
IMP Operator ... 198
InputBox Function .. 199
Input Function .. 201
Input Statement ... 202
InStr Function ... 203
\ Operator .. 205
Int,Fix Function ... 206
IsDate Function .. 207
IsEmpty Function .. 208
IsNull Function .. 208
IsNumeric Function .. 209
IS Operator ... 210
Keywords .. 211
Kill Statement ... 213
LCase Function ... 213
Left Function .. 214
Len Function ... 215
Let Statement ... 216
Like Operator .. 217
Line Input Statement .. 219
Loc Function ... 220
LOF Function .. 221
Log Function ... 222
LSet Statement ... 222
LTrim Function .. 223
Mid Function .. 224
Mid Statement ... 225
- Operator ... 226

ConceptDraw DIAGRAM Third Party Developer’s Guide

5

MkDir Statement .. 228
MOD Operator ... 228
MsgBox Function .. 229
* Operator .. 232
Name Statement .. 233
NOT Operator ... 234
Now Function ... 235
Oct Function ... 236
On Error Statement .. 236
On...GoSub Statement .. 239
On...GoTo Statement.. 240
Open Statement ... 241
Operators ... 243
OR Operator ... 244
Pause Statement .. 245
Print Statement .. 246
Put Statement .. 248
Randomize Statement .. 249
Recording data in a file ... 250
ReDim Statement ... 251
Reset Statement ... 253
Resume Statement ... 254
Right Function .. 255
RmDir Statement .. 256
Rnd Function .. 257
Round Function .. 258
RSet Statement .. 259
RTrim Function ... 260
Seek Function ... 260
Seek Statement .. 261
Select Case Statement .. 262
SetAttr Statement .. 264
Set Statement ... 265
Sgn Function ... 267
Shell Function ... 268
Sin Function .. 269
Space Function ... 270
Spc Function ... 270
Sqr Function ... 271
Static Statement ... 272
Statements Index ... 274
Statements ... 276
Stop Statement .. 277
StrComp Function ... 278
String Function ... 279
Str Function .. 280
Sub...End Sub Statement .. 281
Tab Function ... 283
Tan Function ... 284
Timer Function ... 284
Time Function ... 285

ConceptDraw DIAGRAM Third Party Developer’s Guide

6

Time= Statement .. 286
Trace Statement ... 286
Trim Function ... 287
UCase Function... 288
Val Function.. 288
VarType Function ... 289
Wait Statement .. 291
While...Wend Statement .. 291
Width # Statement ... 292
Write # Statement .. 293
XOR Operator ... 294

Objects Reference .. 297
ConceptDraw access Objects ... 297
ConceptDraw access Objects Properties .. 373
ConceptDraw access Objects methods .. 584
ConceptDraw access Objects Constants ... 881
Databases access Objects ... 888
Databases access Objects Properties ... 911
Databases access Objects Methods ... 937
Databases access Constants ... 975

Trappable errors .. 977

Glossary ... 981

ConceptDraw DIAGRAM Third Party Developer’s Guide

7

1. ConceptDraw DIAGRAM for Developers.

Introduction

This document is the current version of the developer documentation. The document has the following

structure:

Chapter #2 represents the general information on the data structure in ConceptDraw and methods for

their processing.

Chapter #3 describes the types of objects available for creating new solutions by the end users.

Chapter #4 contains the list of common tasks and solutions’ scenarios.

Chapter #5 describes the data management techniques.

Appendix contains the relevant reference material on developer tools.

ConceptDraw DIAGRAM Third Party Developer’s Guide

8

2. Developer Tools

2.1 The data exchange structure in ConceptDraw DIAGRAM.

The ConceptDraw DIAGRAM deals with processing of the user documents that can consist from the

number of pages containing the graphic objects.

Each graphic object has a set of parameters (properties) that can be changed using interface as well as

using custom data via supported API

Each graphic object can use the predefined document styles. Thus, the document may "influence" on the

object (1). The objects are represented in the pages of the document and have the coordinates of the

location (2) and may be on different logical layers.

Note: The application has two separate, unrelated entities:

1) Layer - the logical layer, which is controlled from a dialogue “Layers”, and is not associated with
the visual stacking order of objects.

2) Unnamed visual level of objects’ overlay, separate for each object, which is regulated by the
commands StepFront, StepBack, SendtoFront, SendtoBack.

ConceptDraw DIAGRAM Third Party Developer’s Guide

9

Graphical objects can have a special script that allows changing the document properties (name, page

size, settings). Also it can allows managing the page (name, order, background) as well as, managing

other objects (create, delete, format) - these relations are shown in Figure ## 3-4-5.

ConceptDraw DIAGRAM Third Party Developer’s Guide

10

2.2. Data management in ConceptDraw DIAGRAM

Each ConceptDraw graphical object has a set of properties that define its view and functionality in the

application. ConceptDraw offers 3 ways to access properties of objects: a table of properties, the script,

XML. The table below represents the groups of objects’ properties and the ability to access them by using

different API.

Object properties Table of properties Basic script CD XML

Placement and size Yes Yes Yes

Layer No Yes Yes

Object formatting (line, fill and shadow) Yes Yes Yes

The geometry (contour of the shape) Yes Yes Yes

Text and formatting Yes Yes Yes

Blocking Yes Yes Yes

Custom behavior Yes Yes Yes

Hyperlink No Yes Yes

Custom properties Yes Yes Yes

Data sources Yes Yes Yes

Processing sets of variable length No Yes No

ConceptDraw DIAGRAM Third Party Developer’s Guide

11

2.3 Developer Tools

ConceptDraw DIAGRAM provides three ways to manage the graphic content of their documents:

- Shape parameters table

- ConceptDraw Basic Script

- ConceptDraw XML.

With the help of properties table one can define the logic of the objects’ behavior, apply them the

arbitrary appearance and set the connection between the appearances of different objects as well as

create complex objects. The object properties table gives the opportunity to work with the already

defined set of parameters and properties of an object. It is designed to manage the limited (including

large) set of properties. CDBasic Script helps to interact with other applications (command line running,

invocation of the custom functions from external libraries).

ConceptDraw Basic Script allows you to create and work with more complex objects, the objects with a

variable number of child elements, and custom properties, as well as pre-defined behavior. CDBasic

Script is only useful for such tasks.

ConceptDraw XML allows third-party applications to create graphic documents “on the fly” and

generate them by means of special simplifying constructions.

2.3.1. The principles of using a table and CDBasic in a particular situation
When it is better to work with tables, and when with CDBasic? All that can be done using a table (which is

not so much: actually everything that can be defined as a change in the properties of the Shape and its

parent or child Shape) is carried out faster exactly through table. But if you need to draw, or to modify

properties of a graphic object or other ConceptDraw objects (e.g., document, application layer e t c), or

just needed more advanced features provided by Basic, you should use CDBasic.

Be note that you should avoid situations in which the Basic script processing depends on the table

parameter that are calculating at the same time, because you cannot determine in advance the sequence

of calculation, and when any procedure called from a table variable will be invoked . In such cases it is

better to do everything through CDBasic.

And finally, there are cases where it is justified in the interaction tables and CDBasic.

ConceptDraw DIAGRAM Third Party Developer’s Guide

12

3. Objects

ConceptDraw DIAGRAM allows you to create and work with several types of graphical objects - from

simple images to intelligent objects changing its appearance depending on external data (Smart Objects).

3.1. Simple Drawing objects

Simple Drawings are the simple graphic objects created with the drawing tools and primitives grouped into

more complex objects that are simply have a set of graphical and text properties. The behavior of the

objects (size, position, styles and formatting) is taken in the usual application method.

The behavior of such objects is similar to the behavior of objects in other graphic applications,

The objects are not interactive. These objects are created by a simple drawing and combining of simple

objects into groups.

You can create your own set of simple objects; store them into the libraries and create templates with

predefined settings.

ConceptDraw DIAGRAM Third Party Developer’s Guide

13

Such objects have no logic and are vector images that can be used for creating static illustrations. They

have the usual set of data inherent to the graphical objects.

3.2. Special Drawing objects

Special Drawings - are the special objects that support the special settings for some properties. Such object

does not behave in a standard way even during common operations.

This category includes objects that behave in predetermined manner when properties changes (for

example, a disproportionate increasing of object’s parts during resizing). Also it includes the objects

protected from properties changes, and objects, the type and state of which may be changed using the

control points.

Special Drawing object can be created using the blocking of certain object’s properties (the most simple

objects) or by setting some dependencies on other properties of the object. In the second case, the

behavior of such objects is determined in the Shape Parameters table.

ConceptDraw DIAGRAM Third Party Developer’s Guide

14

Appearance and behavior of the object can depened on the random custom control points - Control

Handles. Such objects can be created using the object properties table.

This group includes objects with locked properties (such as moving the X-axis, changing the width of the

object, etc.), as well as objects with non-trivial behavior when changing their properties with custom

control points.

These objects are created using the blocking properties, installation of special relationships between the

properties, as well as by adding a custom control points

These objects are used in more complex drawings, when customization of the existing graphic objects or

interactivity in diagrams required.

Setting of such objects is carried out in the object properties table. Depending on the desired behavior of

the object any relationships between the properties can be established.

To create an object with a custom control points you need to add the Control Handles section into the

Shape Parameters table.

Each control point has X and Y parameters that determine coordinates of the point within object. Also

other properties of an object may depend on these coordinates. To move a control point only along one

axis, you can use the fields XBehaviour and YBehaviour. By setting one of these properties, a value 1, you

can restrict the movement of the control point by one axis.

The objects containing special relationships between the graphical properties can also contain the custom

control points.

ConceptDraw DIAGRAM Third Party Developer’s Guide

15

3.3. State drawing objects

State Drawing (switchable objects) - objects with multiple final states, which change their state to

implement a predefined command by the user.

Typically, such objects can On / Off such features, as visibility of the certain parts; color changes or changes

of the object’s shape/outline as well as its internal objects. Also, these objects can change their view by

the built-in function (Action), such as cyclic: rectangle, rhombus and parallelogram view. And also it can be

the interface elements, for example callouts that can have one of the predefined forms.

Every such object has several predefined commands – Actions. Each command includes a certain logic

state. And the object changes its appearance according to this state.

To create the State Drawing objects, you must understand the fundamentals of programming and have a

basic knowledge of object properties table. The custom commands – Actions have to be created for such

object.

Each user command is specified by a separate command (Action). User command (Action) defined by a set

of parameters in the properties table, see figure below. The first field is Action – is actually the action itself,

described by the ConceptDraw tabular formulas and functions. Most commonly the _SETF function is used.

It establishes a specific property of the object at a certain value. Menu - is a name of the command visible

to a user. Prompt – is a command hint. Checked and Disabled- are properties that determine the

command’s marking and running/availability status.

ConceptDraw DIAGRAM Third Party Developer’s Guide

16

For example, the reset command for the rotation angle of the object can be defined as follows: according

to a user command the object's rotation angle will be reset. The command will be named Normalize. The

command is available to perform only if the angle is not zero. Here is an example of this command for the

object.

The result is a predefined action, which is available only when the rotation angle is not zero.

For more complex object of this type, a container to store the internal state of an object can be required.

For this purpose you can use the Variables and Custom Properties that enhance the opportunities of an

object. The main difference between these parameters:

ConceptDraw DIAGRAM Third Party Developer’s Guide

17

Variables can store an integer number, real number or a Boolean value and thus is not accessible to the

user. Custom Properties container can contain other types of data: a line, color, an element from the

predetermined set, Custom Properties are available to the user via the interface – Custom Properties

dialogue.

Both Variables and Custom Properties sections are available in the object properties table.

3.4. Dynamic State Drawing objects

Dynamic State Drawing (Dynamic Variable Objects) - objects that can change its state and type in an

unlimited range. As a rule there are different graphics, histograms, pie charts, tables, complex objects,

which may have a large number of child objects.

This group includes objects that can have graphic content varies in a wide range, for example an object can

have an unlimited number of child objects, columns in the table of sections in the pie chart. Generally there

are tables, lists, charts, graphs, pie charts, etc.

Such objects are managed by means of predefined commands (Actions) and custom properties (Custom

Properties). To process the data (variable length) using of a properties table is not enough, so the Dynamic

State Drawing objects have CDBasic Script, which change their appearance. To create these objects you

have to know the basic skills in programming and using Basic - like languages.

The user data for such objects can be assigned through the Custom Properties, a special input field (the

InputBox function of CDBasic), or through the texts of other / child objects.

Examples of such objects are shown in Figure below.

ConceptDraw DIAGRAM Third Party Developer’s Guide

18

To create such an object, you must first draw it the base image, then assign custom commands (Actions),

and then connect the call to the appropriate link CDBasic Script with call to the custom commands

(Actions).

Below you can see the histogram object with a list of user commands (Actions), also its Actions section of

the properties table, and a fragment of the CDBasic Script.

First part of the figure shows that the object has six user commands (Actions).

ConceptDraw DIAGRAM Third Party Developer’s Guide

19

In the second part we can see a fragment of a table with all the properties of these commands.

In the third part we can see a fragment of CDBasic Script, which runs by the user's command AddColumn.

Objects can contain additional data that can be stored in the Variables and Custom Properties.

3.5. Live Objects

Live Objects - are the special graphic objects that have a predetermined logic. Form and reaction of the

Live Objects depend on the external user data. Live Objects could be very simple, for example – an object

ConceptDraw DIAGRAM Third Party Developer’s Guide

20

displays a single value from a text file, as well as and quite complex – displaying the date from multiple

sources. Live Objects used in dynamic presentations and DashBoard systems.

To work with external data, such objects contain the Data Sources (a block of properties defining an

external file, the data source), through the Data Sources data is written to the object properties, commonly

to the Variables, Custom Properties, and then used in the calculations.

Live Objects could be of two types - the objects of state and dynamically extensible objects. The objects of

the first group have a limited set of states, and display data in these states. The second group of objects

can be modified in an unlimited range, depending on external data.

Examples of the live objects of state are shown in Figure.

Examples of the dynamically extensible objects are shown in Figure below.

ConceptDraw DIAGRAM Third Party Developer’s Guide

21

Simple objects Live Objects can be created using the object properties table, to create complex objects it

is necessary to implement the certain part on CDBasic Script.

A key element for the Live Objects is the data source. Every Live Object has at least one Data Sources,

which is described by the properties in the table’s section.

Information, displayed for each data source contains: the path source, frequency of updating, an action

that should be done when updating the data (optional).

An object can store / cash the external data and can directly use them from the data source.

ConceptDraw DIAGRAM Third Party Developer’s Guide

22

3.6. RapidDraw objects

RapidDraw objects are the objects that implement the mode of rapid creating of block diagrams.

ConceptDraw has a special mode (RapidDraw) using which you can create, combine and arrange new

objects on a worksheet automatically. With RapidDraw mode help, you can quickly build various block

diagrams. Also you can create your own sets of RapidDraw objects.

The following are illustrations of the RapidDraw mode.

To create RapidDraw objects you need to create a basic set of objects, keep it in the library, and then

activate the RapidDraw mode for each object. All configurations are carried out through the property table.

ConceptDraw DIAGRAM Third Party Developer’s Guide

23

Each RapidDraw object is described in a separate section of the table properties:

left-right-top-bottom indicates the sides of the object where the object can be created.

Library displays the path to the library where object is stored.

Object indicates the name of the object.

Icon and ObjectDescription contain the supporting information of the object - the icon and the signature.

ConnectorType – indicates the type of connector: 0-smart 1- direct, 2-custom from the library. The latter

require specifying exactly the ConnectorLibrary and ConnectorObject.

Spacing - gives you the flexibility to manage the placement of objects by setting arbitrary spacing. This

parameter is optional and used in limited cases.

Start-End-ConnectionPoint - make it possible to identify specific points of attachment for connectors. This

parameter is used in limited cases.

Autobalance - controls the placement, down-to-right or down, left / right.

3.7. Complex Object

ConceptDraw objects can be of varying complexity. You can group objects and operate with group like

with single object, called Group. You can create objects that can with other objects on the page of the

document.

ConcetpDraw document has one or more pages. Each page can have a set of graphical objects. Graphical

objects can be simple - shapes, and complex - groups. Complex objects, in turn, can contain simple as

well as other complex objects.

Any object can use ConceptDraw data from other objects. To install the dependencies, one should use

the set of the special commands.

3.7.1. The interaction of objects in the table of properties
By using a table of properties, you can set the dependences of properties within object. You can also set

the dependences between properties of different objects using Parent, ObjID and Child constructions.

Parent –provides access to the object-owner of the current object. Is used to establish the dependence of

child objects on the variables and values of the parent objects. For example: Parent.TheText,

Parent.GPinX, Parent.Variables.X1.

ObjID - provides access to the object by the specified identifier. Is used as an ObjID% _ID%, where _ID is

numeric identifier of the object in the document. The ObjID construction helps refer to other objects

regardless of their level in the hierarchy and his belonging of the current object hierarchy. Link to

properties of the object with ID 17 may be of the form: ObjID17.TheText, ObjID17.GPinX, and

ObjID17.Variables.X1. Link to ObjID used in complex documents, complex objects, or Dashboard.

ConceptDraw DIAGRAM Third Party Developer’s Guide

24

Child - provides access to the properties of child objects, the operator is only available for objects that

are grouped, and have child objects. Access to child objects is provided by the operator Child% _num%,

where the _num-child object is a number of the child object within the group. Child operator is typically

used in special objects containing a set of similar child objects such as lists, tables, CheckBox and

RadioButton sets. Example of links by Child: Child17.TheText, Child17.GPinX, Child17.Variables.X1.

You can combine links Child and Parent, if you want to get access to top-level object or object at the

same level, for example:

- Parent.Parent.Variables.Y2 - get the value of Y2 for parent of parent.

- Parent.Child3.Gpinx – get the coordinate on the X axis of a child object from the current parent.

3.7.2. The interaction of objects with the help of ConceptDraw Basic
You can create dependencies of objects’ properties with the help of ConceptDraw Basic.

As mentioned earlier, all objects are placed on the page of the document. To get a pages list, the

document has the following methods:

PagesNum – returns the number of pages in the document

PageByID - returns a page by its ID

Page - returns a page at the specified index.

Each page contains a number of methods for working with a set of objects located on it:

ShapesNum - returns the number of objects on the page

ShapeByID - returns a graphics object by its identifier

Shape - returns a graphics object by its index.

Each graphical object has a special method of Parent that returns the parent graphical object (if exist), or

the Page where is the graphic object placed.

The grouped objects have the same set of methods for child objects processing, like page, namely:

ShapesNum - returns the number of objects on the page

ShapeByID - returns a graphics object by its identifier

Shape - returns a graphics object by its index.

Thus, to enumerate all the objects on the page and replace the text object with the "unknown" to

"newtext", Basic Script code will look like:

Dim shp as shape

ConceptDraw DIAGRAM Third Party Developer’s Guide

25

For i=0 to thispage.shapesnum

 Shp = thispage.shape(i)

 If shp.text=”unknown” then

 shp.text=”new text”

 End if

Next if

ConceptDraw DIAGRAM Third Party Developer’s Guide

26

4. Task Solving.

4.1. Classification of problems solved by the developer.

Using the arsenal of developer tools, one can solve different tasks on user data visualization, automatic

provision of information and graphical reports generating.

There are five types of visualization tasks to be solved with the help of ConceptDraw DIAGRAM:

1. Custom templates (custom templates). The task involves the creation of a specific working
environment and created templates for the documents. The task is to create a custom template with
settings of predefined objects libraries.

2. Smart Objects (Interactive objects). This group includes tasks to create special graphics objects with
interactive behavior.

3. Live Objects (live objects, lights). Creating the special graphic objects changing its state by changing
the external data.

4. RapidDraw template (templates for creating charts with the help of technology RapidDraw). Creating
a custom set of graphic objects to quickly create charts for specific topics, such as flowcharts, ERD,
BPMN.

5. Visual Reports (visual graphic reports). Creating a visual report on the results of the action of any
system. The problem reduces to the generation of CD XML file describing the structure of a graphical
report.

4.2. Examples of solved tasks.

Below is a common scenario for each of the types of tasks.

4.2.1. Custom Templates
Custom templates are a blank for document. The template has the entire set of properties Custom

templates provide a blank document. The template has the entire set of properties inherent in the

document: title, page size, units, grid settings, snapping and other.

A template can have a set of pages, and graphics. When you open a template opens the associated

library of graphic objects.

To create a custom template, make the following steps:

1. Create a set of graphical objects used in the template
2. Create a new library, moved here the graphic objects and save it.
3. Create a new document (template), set it to the required settings, place graphic objects on it
4. Save the document as a template, with *. cdt expansion.
5. While opening the saved template, the corresponding libraries open automatically and it will be

ready for new document creation.

ConceptDraw DIAGRAM Third Party Developer’s Guide

27

4.2.2. Smart Objects
Smart Objects can be created only by using the table properties. Also you may need to use ConceptDraw

Basic.

Behavior of the Smart Objects usually defined by custom Actions and Control Handles.

The general procedure of the Smart Objects creation is the following:

1. Create a simple graphic image using simple graphic tools and ready library objects.
2. Add Custom Control Handles using the object table of properties of.
3. Set the depending of the object properties on the position of Control Handles (set formula), test

the object performance.
4. Add custom commands (Actions) for objects
5. Set the action by the commands - change the properties, call script CDBasic.
6. Write and debug the script, if needed.
7. Check the object performance.

This category includes State Drawing and Dynamic State Drawing objects.

4.2.3. Live Objects
This category of objects makes it possible to display data from the files of external URL.

Typically, users use the ready Live Objects, and they need only to set the data source object, then the

object will read the data and change its appearance.

The creation of the Live Object requires knowledge of object properties table. To create a Live Object you

must have a sample data source file.

The procedure to create a Live Object is following:

1. Draw a simple graphic object, possibly with sub-objects, which will change its appearance by the
external data changes.

2. Add the Data Source property - Data Source. For this purpose, call the Insert Section - Data
Source command in the properties table.

3. Set the data source properties - the path to the file of source, the frequency of data updates. If
the data source file is correct the "Valid" property will get the TRUE value.

4. Establish the dependence of the object properties from external file data. The function CSV
Value, returning the cell value from a CSV file is typically used for this purpose.

5. If you need to calculate intermediate data, you can add user-defined variables and properties -
the Variables and Custom Properties sections of the properties table.

6. It is recommended to use the long periods of data sources updates - from 5 seconds to a minute.
7. You can set the dependence of the properties of one object from several different data sources.

Just add one or more data sources to the object.

4.2.4. RapidDraw objects
RapidDraw objects allow the user to quickly build a block diagram from a single, simple object. Technique

uses the drawing tools right on the workspace.

ConceptDraw DIAGRAM Third Party Developer’s Guide

28

To create your own libraries of RapidDraw objects you need just basic knowledge on the work with the

object properties table. A typical scenario for creating such objects is following:

1. Create a set of simple graphical objects to be used in the RapidDraw drawing mode.
2. Create a new library. Save all necessary objects into it. Save the library.
3. For the first object define a set of other objects to build. For this purpose, use the command

Section – RapidDraw in the properties table. Set the necessary properties in the section that
appears: the path to the library, the name of the object, the type of connector, the shit of the
axes (if needed), and others.

4. Repeat p. 3 for all graphic objects that you want to build from current.
5. Desirable. For every picture draw an icon size of 19 * 19px, and assign an icon for the object in

section RapidDraw.

4.3. Installing add-ons, developed, to the user's computer.

There are two main locations of files and folders of ConceptDraw:

Program files location:

«%ProgramFiles%\ConceptDraw Office\ConceptDraw DIAGRAM\» (win)

 «/Applications/ConceptDraw DIAGRAM.app/» (mac).

Here the files shared for all users of current computer are located. This is the path to save all the files

needed to run the application.

Add-ons, templates, samples libraries and temporary files are located here:

 « %ProgramData% \ConceptDraw Solution Park» (win)

 «/Library/ConceptDraw Solution Park » (mac).

Typically this path is used during the installation of user defined solutions. Solutions extend the value of

ConceptDraw DIAGRAM for professional users. Each user on the current computer can have the own set

of solutions.

Shared files:

Path Description

Data\ System Libraries needed to for diagramming and import from other applications

Data\Visual

Reports\

Libraries, templates, scripts needed for creation visual reports from ConceptDraw

PRJECT.

Dicts\ Dictionaries for spell checker

Help\ Reference on application, CDBasic and CDX file structure

Help\ContextHelp\ Files of the Context help

ConceptDraw DIAGRAM Third Party Developer’s Guide

29

HTML_Templates\ Templates for export to HTML format

Libraries\ CDL and CDLX libraries. Nowadays contains the DrawingShapes.cdl only. All other

moved to the second section.

RapidDraw\ The Rapid Draw objects’ button icons

Resources\ Dynamic software libraries with support of localization and languages XML files

Shapes Gallery\ Libraries and Template Gallery icons

Textures\ Image (texture) intended to fill the ConceptDraw DIAGRAM objects

User Files:

Path Description

Backup\ Location of documents Autosave

Index\ Data for quick search through documents and libraries.

Libraries\ CDL and CDLX Libraries

RapidDraw\ Icons for RapidDraw objects of the solutions, installed.

Samples\ Document samples

Templates\ Document templates

The developer of solution must create the sub-folders for his files in the following second section folders:

Libraries, RapidDraw, Samples and Templates. The sub-folder should be named the same as solution.

When the application runs the necessary templates and examples will be displayed in a separate category

in the Templates Gallery. In the folder Templates \ <solutionname> \ Localize should be placed the files

of solution localized descriptions, such as English language - file DescriptionEn.html.

ConceptDraw DIAGRAM Third Party Developer’s Guide

30

5. Data Management

5.1. Managing the object's data via table

Each object in the ConceptDraw DIAGRAM is built on the basis of dozens of parameters. They can be

numeric, string or formulas. All parameters are collected in the object parameters table, where each of

them can be changed, thereby altering the properties and behavior of the object. Managing the object via

table’s means creating in the table of properties the relationships between various parameters of the

current object and other objects using formulas.

5.1.1. Ways to work with the table

To access the table of parameters, select object and then press F3, or PowerEdit button in the Properties

section of the Shape ribbon tab. Table will open in a separate window.

ConceptDraw DIAGRAM Third Party Developer’s Guide

31

It is possible to use the following table elements:

• In the input field you can edit the contents of the selected cell (enter a value or formula);

• Buttons can deny or allow, accept, discard the changes after editing the selected cell;

• Sections join the groups of parameters: the size, properties, geometry, lines, fills, text, behavior

parameters and other;

• Cells contain a value or a formula for each object parameter. You can select a cell and change its content

using the input field;

• Menu contains the commands that can be applied to the table (copy the data, change the data displaying

mode, discard changes, edit the section, etc.).

There is an input field at the top of the window. If you select any cell in the table, its contents will appear

in the input field editable. Double-clicking on the cell, in addition, will select an editable string. To finish

editing you must press Enter, to roll back - Esc (or use the icons on the left of the input field). If you make

a mistake, while editing sell, for example, input letters instead of numbers, or enter the illegal symbols, the

program will display an error message and will roll back to its original condition.

Cell is a place to store the object parameter. The active cell is available for editing, which occurs in the

input box above the table. To quickly start editing, you need to double click on the cell. To change the

active cell, you can use the arrow keys.

The content of a cell depends on the mode of viewing of the table. The Values and Formulas modes are

available. The switching between modes is possible via the context menu. If the Values mode is ON, the

cells will display values in the current measurement units. If the Formulas mode is ON the cells will display

the formulas. If the cell does not contain the formula, the values of length in tenths of a millimeter, or

angles - in radians will display.

Note that the edit field in any mode, displays the formula (if exist). You can enter data in units other than

those specified in the document. For example: 12 in, 3.5 ft, 0.66 m. While editing the content of a cell you

can use data from another cell by clicking on it with the mouse:

ConceptDraw DIAGRAM Third Party Developer’s Guide

32

Single mouse click on the other cell Insert formula from this cell into the input field

/Ctrl + click on the other cell

/Cmd + click on the other cell

Insert the number value of the cell into the input field

/Alt + click on the other cell

/Opt + click on the other cell

Transfer the names of the cell (to refer to it)

5.1.1.2. Operators
In the table formulas you can use arithmetic operators, comparison operators and logical operators.

Arithmetic operators

• Exponentiation operator "^" or "**"

• Change of the sign and subtraction "-"

• Addition "+",

• Multiplication and division - "*", "/"

• Integer division "\",

• An arithmetic modulus (remainder of the division) «MOD»,

• Connection string "&".

Comparison operators

• Less than "<",

• More ">"

• Less than or equal to "<="

• Greater than or equal to "> =",

• Equal "="

• Not equal to '<>'.

ConceptDraw DIAGRAM Third Party Developer’s Guide

33

Logical operators

Logical operators can be used in formulas except the logic functions _AND(), _IF(), _NOT(), _OR() and

_XOR().

• Conjunctions «AND»,

• Disjunction «OR»,

• Exclusionary "or" «XOR»,

• Denial «NOT»,

• Equivalence «EQV @?

• Implication «IMP».

5.1.1.1. Formulas
Write a formula of object parameter for setting the object to associate it with the other parameters, or

user actions.

Variables.X1+(Variables.X2-Variables.X1)*0.293

_MIN(0;Geometry1.X2-Variables.X2)

=_IF(Variables.X1=1;_SETF("Variables.X1";0);_SETF("Variables.X1";1))

To refer to the contents of the cell in the formula, you must specify its name (it displays by blue color near

the cell), for example: Width, TextAngle, etc.

<cell name>

For the sections where you can add cell (Sections Geometry, Controls, Connect, Variables, FontFormat,

ParagraphFormat, Actions) a different system of treatment is used:

<partition name>. <cell name>

The name of the cell is formed from the name of the column and row sequence number. For example:

"Controls.YDyn1"; "Variables.Y2"; "Connect.X1".

In the Geometry section, the cell name also includes the number of the section (as the geometries may be

several). For example: "Geometry1.Y1", "Geometry2.C2". For the first two cells of the names look like

this:"Geometry1.Visible" and "Geometry1.Filled".

You may need to reference the cells, describing other objects. Each object has an identification number -

it can be seen in the header of the table window or in the Information tab of the Shape Properties dialog.

ConceptDraw DIAGRAM Third Party Developer’s Guide

34

Or in the Info panel (parameter ID)

This ID is used to refer the object’s parameters

<object ID >.<Section name>.<Cell name>

ConceptDraw DIAGRAM Third Party Developer’s Guide

35

For example:

ObjID13.Geometry2.X1

ObjID2.Width

If the object belongs to a group, then to access the parameters use the prefix Parent.

Parent.<section name>.<cell name>

For example:

Parent.Height

The reference to objects - members of a group should be written as:

Child<number>.< section name >.< cell name >

For example:

Child2.Angle

The number in the name of the object corresponds to its order number in the group. This number can be

found out in the Information tab of the ShapeProperties dialog or in a floating dialog Information (Field

SubID).

Some formulas will automatically appear. They are called formulas by default. For example, if you create

a line, one of its parts is prescribed as follows:

The expressions "Width * 0.75" and "Height * 0.666667" are the formulas by default. Due to the formulas,

when the object resized, its vertexes saves their positions relatively to the control frame. Note, that

formulas by default will be converted when moving the vertex by mouse (and will be ready for a new

changes).

If there is a “=” in front of the formula, it means that the formula cannot be changed by any action, but

direct cell editing. If there is no defense, it could become a default one, for example, when you move the

control point.

If the parameters are used to indicate linear dimensions (width, height) or coordinates, the measurement

units should be listed. For example, the parameter Width of the Transform section:

ConceptDraw DIAGRAM Third Party Developer’s Guide

36

=15 mm

If the unit is not specified, a tenth of a millimeter (0.1 mm) will be used as default measurement unit.

The default measurement units for angles are radians. If you want to record the angle in degrees, you need

to write the word “deg”.

= 30 deg

5.1.1.3. Functions Call
In addition to simple expressions from the variables and operators in the formulas you can use the built-in

table functions.

All table functions begin with an underscore, and are written in caps letters. For example: _CALLTHIS(),

_MIN(), _LN() (see Appendix 1..). But you can type the functions without these symbols. The editor will

automatically convert the characters to meet these requirements.

The parameters passed to the function are indicated in parentheses, next to the function name. Function

can have several parameters, or even does not have them at all. If the function has several parameters,

they are listed, separated by semicolons. The transmitted parameters may be of various types - string,

integer, floating-point value, Boolean, etc. The parameters and their types required for certain function is

described by Appendix 1 The Functions and operators of object properties table.

The syntax of the functions on the example of a function _IF() (Appendix 1.)

_IF(arg1;arg2;arg3)

If the value of arg1 is- a non-zero number or non-empty string, the function returns arg2, otherwise -

arg3.

Examples:

_IF (2> 1, 3, 4) - the function returns a value of 3

_IF (""; 3, 4) - the function returns a value of 4

The table functions call on an example of a function call _DATE () (see Appendix 1.):

For example, you want the object ConceptDraw DIAGRAM displaying the current date. To do this, draw a

rectangle, add a table in his section of the TextField (from the table using the Insert Section dialog, or just

writing something in it) and enter the name of the function TheText _DATE (). So you will call _DATE (),

which will return a string with the current date and this will be the value of a cell line TheText object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

37

The task is solved.

5.1.1.4. Processing of the object events using formulas
ConceptDraw DIAGRAM can process some events, such as changing the position of the object on the

page; change its size and the angle.

The program allows you to use the event to set the behavior of objects in the document by specifying in

what cases the parameters of the object should be updated.

The events are specified in the formulas, after the semicolon.

<formula content>; <event1>; < event 2>; < event 3>

When an event occurs, the formula is updated, and also updates the content of other fields from a table

of parameters, that refer to this formula.

Example:

You can see the event processing on the example of connector, which is connected to the object in the

two points.

The fields of the table Glue Info;

ConnectObjBegin 1;ShapeID1.EventMove

ConnectObjEnd 2;ShapeID2.EventMove

The event, which initiates updating of parameters (in this example it is moving of the object) is specified

after the semicolon. Note that the objects ID themselves does a not change, but they affect the

parameters from the EndPoints section:

BeginX _CONNECTBEGINX(ConnectObjBegin;ConnectObjEnd;ConnectTypeBegin)

ConceptDraw DIAGRAM Third Party Developer’s Guide

38

BeginY _CONNECTBEGINY(ConnectObjBegin;ConnectObjEnd;ConnectTypeBegin)

EndX _CONNECTENDX(ConnectObjBegin;ConnectObjEnd;ConnectTypeEnd)

EndY _CONNECTENDY(ConnectObjBegin;ConnectObjEnd;ConnectTypeEnd)

If the same event (Event Move) is specified for each parameter in the EndPoints section, there are no

needs to specify it in the Glue Info section.

Object events.

There are several events that can be specified for each object. They are specified in the formula as

follows:

[<object name>.] <event name>

Name Responsible for

EventMove The movement of an object

EventResize The resizing of an object

TextEventMove The movement of an object’s text frame

TextEventResize The resizing of an object’s text frame

CharPropEvent The changing of the Character Properties section of the parameters table and the

object’s text format

Changing of any variable in the table of parameters, also, may be an event. For example, if one writes

<object name>. Width after the semicolon in a formula, then the update of the formula and update of

the formulas that refer to this formula will only occur when the length of the specified object is changed.

5.1.1.5. Variables contain information about the document
In addition to the variables from the object parameters, the variables specified in the Properties dialog

that support the document properties, , also can be used in a formula:

DocTitle Title of the document

DocSubj Purpose of the document

DocAuthor Author of the document

DocCompany Organization

ConceptDraw DIAGRAM Third Party Developer’s Guide

39

DocDesc Description of the document

DocSnapSens Sensitivity of sticking to the grid - in pixels

DocPageSizeX Returns the width of the page in the specified units

DocPageSizeY Returns the height of the page in the specified units

DocShadowOffsetX The shadow shifting to the right

DocShadowOffsetY The shadow shifting below

DocScale Scale of the document

PageName PageNname (may be changed though the Pages panel by double-click on the page

name)

For more information about the Properties dialog see the Help articles: Dialogs - Modal dialogs –

Properties. For more information about the Pages panel see the Help articles: Dialogues - Floating Panels

- Pages.

5.1.1.6. Call to CD Basic subprogram from the table field
There tree table functions to call CD Basic script from the table: _CALLTHIS(), _CALLTHIS_1ARG() and

_CALLTHIS_2ARGS() (Appendix 1.). The first one can call a CDBasic procedure or function on its name.

And the other two allow passing additional one or two arguments.

The called function can be defined at any level, but must have the following view:

Function proc_name (shp As Shape [, Arg1 As <Type1>[, Arg2 As <Type2>]])[As <Type3>]

The variable shp here represents the object from which the function is called. Arg1 and Arg2 are the

custom arguments that are passed to the function when called from _CALLTHIS_1ARG() and

_CALLTHIS_2ARGS().

Notice. Inside the function called from the table, should not be used a couple of methods StartRebuild () - EndRebuild

(). To update the table cells the similar commands are launched by the application automatically. Custom calling

EndRebuild () can be confusing and cause the breaking of the parameters update process.

For example, let’s create a rectangle object with a custom menu item on which the application will ask

the new text of the object. At the level of the document we define a function MyProc():

Function MyProc(shpAsShape) As Byte

Dim ss As String

ss = InputBox$("Entertextforshape")

shp.Text = ss

ConceptDraw DIAGRAM Third Party Developer’s Guide

40

End Function

Let’s add the user context menu to rectangle. In the Action field to we write a function call:

_CALLTHIS("MyProc")

In the field Menu - we write a function name "Call proc from CDBasic script", in the field Prompt - "Click

to call proc from CDBasic Script".

The rectangle will obtain be a new context menu item "Call proc from CDBasic script", clicking on which

you can call the dialog with the proposition to change the text.

5.1.2. The Table Ssections
The table of object parameters has several sections. Each section is responsible for the certain

functionality of an object (such as position, size, text, etc.).

Some sections may be missing because they correspond to an optional feature of the object (for

example, control points, or a custom context menu).

You can hide a section, or make it visible. Use the dialogue View Sections, which can be opened from the

table context menu. Also it is possible to add optional sections, using the dialogue Insert Section (menu

Insert Section).

Some sections (Geometry, Controls, Variables, Character Format, Paragraph Format, Actions) integrate

the cells into solid information line of information (for example, describes a control point, line segment

shapes, etc.). In such case, one can operate with the whole line, using commands: Add Row, Delete Row.

These commands are available from the context menu of the table.

You cannot delete the entire section. But the optional section will automatically retire, when you remove

all of its lines.

One section is active (orange highlight of the section title). It is the section where you can make edits of

table cells . To activate the section, you need to click on its title or one of its cells.

ConceptDraw DIAGRAM Third Party Developer’s Guide

41

Each section can be folded into single line. To do this, make it active, and then click on the title. Second

click will open the section.

A table can contain up to 22 types of sections. The section of each type (except Geometry and

RapidDraw) occurs once or not occurs at all. The Geometry section as well as RapidDraw may attend

more than once.

List of sections of the object parameter table:

• Transform;

• Geometry;

• EndPoints;

• Glue Info;

• Variables;

• Controls;

• Connect;

• Actions;

• Data Sources;

• Data;

• RapidDraw Object;

• Custom Properties;

• Line Properties;

• Fill Format;

• Text Field;

• Text Transform;

• Character Format;

• Paragraph Format;

• Text Block Format;

• Text Tabs Table;

• Protection;

• Miscellaneous;

5.1.2.1. Transform
This section contains parameters that are responsible for the location, size and orientation of the object.

The internal coordinate system of the object based on the control frame: the center of the system

(reference point) is located in the upper left corner. The axis directed to the right / down.

Externally, this system of coordinates attached to the parent group by the following parameters:

• GPinX, GPinY define the center of rotation of the object in the external coordinate system

ConceptDraw DIAGRAM Third Party Developer’s Guide

42

• LocPinX, LocPinY - the same point in the internal coordinate system

• Angle - the angle of rotation of the internal system relatively to the external

• FlipX, FlipY – switching of the mirror image horizontally and vertically

Note: If the object does not have a higher group, it is considered that it is the part of the group, which

forms the entire page.

5.1.2.2. Geometry
This section describes the construction of a continuous chain of segments. The object may consist of

several chains, so the Geometry sections can also be a few. All of them are numbered, for example:

Geometry1, Geometry2, etc.

The segment can be a point, segment, and arc of a circle or ellipse, spline section.

ConceptDraw DIAGRAM Third Party Developer’s Guide

43

The segment is based on two points. Arc of a circle - on three:

• the initial

• final

• intermediate point on the arc

The arc of the ellipse is based on three points and two additional parameters:

• starting point

• end point

• arbitrary point on the circle

• the ratio of the lengths of major and minor axes of the ellipse

• the angle of the semi major axis in the internal coordinates of the object

The segment of the spline is based on four points:

• initial

• initial guidance

• final

• the ultimate guidance
Each segment bases its construction on data of the previous segment. The end point of the previous

segment is considered the initial to the current. For the spline segment, in addition, the data on the

primary guidance is taken from the previous segment (the ultimate guidance of the previous segment).

ConceptDraw DIAGRAM Third Party Developer’s Guide

44

All coordinates are entered in the internal coordinates of the object.

You can specify two additional parameters of the whole geometry in the same section.

• Visible –regulates the visibility of the chain segments. With this flag, depending on the state of an
object, you can disable the display of certain geometries. So, for example, realized the effect of
adding / removing elements of the object using the context menu.

• Filled – regulates the displaying of the object’s fill.
To accurately specify the coordinates of the object within a group in a coordinate system

of group or page, you need to know how to convert the coordinates of any object’s point

from the local system to the external frame of reference. We know the coordinates of

rotation center of the object in both systems and we know the coordinates of the object’s

point in the local coordinate system. We can find the coordinates of the object in the

external system by applying the following transformations:

The coordinates of the point – GDotX:

GDotX = GPinX –[LocPinX*COS(Angle) - LocPinY*SIN(Angle)] +

 +[(LocDotX*COS(Angle) - LocDotY*SIN(Angle)]

Analogically GDotY:

GDotY = GPinY –[LocPinY*COS(Angle) - LocPinX*SIN(Angle)] +

 +[(LocDotY*COS(Angle) - LocDotX*SIN(Angle)]

See the following figure:

ConceptDraw DIAGRAM Third Party Developer’s Guide

45

For more information on how to use the coordinates in two coordinate systems, see Lessons.

5.1.2.3. EndPoints
There are two types of objects in ConceptDraw: Connectors, and 2D Shapes. Connector has a beginning

and an end. 2D Shape cannot be used as connector. It does not have start and end points. Rather, it is

characterized by the width and height.

ConceptDraw DIAGRAM Third Party Developer’s Guide

46

Any object can be easily converted from a Connector into a 2D Shape and vice versa.

ConceptDraw DIAGRAM Third Party Developer’s Guide

47

The EndPoints section describes coordinates of the starting and ending points of the 1D-object,

connector or smart connector relatively to the parent group. 2D object has no the EndPoints section.

5.1.2.4. GlueInfo
This section is also inherent only for connectors (direct connectors, smart connectors, 1D-objects.). It is

used to update the coordinates of the ends of the connector when the position of connected objects is

changing.

The section specifies the objects by ID, which is attached to the connector ConnectObjBegin and

ConnectObjEnd and the type of connection: ConnectTypeBegin and ConnectTypeEnd.

5.1.2.5. Variables
You can add the internal variables to an object. They apply when the result of the same calculations need

to be used in the different cells of the object’s parameters table. Note that the additional variables are

also convenient to identify key parameters of the object.

Variables section describes additional variables of the object. It is optional.

Each row contains two numeric variables, or the result of X and Y cells formula calculations.

5.1.2.6. Controls
The section describes the control points of the object. It requires the coordinates of the point (X and Y),

and coordinates of the end of the line (XDyn and YDyn), which follow the point while it moves. Also the

text for hint (Comment) needed. But perhaps the most interesting are the XBehavior and YBehavior

properties that determine the behavior of the control point when you resize the object. The Check Point

can do following:

ConceptDraw DIAGRAM Third Party Developer’s Guide

48

o Move proportionally to the control frame or maintain distance relatively to any (left,
right, top, bottom) edge of the frame, or to its center.

o Enable /disable the moving of the control point relative to the one of the axes.
o Switch between visible and invisible

The Controls section is optional because an object may have no control points.

5.1.2.7. Connect
In the Objects chapter there was described the ability to join objects, using connectors. Also there was

mentioned that the user can create the custom connect points. Connect section describes the

coordinates of the custom object's anchor points.

The Connect section is optional because an object may have no connect points.

5.1.2.8. Actions
The section is designed to create and describe the custom Action menu for the object. Each menu item

has the following parameters:

• The action, given by formula – Action.

• The menu item to run the action - Menu.

• The hint in the status bar- Prompt.

• The detection of the status – Checked.

• The menu availability status - Disable.

The Actions section is optional because an object may have no actions.

5.1.2.9. Data Sources
The section is designed to create an object data source control and work with them.

The fields of Data Sources section must contain the following data:

• The path to the source (full or relative to the document) – URL.

• The time lag for updating data from the source (seconds) – Refresh.

ConceptDraw DIAGRAM Third Party Developer’s Guide

49

• The activity of the link to the source – Active.

• A function that is called when you update data (tabular or CDBasic function) - -Action.

• Time lag at which the connection to a data source is checked out - Reliability Timeout.

• Specify whether to show the object icons that indicate about the warnings and errors that arise
when working with the source - Warnings, Errors.

• The correctness of the path to the data source file - Valid.

The section appears if the object has at least one data source.

5.1.2.10. Data
The section is designed to store data.

The section has as many rows as the data contained in the object.

You can specify a data name and a value (or set of values, separated by commas); the data type (string,

integer, float, etc.) and determine the visibility of the Value field in the "Values" dialog.

5.1.2.11. RapidDraw Object
This section describes the settings of the RapidDraw object that can be constructed from the current

object. An object can have the multiple RapidDraw objects, so RapidDrawObject sections can also be a

few. All of them are numbered, for example: RapidDrawObject 1, RapidDrawObject 2, etc.

The fields of RapidDraw section must contain the following data:

• The sides of the parent object, where the RapidDraw object can be build - Left, Right, Top, and
Bottom.

• ConceptDraw library where the object is located (full or relative path to it) – Library.

• The name of the object in the library - Object.

• The path to the icon for the object to be displayed in the control element of the RapidDraw
parent – Icon.

• The hint popups when you hover on the icon - ObjectDescription.

• The type of connector that links the parent and the current RapidDraw object (0 - smart
connector, 1 – direct connector, 2 - library object) - ConnectionType .

ConceptDraw DIAGRAM Third Party Developer’s Guide

50

• The path and the name of the library object indicated as connector – ConnectorLibrary and
ConnectorObject.

• The distance between the objects horizontally and vertically (in mm or given by formula) - .
SpacingX and SpacingY.

• The numbers of the anchor points for the connector of the parent object (0 - to the middle of the
object, -1 ... -4 - to the sides of the object) – StartConnectPoint.

• The numbers of the anchor points for the connector of the current RapidDraw object (0 - to the
middle of the object, -1 ... -4 - to the sides of the object) – EndConnectPoint.

• The displacement along the X axis and Y-axis of the object - SpacingXVertMove and
SpacingYHorzMove.

• Determine the side relative to the parent object, where the RapiDraw object will be constructed
(0 - left, 1 - alternately right and left) - AutoBalance.

5.1.2.12. Custom Properties
This section contains parameters of the object specified by the user.

The fields of Custom Properties section contain the following data:

The short name – Label.

The hint – Prompt.

The type of the custom property Type.

The type of controller used in its dialog (for example: Text field, drop-down list etc) – Format.

The parameter’s value – Value.

The visibility status – Invisible.

The verification while object loading - Verify.

ConceptDraw DIAGRAM Third Party Developer’s Guide

51

The section is optional.

5.1.2.13. Line Properties
This section contains the variables responsible for the appearance of lines that make up the object: the

color (in ConceptDraw it can be specified by index in the palette of the document in RGB or CMYK),

transparency in percent (0 - completely transparent, 100 - fully transparent) thickness, type of dash line.

Other variables define the appearance and size of the arrows, which can end geometries: the size of

arrows and types for start and end arrows separately.

You can edit these properties using the ShapeStyle floating dialog or the ShapeStyle group on the Home

tab.

5.1.2.14. Fill Format
The section describes the properties of the object fill and shadow: their pattern and color components.

Values of Pattern: 0 - no fill, 1 - solid color, from 2 to 73 - the index of the pattern. FillPatColor - the color

of pattern, FillPatAlpha - its transparency. FillColor and FillAlpha - the main color of the object and its

transparency. Similar properties have the shadow fill.

You can edit these properties using the ShapeStyle floating dialog or the ShapeStyle group on the Home

tab.

5.1.2.15. TextField
A separate section, consisting of only one field is used to store the text of the object. The text must be

enclosed in double quotation marks.

ConceptDraw DIAGRAM Third Party Developer’s Guide

52

There are many sections associated with different settings of the text. All of them appear only when the

object is associated with the text.

5.1.2.16. Text Transform
This section contains parameters that determine location and size of the text frame.

 The section Transform describes two coordinate systems that are used in calculating the parameters of

the object: the inner system of coordinates and the coordinate system of the "parent" group.

To determine the position of the text another system of coordinates, based on the text frame, is used. It

is associated with the coordinate system of the object in the same manner as the latter is associated with

the coordinate system of the "parent" group:

• (TextGPinX, TextGPinY) determine the center of rotation of the text frame in the coordinate
system of the object

• (TextPinX, TextPinY) – relative to the text frame

• Angle - the angle of rotation of the coordinate system associated with a text frame, relatively to
the coordinate system of the object.

The section appears in the properties table of the object, only if this object is associated with the text.

5.1.2.17. Character Format
The text of the object can consist from blocks with the same set of formatting styles (these include: font

(Font), its size (Size), color (Color), transparency (Alpha), font style (Style), a set of symbols (Language),

position relative to the base line - the upper subscript (Pos), distance between letters (Spacing)).

Character Format section describes these blocks, each on a separate line. The header line shows the

number of characters in the block (CharCount).

If the object has text, a table contains the Character Format section with at least one line.

5.1.2.18. Paragraph Format
This section determines the paragraph parameters, such as: alignment, indentation, and all kinds of line

spacing. Lines in this section reflect the same sequence of formatted paragraphs. Each of these

paragraphs is described by one row in the section. Follow the links below to learn the details .

AfterSpacing The distance between this paragraph and the one below. BeforeSpacing The distance

between this paragraph and the one above. Count Read Only. Returns the number of characters in the

paragraph. FirstInd The first line indent value. HAlign The horizontal alignment type for the paragraph.

ConceptDraw DIAGRAM Third Party Developer’s Guide

53

LeftInd The distance all lines of text in a paragraph are indented from the left margin of the text block.

LineSpacing The distance between one line of text and the next. RightInd The distance all lines of text in

a paragraph are indented from the right margin of the text block.

If the object has text, a table contains the ParagraphFormat section with at least one line.

5.1.2.19. Text Block Format
The section describes the properties of the text object as a whole. These include: vertical alignment,

margins, background color, transparency and background color.

VAlign Vertical alignment type of the text within the text block. TopMargin The top margin of the text

block. BottomMargin The bottom margin of the text block. LeftMargin The left margin of the text block.

RightMargin The right margin of the text block. TextBkgnd Read-only. Text block background color.

DefTabStop The default tab stop distance from the left edge of the text block.

5.1.2.20. Tabs Table
The section describes the position and alignment of the tab stops in the object (the default value, as well

as features of specific positions). Align Determines the alignment of the text with respect to the tab stop.

Pos The distance between the tab stop position and the left edge of the text block, where this tab stop is

located.

5.1.2.21. Protection
In this section you can constrain the certain user actions on the current object by using mouse. However,

user can modify data through the table of parameters or through some interactions (for example, by

changing the size of the group that owns this object). The Control points, which are locked for changes

looks like gray locks.

ConceptDraw DIAGRAM Third Party Developer’s Guide

54

You can lock the width and height of the object. You can prevent disproportionate changes of the

object’s size. Also you can lock the moving on an axis, rotation, deletion, so as changes of fill and line

properties.

LockAspect A flag that protects the shape from unproportional resizing. LockBegin A flag that protects

the begin point of a 1D-shape from repositioning with the mouse. LockCalcWH A flag that specifies

whether to update the alignment box size if the coordinates of the shape's vertices have been changed.

LockConnector A flag that doesn't allow the smart connector to re-route automatically. LockDelete A flag

that protects the shape from deleting. LockEnd A flag that protects the end point of a 1D-shape from

repositioning with the mouse. LockFlipX A flag that protects the shape from flipping horizontally.

LockFlipY A flag that protects the shape from flipping vertically. LockHeight A flag that protects the

shape's height when the shape is resized. LockMoveX A flag that protects the shape from horizontal

repositioning. LockMoveY A flag that protects the shape from vertical repositioning. LockRotate A flag

that protects the shape from rotation. LockTextBound A flag that protects the shape fiom the cases when

text does not fit within the object. LockVertex A flag that protects the vertices from modifying with the

mouse. LockWidth A flag that protects the shape's width when the shape is resized.

The LockLine field locks the changes of the object’s line properties: color, transparency, width, arrows

type. The LockFill field locks the changes of the object’s fill.

5.1.2.22. Miscellaneous
This section combines the other parameters. These parameters are responsible for the appearance and

behavior of the object. Here you can determine such parameters as visibility of the control frame while

selecting the object. ((ObjHandles), the conduct points (AlignBox) and the control points (CtrHandles).

Also you can specify parameters of the text displaying (ShopwText) , the object printing (NonPrinting)

and presenting (HideInSlideShow).

In this section you can set the action by double-click (DblClick and ActionDblClick)

ConceptDraw DIAGRAM Third Party Developer’s Guide

55

Value in the RapidDraw field is set to TRUE if the object supports a quick draw. The following fields lets

you customize the controls RapidDraw: You can specify the distance between RapidDraw arrows from all

sides of the object (in units of the document), and the field ObjectBound is responsible for method

determining the boundaries of the object (in his control box or on the boundary geometry of the object).

5.1.3.Table Compiler Function
In addition to drawing up a simple expression of the variables and operators you can use the built-in

spreadsheet functions. Thematically, they can be divided into the following categories:

• Mathematic

• Trigonometric

• Logic

• Function of conversion and rounding

• Text

• Functions of Date and Time

• Functions of page processing

• Functions to call CD Basic subprograms

• Functions to calculate the coordinates of text of the step-type connector

• Functions to calculate the coordinates of the start and end points of connectors.

• Function for working with named styles

• Functions for working with color

• Functions for working with data sources

• Function of assigning value to a variable .

For more information on embedded table functions see Appendix 1. – "Functions and operators of the

object properties table.".

ConceptDraw DIAGRAM Third Party Developer’s Guide

56

5.2. Managing Object Data through CDBasic script.

The application, document, page and even object can contain a CDBasic script. This means that any

document, page or ConceptDraw object, can contain some program written in ConceptDraw Basic script.

Script at any level is compiled and run at startup of the corresponding object. Initially, the application is

loaded. The primary level of the script execution is the Application level. When you download a

document, first run a Document script, then Page script and finally the Shape script.

The scripts of the any level consist from global execution area and a set of custom procedures that

determine its performance in the local areas.

In the global area the global variables are described. Also custom and external procedures should be

declared and defined there. In addition the global area contains the code to be executed immediately at

startup.

Variables and named constants defined in the global area are visible in all custom procedures defined in

the code, below the declaration.

Local areas are implementing the custom procedures execution. The definition of custom procedures

begins with the instructions Sub or Function, and end with the instructions, EndSub or EndFunction

correspondingly. The variables defined in the local area are visible only within this area. This enables

ConceptDraw DIAGRAM Third Party Developer’s Guide

57

using the same local variables and named constants in the different procedures. Any variable is visible

down the code from its definition to the end of scope.

The ConceptDraw Basic virtual machine starts script execution from the instructions of the global area.

Declaration and definition of the procedures are ignored, because they should be implemented only by

call. Following the instructions of the global area or by the Stop instruction, the program goes into

standby mode, remaining in residence.

ConceptDraw Basic supports the possibility to connect external modules with the code, written on

ConceptDraw Basic, using the built-in directive # Include. This allows you to create different external

libraries for procedures.

When you compile, the code will be integrated instead of the line with # Include directive. Thus, the

structure of the script CDBasic is linear (at least within the same level of performance). In the inserted

module, all the variables and procedures that are defined above the insert point are shown. Starting with

the line following the connection of the module, its language constructions are visible.

ConceptDraw lets you create different versions of code for different platforms, using the mechanism of

conditional compilation. To do this, there is a preprocessor directive #If...#Else...#Endif

#IfTargetBoolean

[instructions] ' code, specific for the current operation

system

[#Else

[instructions]] ' code, specific for the other operation

system

#EndIf

TargetBoolean can be set to one of two predefined constants: Target_MacOS or

Target_Win32.

CDBasic allows you to work with variables without declaring them in advance and not caring about their

type (at least for as long as we are not talking about arrays and objects). The appropriate variable is

created while first assignment of values to the new identifier. These variables are of Variant type. They

support the values of any type: integer and fractional numbers, dates or strings. At any time a variable of

this type has a specific subtype (Integer, Boolean, String ... or a reference to any object).

ConceptDraw DIAGRAM Third Party Developer’s Guide

58

When you assign a data to variable you do not need to take care of their type, the variable will go to the

correct subtype by its own.

v = "name" ' The variable v of the Variant type created. When

assigned got a String subtype and value "name"

 v = 2 ' v got a Long subtype and value 2

In addition to the variables of type Variant, you can declare variables of other types of fixed, such as:

• Boolean

• Boolean -

• integer types

• Byte, Integer and Long

• types for storage of real numbers

• Single and Double

• type for storing date and time

• Date

• string types

• String (variable-length string), String * n (FixStr, a string of fixed length)

• objects

• Application, Document, Shape,

Details of functions and objects ConceptDraw Basic is available in Appendix 2. , CDBasic reference

5.2.1 The table Fields changes by CDBasic script
CDBasic allows to get access to any field of the table of properties of object. The whole set of methods of

object of Shape is for this purpose intended.

1. To get the value of any field of the object type use a Get...Property() methods. Indicate the type of

property Instead of dots (GetBooleanProperty(), GetByteProperty(), GetStringProperty()). To select the

desired field use tease three arguments: propTag, num, geom. Here propTag is- a tag according to the

property name (e.g. CDPT_GEOMETRY_X - X corresponds to a column section Geometry), and num and

geom determine the number of the current property among the same names in collections.

2. Set the field value with a help of the set of similar methods Set...Property().

3. CDBasic provides an opportunity to work not only with the values of table fields, but with the

tabulated formulas. Methods of object Shape allows to obtain information about the formulas:

ConceptDraw DIAGRAM Third Party Developer’s Guide

59

IsDefaultFormula() Is there a default formula in the fieldс

IsNullFormula() Is there a formula or constant

GetPropertyFormula() View of the certain formula (e.g., "=Width*0.4")

Or change it:

SetPropertyFormula() Set the custom formula

SetDefaultFormula() Set the default formula

SetNullFormula() Delete formula (the value remain)

4. Field in a table object can be divided into two big categories: those correspond to the properties of
the Shape, others are available through the Shape object collections of other objects. The latter
include optional sections of the table fields (except the Text Field and Text Transform), which the
user can add by his own and in any quantity. Most of the mandatory fields in the table is reflected in
the object properties (Width, GPin, FillColor...). To manage their values you can use such methods as
Get...Property(), Set...Property(). Also they can be accessed directly through the properties of an
object Shape. But this applies only to the values. The approach for work with tabular formulas is
common for both types of fields.

5. There is one important difference when working with these two types of fields from CDBasic. If you
make changes through the object properties Shape , the corresponding fields are recalculated
automatically. But the changes through such methods as Set...Property(), Set...Formula() do not do
this . They do not fall in line for recalculation (if there is a formula), and the resulting object does not
change and is not redrawn. To “infrom” the Object that such a field and associated fields should be
recalculated, you need to report this manually. There two object Shape methods for this purpose:
PropertyChanged() and RecalcProperty().. The first one simply tells the application that the field is
changed, and therefore the associated fields should be recalculated. It is used when the field does
not contain formulas and there is nothing to recalculate in the field. Just the associated ones. The
second requires the field recalculating according formula. If this field will fall into line for
recalculation, the associated fields will be processed automatically. There is no needs to call
RecalcProperty()

If the method PropertyChanged() or RecalcProperty() was called somewhere within a couple

StartRebuild() - EndRebuild(), the actual recalculation will be done by calling the document EndRebuild (),

otherwise the recalculation will be executed immediately.

If one of these methods has been called from a custom procedure, which in turn was called from the

table, then the conversion caused by PropertyChanged() or RecalcProperty() occurs immediately after

the recalculation that caused custom procedure Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

60

Examples (for the Shape level script)

Let’s reflect the object horizontally

thisShape.SetBooleanProperty(True,CDPT_FLIPX)

First set the value and then the field CDPT_FLIPX – tag, corresponding to the field FlipX from section

Transform.

Let’s set a new formula to the field LocPinX

thisShape.SetPropertyFormula("_MIN(Width,Height)*0.5",CDPT_LPINX)

thisShape.RecalcProperty(CDPT_LPINX)

The first line sets a new formula, and the second line declares that the value of the field should be

recalculated according to the new formula (as well as all associated fields).

In the example above the field LocPinX assigned a custom formula (not default). Let’s show how to

change the field value without default formula editing. The following rows set the value 200 into the field

Geometry.X1.

thisShape.SetDoubleProperty(200,CDPT_GEOMETRY_X,1,1)

thisShape.SetDefaultFormula(CDPT_GEOMETRY_X,1,1)

thisShape.PropertyChanged(CDPT_GEOMETRY_X,1,1)

For fields of the Geometry section, except field type, the rows and geometries numbers must be

specified. The first row changes the value. The second - indicates that even for this value, the formula

must be default. This means that coefficient for the current view and value of the formula is needed. The

third row is reported that the field value has changed.

Appendix 1. Functions and Operators Table object properties

A. 1.1. Operators of the table object's properties

In the formulas, tables can use arithmetic operators, comparison operators and logical operators.

A.1.1.1. Arithmetic Operators

Operator The action of

^ Or **
Raise a number to a power.

Example:

2 ** 10 bring back 1024.

-
The change of the sign.

Example:

-5.

- (3) will give us 3.

+
Addition of two expressions. If the logical expression returns a Boolean expression, if numeric - the result of the

sum, if the string type, then merge the two lines. If one of the expressions (any) - string, the second - of any

ConceptDraw DIAGRAM Third Party Developer’s Guide

61

type, then merge the rows with non-string type conversion of expression into a string.

An example.

Returns a 1 2

2 + "some string" dastnam "2some string",

"Some string" +234 return "some string234".

-
Subtract one number from another.

An example.

3.1 will give 2,

4.7 budetravno 3.

* The product of two expressions.

/ Dividing the first expression in the second. When you divide by zero error does not perform, and returns the first

expression.

\
Integer division of one number by another.

Example:

11 \ 4 2 budetravno

9 \ 2 yields 4

MOD Divides one number by another and returns the remainder of the division.

Example:

10 MOD 3 returns 1

8 MOD 5 returns 3

8 MOD 3 equals 2

&
The operator that returns only the string type - the & operator. This operator merges two strings. If both

expressions are not strings, or at least one of them, the operator converts them to string and then perform the

merge.

Example:

"Some" & "string" return "somestring",

34 & "string" return "34string",
45 & 56 will return the string "4556."

Notice. Generally speaking, this operator is not arithmetic, but referred to this group as long as it has the same

priority as the operators of this group over the other operators.

A.1.1.2. Comparison operators:

Operators less than "<", greater than ">" is less than or equal to "<=" greater than or equal to ">
=" equal "=" not equal "<>" are used to compare two expressions.

Syntax:

<Result> = <Var1> <comparison operator> <Var2>.

A.1.1.3. Logical Operators

They can be used in formulas except the logic functions _AND (), _IF (), _NOT (), _OR () and _XOR ().

ConceptDraw DIAGRAM Third Party Developer’s Guide

62

Operator Action

AND
A Boolean "and" the conjunction is true if both arguments are true and false in all other cases. If the parameters

that are used - the number, then the bitwise conjunction.

Example:

2> 3 AND 2 <5 returns TRUE

2 AND 3 returns 2 (bitwise "and")

EQV
The operator logicheskoyekvivalentsii two expressions. If it works with logical expressions, returns TRUE, only if

both expressions are true (TRUE), or both expressions are false (FALSE). With the numbers of the operator

operates the same way, only bit.

Truth table:
For logical expressions.

A B A EQV B

True True True

True False False

False True False

False False True

For arithmetic expressions

a b a EQV b

A A A

A 0 0

0 A 0

0 0 A

IMP Operator logical implication on two expressions (the investigation). For bitwise arithmetic works.

Truth table:
For logical expressions.

A B A IMP B

True True True

True False False

False True True

False False True

For arithmetic expressions.

a b a IMP b

A A A

A 0 0

0 A A

0 0 A

ConceptDraw DIAGRAM Third Party Developer’s Guide

63

NOT or!
The operator of logical negation. When working with numbers deystvuetpobitovo.

Entries and NOTA! A - mean the same thing.

Truth table:
For logical expressions

A NOT A

True Fa
se

False True

For arithmetic expressions.

a NOT a

A 0

0 A

OR
Logical operator "or" disjunction. Returns true (TRUE), when at least one expression is true, otherwise returns

false (FALSE). For bitwise arithmetic works.

Truth table:
For logical expressions.

A B A OR B

rue True True

True False True

False True True

False False False

For arithmetic expressions.

a b a OR b

A A A

A 0 A

0 A A

0 0 0

XOR
The operator exclusive "or". Returns true (TRUE), only when one of two expressions is true, and the other is

false.

Truth table:
For logical expressions.

A B AXORB

True True False

True False True

False True True

False False False

For arithmetic expressions.

ConceptDraw DIAGRAM Third Party Developer’s Guide

64

a b a XOR b

A A
0

A 0

0 A A

0 0 0

A.1.1.4. Precedence of operators.

The expressions in the formulas can be separated by brackets to make it easier to understand on what
Element of the expression is valid or that the operator. If you know the priority of the operators, we can
simplify the job without placing a large number of unnecessary parentheses in an expression.

There are three groups of operators: arithmetic operators, comparison operators, logical operators. They
are divided into groups so not only because of their destination, but also in terms of priority. The highest
priority is given to the arithmetic operators, followed by the comparison operators and logical operators
have the lowest priority and are executed after all the operators of the first two groups (if not placed
brackets). Within these groups of operators are also distributed by priority.

Arrange operators in the groups in descending order of their priority from top to bottom, and in
descending order of priority groups from left to right:

Arithmetic Operators Comparison Operators Boolean Operators

^ ** And a = NOT

enaznaka cm "-" <> AND

* / < OR

\ > XOR

MOD <= EQV

+ - > = IMP

&

A.1.2. Table Compiler Functions

In the properties of the formulas you can use the built-in spreadsheet functions. Thematically, they can
be divided into the following categories:

All table functions begin with an underscore, and are written in big letters. For example: _CALLTHIS (),

_MIN (), _LN (). But if you can set down the underscore character. Register is also not important. The
editor automatically converts your input to meet these requirements.

By category:

Math:

• _ABS

• _CENTERX

• _CENTERY

ConceptDraw DIAGRAM Third Party Developer’s Guide

65

• _CIRCLE_CENTERX

• _CIRCLE_CENTERY

• _CIRCLES3RD_X

• _CIRCLES3RD_Y

• _CUT

• _ELLIPSE_ANGLE

• _ELLIPSE_ASPECT

• _FABS

• _GRAVITY

• _HYP

• _LG10

• _LN

• _LOCALX

• _LOCALY

• _MAX

• _MIN

• _MOD

• _POW

• _RAND

• _SIGN

• _SQRT

• _WORLDX

• _WORLDY

Trigonometric:

• _ACOS

• _ASIN

• _ATAN

• _ATAN2

• _COS

• _COSH

• _PI

• _SIN

• _SINH

• _TAN

• _TANH

Logic:

• _AND

• _IF

ConceptDraw DIAGRAM Third Party Developer’s Guide

66

• _NOT

• _OR

• _XOR

Function of conversion and rounding:

• _ANG360

• _DEG

• _RAD

• _ROUND

• _FLOOR

Text:

• _CHR

• _EVALTEXT

• _FILENAME

• _FULLFILENAME

• _MEASURE

• _SCALE

• _TEXTHEIGHT

• _TEXTLEFT

• _TEXTLENGTH

• _TEXTRIGHT

• _TEXTWIDTH

• _VALTOTEXT

• _VALTOTEXTMES

Date and time:

• _DATE

• _TIME

Functions of page processing :

• _PAGENUMBER

• _PAGESCOUNT

• _PAGEWIDTH

Functions for a call of subprogrammes on ConceptDrawBasic.

• _CALLTHIS

• _CALLTHIS_1ARG

ConceptDraw DIAGRAM Third Party Developer’s Guide

67

• _CALLTHIS_2ARGS

Functions to calculate the coordinates of the text step connector.

• _SMARTCONNECTORTEXTX

• _SMARTCONNECTORTEXTY

Functions to calculate the coordinates of the starting and ending points of the connector.

• _CONNECTBEGINX

• _CONNECTBEGINY

• _CONNECTENDX

• _CONNECTENDY

Functions for working with named styles

• Functions for work with style of lines

• _STYLED_ENDSSIZE

• _STYLED_LINEBEGIN

• _STYLED_LINECOLOR

• _STYLED_LINEEND

• _STYLED_LINEPATTERN

• _STYLED_LINEWEIGHT

• Functions for work with filling and a shadow

• _STYLED_FILLBGNDALPHA

• _STYLED_FILLCOLOR

• _STYLED_FILLCOLORBGND

• _STYLED_FILLCOLORFGND

• _STYLED_FILLFGNDALPHA

• _STYLED_FILLPATCOLOR

• _STYLED_FILLPATTERN

• _STYLED_PENALPHA

• _STYLED_PENCOLOR

• _STYLED_PENPATTERN

• _STYLED_PENWEIGHT

• _STYLED_SHADOWBGNDALPHA

• _STYLED_SHADOWCOLOR

• _STYLED_SHADOWCOLORBGND

• _STYLED_SHADOWCOLORFGND

• _STYLED_SHADOWFGNDALPHA

• _STYLED_SHADOWPATCOLOR

• _STYLED_SHADOWPATTERN

ConceptDraw DIAGRAM Third Party Developer’s Guide

68

• Functions for work with fonts

• _STYLED_ FONTALPHA

• _STYLED_FONTCHARLANG

• _STYLED_FONTCHARSET

• _STYLED_FONTCOLOR

• _STYLED_FONTNUM

• _STYLED_FONTPOS

• _STYLED_FONTSIZE

• _STYLED_FONTSPACING

• _STYLED_FONTSTYLE

• Functions for work with paragraphs

• _STYLED_PARAAFTERINDENT

• _STYLED_PARAAFTERSPACING

• _STYLED_PARABEFOREINDENT

• _STYLED_PARABEFORESPACING

• _STYLED_PARABETWEENLINE

• _STYLED_PARAFIRSTLINE

• _STYLED_PARAHALIGNMENT

• _STYLED_PARALEFTINDENT

• _STYLED_PARALINESPACING

• _STYLED_PARARIGHTINDENT

• Functions for work with the text block

• _STYLED_TXTBKGNDCOLOR

• _STYLED_TXTBOTTOMMARGIN

• _STYLED_TXTDEFTABSTOP

• _STYLED_TXTLEFTMARGIN

• _STYLED_TXTRIGHTMARGIN

• _STYLED_TXTTOPMARGIN

• _STYLED_TXTVALIGN

Working with color:

• _CMYK

• _GRADCOLOR

• _HTML2RGB

• _RGB

Functions for working with data sources

• Functions for work with CSV

• _CSVCOLORVALUE

• _CSVGETCOLUMNFORKEY

ConceptDraw DIAGRAM Third Party Developer’s Guide

69

• _CSVMAXELEMENT

• _CSVMAXELEMENTD

• _CSVMINELEMENT

• _CSVMINELEMENTD

• _CSVMINROWLENGTH

• _CSVROWLENGTH

• _CSVROWMAXELEMENT

• _CSVROWMINELEMENT

• _CSVROWNUM

• _CSVTEXT

• _CSVTEXTFORKEY

• _CSVVALUE

• _CSVVALUED

• _CSVVALUEDFORKEY

• _CSVVALUEFORKEY

• _CSVVALUETYPE

• Functions for work with XPATH

• _XPATHVALUE

• _XPATHVALUED

• _XPATHTEXT

• Functions for work with Excel

• _EXCELCOLORVALUE

• _EXCELGETCOLUMNFORKEY

• _EXCELMAXELEMENT

• _EXCELMAXELEMENTD

• _EXCELMINELEMENT

• _EXCELMINELEMENTD

• _EXCELMINROWLENGTH

• _EXCELROWLENGTH

• _EXCELROWMAXELEMENT

• _EXCELROWMINELEMENT

• _EXCELROWNUM

• _EXCELTEXT

• _EXCELTEXTFORKEY

• _EXCELVALUE

• _EXCELVALUED

• _EXCELVALUEDFORKEY

• _EXCELVALUEFORKEY

• _EXCELVALUETYPE

• Miscellaneous

ConceptDraw DIAGRAM Third Party Developer’s Guide

70

• _FILETEXT

• _GETVALUE

• _GETVALUEEL

Miscellaneous:
• _DOFORCONNECTED

• _GLUETOSERVICE

• _SETF

A.1.3. Compiler Options table alphabetically with a description of

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

_ABS

_ABS (Arg)

Returns the absolute value of arg.

_ABS (Str)

Returns the string str unchanged.

Examples:
_ABS (-3) = 3
_ABS (0) = 0
_ABS (4) = 4

_ABS ("Text") = "Text"

_ ACOS

_ACOS (Arg)
Returns the arc cosine of arg (it is in the range of-pi / 2 to pi / 2).
The argument must be in the range from -1 to 1. Otherwise, the error code generated.

_ AND

_AND (Arg1; arg2)

Returns the bitwise "and";

_AND (Str1; str2)

Returns 1 - if non-empty string, 0 - if even one of them - empty.

_AND (Str; arg)
_AND (Arg; str)

Returns arg number.

Examples:
_AND (1, 0) = 0
_AND (3, 2) = 2
_AND ("Hello!"; "") = 0
_AND ("Text1"; "Text2") = 1

_AND ("Text"; 2) = 2

_ ANG360

ConceptDraw DIAGRAM Third Party Developer’s Guide

71

_ANG360 (Arg)

Returns the value of the angle arg, reduced to the interval from 0 to 2 * pi.

Examples:
_ANG360 (481 deg) = 121 deg

_ANG360 (-4.5 Rad) = 1.7832 rad

_ASIN

_ASIN (Arg)
Returns the arc sine of arg (it is in the range of-pi / 2 to pi / 2).
The argument must be in the range from -1 to 1. Otherwise, the error code generated.

_ATAN

_ATAN (Arg)

Returns the arc tangent of arg (it is in the range of-pi / 2 to pi / 2).

_ATAN2

_ATAN2 (Arg1; arg2)
Returns the arctangent of a number (arg1/arg2). Unlike the _ATAN, _ATAN2 properly handle expressions with a

zero value of arg2. In any case, the value is between-pi / 2 to pi / 2.

Examples:
_ATAN (1, 0) = 90 deg

_ATAN (2, 2) = 45 deg

_CALLTHIS

Function calls written in the embedded language CDBasic.

_CALLTHIS ("Proc_name")

The name of the function being called must be in quotes.

The function is invoked must have the following form in the editor CDBasic:

Function proc_name (shp As Shape) [As <Type>]

This variable represents the shp object from which the function is called.

_CALLTHIS Returns the result, which returns the specified function.

The result type _CALLTHIS the same as that of the function is called.

Example of use.

Create a new file (menu File / NewDocument, either by pressing the toolbar Main).

Select the toolbar DrawingTools tool and draw a rectangle.

ConceptDraw DIAGRAM Third Party Developer’s Guide

72

Start the editor via the menu CDBasic Document button in the group DocumentScript Conceptdraw Basic.

In the editor, type the following lines:

Function MyProc (shp As Shape) As Byte
Dim ss As String
ss = InputBox $ ("Enter text for shape")
shp.Text = ss

End Function
This will be the description of the function MyProc, which will be called from the context menu of an object

by _CALLTHIS. Close the editor window CDBasic.

Now add a rectangle custom context menu.

Select the rectangle you created, using the tool

from the toolbar DrawingTools. Call a configuration of the object by pressing F3 or by pressing the menu button,

Shape Power Edit.

Add the Actions section of the table object parameters by selecting the context menu of any

table Insert Section, and then in the dialog box, select the Insert Sections Actions and then click OK.

ConceptDraw DIAGRAM Third Party Developer’s Guide

73

In the Actions section that appears in the Action field, enter the call of our function _CALLTHIS ("MyProc")

In the Menu, type the name of the menu item "Call proc from CDBasic script", in the Prompt, enter "Click to

call proc from CDBasic Script", in the fields of Checked and Disabled, leave untouched to FALSE.

Now close the property sheet object. The object appeared in selecting a button, when pressed on the buyout

menu appears Action- menu.

Paragraph calling user-defined function writing on CDBasic.

_ CALLTHIS _ 1ARG

The function works similarly _CALLTHIS, except that the called function is passed a parameter.

Syntax:

_CALLTHIS_1ARG ("Proc_name"; arg1)

Here proc_name - the name of the called function, and arg1 - parameter passed to it.

The callee CDBasic should have the following form:

Function proc_name (shp As Shape, arg1 As <Type1>) [As <Type>],

where shp - the caller is a function of the object, arg1 - an argument that should be transferred to the function.

ConceptDraw DIAGRAM Third Party Developer’s Guide

74

Notice. It is important to match the transmitted parameter types specified in the description and function, and it

is also important to specify match the return type of function caused by _CALLTHIS_1ARG value of the type that

should bytpoluchen calling _CALLTHIS_1ARG.

_ CALLTHIS _ 2ARGS

The function operates similarly to _CALLTHIS and _CALLTHIS_1ARG , except that the called function language

CDBasic passed two parameters.

Syntax:

CALLTHIS_1ARG ("proc_name"; arg1; arg2)

Here proc_name - the name of the called function, arg1, arg2 - the parameters passed to it. The called function

must be described as follows:

Function proc_name (shpAsShape, arg1 As <Type1>, arg2 As <Type2>) [As

<Type>]

Here shp - is the object that caused the function, arg1 and arg2 - the parameters passed.

Notice. As for _CALLTHIS and _CALLTHIS_1ARG important type matching the passed parameters that are

used in the description of the function, and the correct type of function return values.

_CENTERX

_CENTERX ()

Returns the X coordinate of the center of the object. Under the center is meant for: - Smart Connector - the middle

of the central segment, if an odd number of segments, the intersection of the two middle segments, if an even

number. - For other objects - center management framework.

This function is used, for example, to position the text with intelligent connector.

_CENTERY

_CENTERY ()

Returns the Y coordinate of the center of the object. Under the center is meant for: - Smart Connector - the middle

of the central segment, if an odd number of segments, the intersection of the two middle segments, if an even

number. - For other objects - center management framework.

This function is used, for example, to position the text with intelligent connector.

_ CHR

_CHR (Arg)

Returns a numeric value corresponding to this value of the symbol.

Example:

_CHR (32) returns the character number 32 ("gap").

_ CIRCLE _ CENTERX

_CIRCLE_CENTERX (X1; Y1; X2; Y2; X3; Y3)

Returns the X coordinate of the center of the circle, built on three points: (X1; Y1), (X2; Y2) and (X3; Y3).

_CIRCLE_CENTERY

_CIRCLE_CENTERY (X1; Y1; X2; Y2; X3; Y3)

Returns the Y coordinate of the center of the circle, built on three points: (X1; Y1), (X2; Y2) and (X3; Y3).

ConceptDraw DIAGRAM Third Party Developer’s Guide

75

_CIRCLES3RD_X

_CIRCLES3RD_X (X1; Y1; X2; Y2; H)

Returns the X coordinate of a point located at a distance H from the middle of the vector (X1; Y1) - (X2; Y2). If H -

a positive number, the point is plotted on the left side of the vector, if the H - negative number - on the right

side.Used to set the arc of a circle with two points and the height of the arc.

_CIRCLES3RD_Y

_CIRCLES3RD_Y (X1; Y1; X2; Y2; H)

Returns the Y coordinate of a point located at a distance H from the middle of the vector (X1; Y1) - (X2; Y2). If H -

a positive number, the point is plotted on the left side of the vector, if the H - negative number - on the right

side.Used to set the arc of a circle with two points and the height of the arc.

_ CMYK

Sets the color of the standard CMYK.

Syntax:

_CMYK (C; M; Y; K)

where C, M, Y, K - component in the standard CMYK.

An example.

_CMYK (100, 0, 100, 0)

give a yellow-green color.

Used for setting the colors in the parameter table (for parameters such as the section of the FillColor Fill,

LineColor LineProperties section of the table object parameters.

_ CONNECTBEGINX

It is used in the program to calculate the coordinates of the starting point of the connector on the axis X.

Syntax:

_CONNECTBEGINX (ObjBegin; ObjEnd; TypeBegin)

Here ObjBegin - ID of the object, joined by top connector, ObjEnd - ID of the object, which joins the end of the

connector. TypeBegin - fitting, from 1 to 4 - adherence to any of the Elementies, -1 - no connection, 5 compound

with the middle any side, so that the distance was minimal.

Typically used for the needs of the translation section of ConceptDraw EndPoints parameters for connectors. It

uses the parameters of section GlueInfo table settings.

Begin X is calculated as follows: _CONNECTBEGINX (ConnectObjBegin;

ConnectObjEnd; ConnectTypeBegin), where ConnectObjBegin, ConnectObjEnd, ConnectTypeBegin - the

parameters of section GlueInfo.

_ CONNECTBEGINY

It is used in the program to calculate the coordinates of the starting point of the connector on the axis Y.

Syntax:

_CONNECTBEGINY (ObjBegin; ObjEnd; TypeBegin)

ConceptDraw DIAGRAM Third Party Developer’s Guide

76

Here ObjBegin - ID of the object, joined by top connector, ObjEnd - ID of the object, which joins the end of the

connector. TypeBegin - fitting, from 1 to 4 - adherence to any of the Elementies, -1 - no connection, 5 compound

with the middle any side, so that the distance was minimal.

Typically used for the needs of the translation section of ConceptDraw EndPoints parameters for connectors. It

uses the parameters of section GlueInfo table settings.

BeginY calculated as follows: _CONNECTBEGINY (ConnectObjBegin;

ConnectObjEnd; ConnectTypeBegin), where ConnectObjBegin, ConnectObjEnd, ConnectTypeBegin-

parameters section of the table GlueInfo.

_ CONNECTENDX

It is used in the program to calculate the coordinates of the end point of the connector along the axis X.

Syntax:

_CONNECTENDX (ObjBegin; ObjEnd; ConnectTypeEnd)

ObjBegin - ID of the object, which joins the beginning of the connector, ObjEnd - ID of the object, which joins the

end of the connector. ConnectTypeEnd - fitting, from 1 to 4 - adherence to any of the Elementies, -1 - no

connection, 5 compound with the middle of what either side, so that the distance was minimal.

Typically used for the needs of the translation section of ConceptDraw EndPoints parameters for connectors. It

uses the parameters of section GlueInfo table settings.

_ CONNECTENDY

It is used in the program to calculate the coordinates of the end point of the connector along the axis Y.

Syntax:

_CONNECTENDY (ObjBegin; ObjEnd; ConnectTypeEnd)

ObjBegin - ID of the object, which joins the beginning of the connector, ObjEnd - ID of the object, which joins the

end of the connector. ConnectTypeEnd - fitting, from 1 to 4 - adherence to any of the Elementies, -1 - no

connection, 5 compound with the middle of what either side, so that the distance was minimal.

_COS

_COS (Arg)
Returns the cosine of arg (it is in the range from -1 to 1).

_COSH

_COSH (Arg)
Returns the hyperbolic cosine of arg.

_CSVCOLORVALUE

NEW

Returns the color value written to the specified data source.

The color in the source data must be written in standard Web (eg # A180FF).

_CSVCOLORVALUE (DSNUM; NROW; NCOL; DEFCOLOR)

The arguments are:

DSNUM - number of the source data in the source list.

ConceptDraw DIAGRAM Third Party Developer’s Guide

77

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

NCOL - nomerstolbtsa to address in a table view CSV file (numbered from 1)

DEFCOLOR - the color value of the default output for the case of addressing the range of the table or if the data

are not available.

The value is vnuzhnyh sections of one or neskolkihtablits object parameters (such as a table for the

field FillFormat FillColor or CustomProperties table for the field of Value).

Example:

_CSVCOLORVALUE (1, 4, 5; _RGB (255, 0, 0))

_CSVGETCOLUMNFORKEY

NEW

Returns the number of columns in the specified source dannyhpri by searching by key.

_CSVGETCOLUMNFORKEY (DSNUM; KEYROW; KEYSTR)

The arguments are:

DSNUM - number of the source data in the source list.

KEYROW - nomerstroki to address in a table view CSV file (numbered from 1)

KEYSTR - a key string to search.

If the transmitted key string passed to the key column is not found, the function returns 0.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVGETCOLUMNFORKEY (1, 4; "green")

_CSVMAXELEMENT

NEW

Returns the maximum element of the string from the specified data source.

The return value is rounded to an integer.

Argumentamiyavlyayutsya:

_CSVMAXELEMENT (DSNUM; NROW; DEFVAL)

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

ConceptDraw DIAGRAM Third Party Developer’s Guide

78

Example:

_CSVMAXELEMENT (1, 4, -1)

_CSVMAXELEMENTD

NEW

Returns the maximum element of the string from the specified data source.

_CSVMAXELEMENTD (DSNUM; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVMAXELEMENTD (1, 4, -1.5)

_CSVMINELEMENT

NEW

Returns the minimum element of the string from the specified data source.

The return value is rounded to an integer.

_CSVMINELEMENT (DSNUM; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVMINELEMENT (1, 1, -1)

_CSVMINELEMENTD

NEW

Returns the minimum element of the string from the specified data source.

ConceptDraw DIAGRAM Third Party Developer’s Guide

79

_CSVMINELEMENTD (DSNUM; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVMINELEMENTD (1, 2, -1)

_CSVMINROWLENGTH

NEW

Returns the minimum length of a string (of all lines) for the specified data source.

_CSVMINROWLENGTH (DSNUM)

The argument is:

DSNUM - number of the source data in the source list.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVMINROWLENGTH (2)

_CSVROWLENGTH

NEW

Returns the number of line items in the specified data source.

_CSVROWLENGTH (DSNUM; NROW)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVROWLENGTH (1 2)

_CSVROWMAXELEMENT

NEW

ConceptDraw DIAGRAM Third Party Developer’s Guide

80

Returns the maximum element of the string from the specified data source.

_CSVROWMAXELEMENT (DSNUM; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVROWMAXELEMENT (1, 4, -1.5)

_CSVROWMINELEMENT

NEW

Returns the minimum element of the string from the specified data source.

_CSVROWMINELEMENT (DSNUM; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVROWMINELEMENT (1, 2, -1)

_CSVROWNUM

NEW

Returns the number of lines in the specified data source.

_CSVROWNUM (DSNUM)

The argument is:

DSNUM - number of the source data in the source list.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

ConceptDraw DIAGRAM Third Party Developer’s Guide

81

_CSVROWNUM (3)

_CSVTEXT

NEW

Returns the text written in the specified data source.

_CSVTEXT (DSNUM; NROW; NCOL; DEFSTR)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

NCOL - nomerstolbtsa to address in a table view CSV file (numbered from 1)

DEFSTR - the term for the case of a default address for the output range of the table or if the data are not

available.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value or table for the field TextField TheText).

Example:

_CSVTEXT (1, 3, 5; "Error")

_CSVTEXTFORKEY

NEW

Returns the text from the specified source dannyhpri by searching by key.

_CSVTEXTFORKEY (DSNUM; KEYROW; KEYSTR; NVALUEROW; DEFSTR)

The arguments are:

DSNUM - number of the source data in the source list.

KEYROW - nomerstrokis key word for addressing a tabular representation of a CSV file (numbered from 1)

KEYSTR - keyword search.

NVALUEROW - nomerstroki with the desired value for the address in the table view a CSV file (numbered from 1)

DEFSTR - the default setting for the case of out-of-range address table, or if the data are not available.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value or table for the field TextField TheText).

Example:

_ CSVTEXTFORKEY (1, 3; "yellow"; 5; "Error")

_CSVVALUE

NEW

Returns the integer value of the specified data source.

_CSVVALUE (DSNUM; NROW; NCOL; DEFVAL)

ConceptDraw DIAGRAM Third Party Developer’s Guide

82

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

NCOL - nomerstolbtsa to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not

available. Znacheniepredstavlyaetsya integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVVALUE (1, 1, 3, -1)

_CSVVALUED

NEW

Returns the value of the specified data source.

The return value can not be an integer.

_CSVVALUED (DSNUM; NROW; NCOL; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

NCOL - nomerstolbtsa to address in a table view CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVVALUE (1, 2, 2, -1.5)

_CSVVALUEDFORKEY

NEW

Returns the value of the specified source dannyhpri by searching by key.

The return value can not be an integer.

_CSVVALUEDFORKEY (DSNUM; KEYROW; KEYSTR; NVALUEROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

ConceptDraw DIAGRAM Third Party Developer’s Guide

83

KEYROW - nomerstrokis key word for addressing a tabular representation of a CSV file (numbered from 1)

KEYSTR - keyword search.

NVALUEROW - nomerstroki with the desired value for the address in the table view a CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVVALUEDFORKEY (1, 3; "blue"; 2, -1.5)

_CSVVALUEFORKEY

NEW

Vozvraschaettseloe value from the specified source dannyhpri by searching by key.

_CSVVALUEFORKEY (DSNUM; KEYROW; KEYSTR; NVALUEROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

KEYROW - nomerstrokis key word for addressing a tabular representation of a CSV file (numbered from 1)

KEYSTR - keyword search.

NVALUEROW - nomerstroki with the desired value for the address in the table view a CSV file (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVVALUEFORKEY (1, 3; "black"; 1, -1)

_CSVVALUETYPE

NEW

Returns the type of data that are at the specified data source.

Possible return values - string, integer, floating-point number, color, date, the value is missing.

_CSVVALUETYPE (DSNUM; NROW; NCOL)

The arguments are:

DSNUM - number of the source data in the source list.

NROW - nomerstroki to address in a table view CSV file (numbered from 1)

ConceptDraw DIAGRAM Third Party Developer’s Guide

84

NCOL - nomerstolbtsa to address in a table view CSV file (numbered from 1)

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_CSVVALUETYPE (1, 2, 6)

_CUT

_CUT (Arg; iarg)

Parameter iarg indicates how many digits after the decimal point remains. For negative iarg reset level before the

decimal point.

Examples:

_CUT (123.4567; 3) = 123.456

_CUT (123.4567; -2) = 100
_CUT (123.4567; 0) = 123

_DATE

_DATE ()

Returns a string describing the last modified date in the document. The date format can vary for different systems

and different countries.

Example:

_DATE () = 04.09.1999 (Mac)
_DATE () = 04 Sep 1999 (Win)

_DEG

_DEG (Arg)
Converts arg number from radians to degrees.

Examples:

_DEG (3.14) = 180
_DEG (_PI () * 3) = 540

_DOFORCONNECTED

NEW

_DOFORCONNECTED ("Nazvaniefunktsii"; id)

"Function Name" - the name of the function of the BASIC code objects.
id-idobekta in the document.

BASIC function calls the function with the appropriate name for objects that are attached to the object with the

identifier given by the second parameter. In the attached objects should be compiled and run BASIC script.

Example:

Add any object in the document properties of an object table table Actions. In the Action section write

_DOFORCONNECTED ("AddText"; 9). After calling this function is executed CDBasic script function

ConceptDraw DIAGRAM Third Party Developer’s Guide

85

"AddText" those objects on the page, which it will be found and are attached to an object in a

document with the identifier 9.

_ELLIPSE_ANGLE

_ELLIPSE_ANGLE (KoeffX; koeffY; iNumberGeometry; iNumberSegment)

Height * koeffY). The missing parameters for the construction of a segment taken from a

number iNumberSegment in geometry at number iNumberGeometry.
This function is used as the default ones for a segment of an ellipse, in the column D.

_ELLIPSE_ASPECT

_ELLIPSE_ASPECT (KoeffX; koeffY; iNumberGeometry; iNumberSegment)
Returns the ratio of large to small radius in an ellipse centered at the point with local coordinates (Width * koeffX;

Height * koeffY). The missing parameters for the construction of a segment taken from a

numberiNumberSegment in geometry at number iNumberGeometry.
This function is used as the default ones for a segment of an ellipse, in column C.

_EVALTEXT

_EVALTEXT (Str)
Converts the string str into a number.

Examples:

_EVALTEXT ("123.456") = 123.456
_EVALTEXT ("123") = 123

_EXCELCOLORVALUE

NEW

Returns the color value written to the specified data source.

The color in the source data must be written in standard Web (eg # A180FF).

_EXCELCOLORVALUE (DSNUM; NSHEET; NROW; NCOL; DEFCOLOR)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

NROW - nomerstroki to address in a table view EXCEL files (numbered from 1)

NCOL - nomerstolbtsa to address in a table view EXCEL files (numbered from 1)

DEFCOLOR - the color value of the default output for the case of addressing the range of the table or if the data

are not available.

The value is in the right sections of one or more tables of parameters of the object (for example in the

table FillFormat e la FillColor field or in the table for the field CustomProperties Value).

Example:

_EXCELCOLORVALUE (3, 1, 5, 5; _RGB (255, 0, 0))

_EXCELGETCOLUMNFORKEY

ConceptDraw DIAGRAM Third Party Developer’s Guide

86

NEW

Returns the number of columns in the specified source dannyhpri by searching by key.

_EXCELGETCOLUMNFORKEY (DSNUM; NSHEET; KEYROW; KEYSTR)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

KEYROW - nomerstroki to address in a table view EXCEL files (numbered from 1)

KEYSTR - a key string to search.

If the transmitted key string passed to the key column is not found, the function returns 0.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELGETCOLUMNFORKEY (3, 1, 2; "book")

_EXCELMAXELEMENT

NEW

Returns the maximum element of the string from the specified data source.

The return value is rounded to an integer.

Argumentamiyavlyayutsya:

_EXCELMAXELEMENT (DSNUM; NSHEET; NROW; DEFVAL)

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

NROW - nomerstroki to address in a table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELMAXELEMENT (3, 1, 3, -1)

_EXCELMAXELEMENTD

NEW

Returns the maximum element of the string from the specified data source.

_EXCELMAXELEMENTD (DSNUM; NSHEET; NROW; DEFVAL)

ConceptDraw DIAGRAM Third Party Developer’s Guide

87

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

NROW - nomerstroki to address in a table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data

otsutstvuyut.Znachenie may not be an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELMAXELEMENTD (3, 1, 1, -1.5)

_EXCELMINELEMENT

NEW

Returns the minimum element of the string from the specified data source.

The return value is rounded to an integer.

_EXCELMINELEMENT (DSNUM; NSHEET; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

NROW - nomerstroki to address in a table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELMINELEMENT (3, 1, 1, -1)

_EXCELMINELEMENTD

NEW

Returns the minimum element of the string from the specified data source.

_EXCELMINELEMENTD (DSNUM; NSHEET; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

ConceptDraw DIAGRAM Third Party Developer’s Guide

88

NROW - nomerstroki to address in a table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data

otsutstvuyut.Znachenie may not be an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELMINELEMENTD (3, 1, 2, -1)

_EXCELMINROWLENGTH

NEW

Returns the minimum length of a string (of all lines) for the specified data source.

_EXCELMINROWLENGTH (DSNUM; NSHEET)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELMINROWLENGTH(3;1)

_EXCELROWLENGTH

NEW

Returns the number of line items in the specified data source.

_EXCELROWLENGTH (DSNUM; NSHEET; NROW)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered 1).

NROW - nomerstroki to address in a table view EXCELfayla (numbered from 1)

The value is set to nuzhnyhsektsiyah one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELROWLENGTH (3, 1, 2)

_EXCELROWMAXELEMENT

NEW

Returns the maximum element of the string from the specified data source.

ConceptDraw DIAGRAM Third Party Developer’s Guide

89

_EXCELROWMAXELEMENT (DSNUM; NSHEET; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

NROW - the line number for the address in the table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELROWMAXELEMENT (3, 1, 4, -1.5)

_EXCELROWMINELEMENT

NEW

Returns the minimum element of the string from the specified data source.

_EXCELROWMINELEMENT (DSNUM; NSHEET; NROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

NROW - the line number for the address in the table view EXCELfayla (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELROWMINELEMENT (3, 1, 1, -1)

_EXCELROWNUM

NEW

Returns the number of lines in the specified data source.

_EXCELROWNUM (DSNUM; NSHEET)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

ConceptDraw DIAGRAM Third Party Developer’s Guide

90

Example:

_EXCELROWNUM (3, 1)

_EXCELTEXT

NEW

Returns the text written in the specified data source.

_EXCELTEXT (DSNUM; NSHEET; NROW; NCOL; DEFSTR)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

NROW - the line number for the address in the table view EXCEL files (numbered from 1)

NCOL - Number column to address in a table view EXCEL files (numbered from 1)

DEFSTR-string is the default output for the case of addressing the range of the table or if the data are not

available.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value or table for the field TextField TheText).

Example:

_EXCELTEXT (3, 1, 2, 8; "Error")

_EXCELTEXTFORKEY

NEW

Returns the text from the specified source dannyhpri by searching by key.

_EXCELTEXTFORKEY (DSNUM; NSHEET; KEYROW; KEYSTR; NVALUEROW; DEFSTR)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

KEYROW - Number strokis keyword to address in a table view EXCEL files (numbered from 1)

KEYSTR - keyword search.

NVALUEROW - the line number with the desired value for the address in the table view EXCEL files (numbered

from 1)

DEFSTR - the default setting for the case of out-of-range address table, or if the data are not available.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value or table for the field TextField TheText).

Example:

_ EXCELTEXTFORKEY (4, 1, 4; "fix"; 2; "Error")

ConceptDraw DIAGRAM Third Party Developer’s Guide

91

_EXCELVALUE

NEW

Returns the integer value of the specified data source.

_EXCELVALUE (DSNUM; NSHEET; NROW; NCOL; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

NROW - the line number for the address in the table view EXCEL files (numbered from 1)

NCOL - Number column to address in a table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELVALUE (3, 1, 1, 3, -1)

_EXCELVALUED

NEW

Returns the value of the specified data source.

The return value can not be an integer.

_EXCELVALUED (DSNUM; NSHEET; NROW; NCOL; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

NROW - the line number for the address in the table view EXCEL files (numbered from 1)

NCOL - Number column to address in a table view EXCEL files (numbered from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELVALUED (3, 1, 2, 2, -1.5)

_EXCELVALUEDFORKEY

NEW

ConceptDraw DIAGRAM Third Party Developer’s Guide

92

Returns the value of the specified source dannyhpri by searching by key.

The return value can not be an integer.

_EXCELVALUEDFORKEY (DSNUM; NSHEET; KEYROW; KEYSTR; NVALUEROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

KEYROW - Number strokis keyword to address in a table view EXCEL files (numbered from 1)

KEYSTR - keyword search.

NVALUEROW - the line number with the desired value for the address in the table view EXCEL files (numbered

from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value can not be an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELVALUEDFORKEY (3, 1, 2; "enter"; 1, -1.5)

_EXCELVALUEFORKEY

NEW

Vozvraschaettseloe value from the specified source dannyhpri by searching by key.

_EXCELVALUEFORKEY (DSNUM; NSHEET; KEYROW; KEYSTR; NVALUEROW; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

KEYROW - Number strokis keyword to address in a table view EXCEL files (numbered from 1)

KEYSTR - keyword search.

NVALUEROW - the line number with the desired value for the address in the table view EXCEL files (numbered

from 1)

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for the

field CustomProperties Value).

Example:

_EXCELVALUEFORKEY (3, 1, 2; "bug"; 3, -1)

ConceptDraw DIAGRAM Third Party Developer’s Guide

93

_EXCELVALUETYPE

NEW

Returns the type of data that are at the specified data source.

Possible return values - string, integer, floating-point number, color, date, the value is missing.

_EXCELVALUETYPE (DSNUM; NSHEET; NROW; NCOL)

The arguments are:

DSNUM - number of the source data in the source list.

NSHEET - number of bookmarks for the address in the table view EXCEL files (numbered from 1)

NROW - the line number for the address in the table view EXCEL files (numbered from 1)

NCOL - Number column to address in a table view EXCEL files (numbered from 1)

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value).

Example:

_EXCELVALUETYPE (3, 1, 2, 6)

_FABS

_FABS (Arg)

If arg is nonzero, it returns the absolute value of arg.

If arg is zero, it returns 1.

_FABS (Str)

Returns the string str unchanged.

Examples:

_FABS (-3) = 3

_FABS (0) = 1

_FABS (1) = 1

_FABS ("Text") = "Text"

_FILENAME

_FILENAME ()

Returns the name of the file that stores the document.

Example:

_FILENAME () = "Chart.CDD"

_FILETEXT

NEW

Returns the text written in data source text file.

_FILETEXT (DSNUM; STARTPOS; SYMBOLCOUNT; DEFSTR)

The arguments are:

ConceptDraw DIAGRAM Third Party Developer’s Guide

94

DSNUM - number of the source data in the source list.

STARTPOS - character position in a text file from which to start reading.

SYMBOLCOUNT - determines how many characters to read from a text file, starting spozitsii symbol defined

STARTPOS. If the parameter SYMBOLCOUNT is 0, then read out the entire text of the position STARTPOS until

the end of the file.

DEFSTR - the default setting for the case when the data are not available.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value or table for the field TextField TheText).

Example:

_ FILETEXT (2, 5, 20; "Error")

_FLOOR

_FLOOR (Arg)

Returns the largest integer not greater than arg.

Examples:

_FLOOR (123.4567) = 123

_FLOOR (-45.345) = -46

_FLOOR (0) = 0

_FULLFILENAME

_FULLFILENAME ()

Returns the name of the file that stores the document, with the full path.
Example:

_FULLFILENAME () = "D: \ ConceptDraw \ Chart.cdd" (Win)

_FULLFILENAME () = "MyDisk: DesktopFolder: Chart.cdd" (Mac)

_GETVALUE

Returns a string value from the Value Field Data Table parameters of the object.

_GETVALUE (NIND)

The argument is:

NIND - the line number (Field Number) Table Data, which in the Value field contains the value of interest.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value).

Example:

_GETVALUE (1)

_GETVALUEEL

Returns a string znachenieelementa list of the Value Field Data Table parameters of the object.

_GETVALUEEL (NIND; NNUM)

The arguments are:

ConceptDraw DIAGRAM Third Party Developer’s Guide

95

NIND - the line number (Field Number) Table Data, which in the Value field contains the value of interest.

NNUM - Number list item row in the table in the Data Value.

The list is a set of values, separated by a comma.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value).

Example:

Example of a list: "9,777.777,999.99, ValueEl, 200"

_GETVALUEEL (2, 4)

As a result of the function in this case, we get the string "ValueEl"

_ GLUETOSERVICE

This feature ispolzuentsya to get coordinates of the center of rotation for the object to the bonding

napravlyayushimliniiyam one of the control points of the object.

_GLUETOSERVICE (<Number of rail "," number of control points of the object>)

Depending on what kind of guide - vertical or horizontal - returns the corresponding coordinate.

If the rail is horizontal GpinY (coordinate along the axis Y), if it vertikaltnaya GpinX (coordinate along the axis X).

Notice. This feature is not designed for the user, the program itself is used for attaching an object to the guide

lines.

_ GRADCOLOR

Sets the values of the parameters of the background color in RGB.

Syntax:

_GRADCOLOR (Color; percent).

color - tsvetvstandarte RGB.

percent - the percentage of the value of "color". From 0 to 100.

Examples.

_GRADCOLOR (_RGB (0, 255, 0); 50)

_ GRADCOLOR (FillColor; 10) -color is taken from the Fill Color field of the object parameters table

Use tables and sections FillFormat object parameters for the field FillPatColor.

_GRAVITY

_GRAVITY (Angle; limit1; limit2)

If Angle limit1 more or less limit2, it returns 0

If Angle is in the interval [limit1; limit2] - returns the number pi.

The function is typically used to orient the text box so that the text at any position of the object was easy to read.

Examples:

_GRAVITY (30deg; 15 deg; 165 deg) = 0

_GRAVITY (195deg; 15 deg; 165 deg) = pi

_GRAVITY (Angle; -90 deg; 90 deg)

ConceptDraw DIAGRAM Third Party Developer’s Guide

96

_ HTML2RGB

Converts a color from the standard color of the Web in the standard RGB.

Syntax:

_HTML2RGB ("Web color")

where the "Web color" - the color of the standard Web.

Example.

_HTML2RGB ("# 4C4C4C")

give gray.

Used for setting the colors in the parameter table (for parameters such as the section of the FillColor Fill,

LineColor LineProperties section of the table object parameters.

_HYP

_HYP (X; Y)

Returns the length of the hypotenuse for a right triangle with legs of X and Y.

Example:

_HYP (4, 3) = 5

_IF

_IF (Arg1; arg2; arg3)

If the value of arg1 - a non-zero number or non-empty string, the function returns arg2, otherwise - arg3.

Examples:

_IF (2> 1, 3, 4) = 3

_IF (""; 3, 4) = 4

_LG10

_LG10 (Arg)

Returns the logarithm of arg

_LN

_LN (Arg)

Returns the natural logarithm of arg

_LOCALX

_LOCALX (X; Y)

Translates a point (X; Y) coordinates from the global to local. Returns the X coordinate of the translated terms.

_LOCALY

_LOCALY (X; Y)

Translates a point (X; Y) coordinates from the global to local. Returns the Y coordinate of the translated terms.

_MAX

_MAX (Arg1; arg2)

Returns the larger of two numbers: arg1 and arg2.

ConceptDraw DIAGRAM Third Party Developer’s Guide

97

_MAX (Arg; str)

_MAX (Str; arg)

Returns the number arg (value of str are ignored).

_MAX (Str1; str2)

Returns the larger of the lengths of strings str1 and str2.

Examples:

_MAX (4, 6) = 6

_MAX ("Text" '; "Big text") = 8

_MAX ("Text"; 7) = 7

_MEASURE

_MEASURE ()

Returns a string containing the abbreviated name of the current unit.

Example:

_MEASURE () = "Ft"

_MIN

_MIN (Arg1; arg2)

Returns the smaller of two numbers: arg1 and arg2.

_MIN (Arg; str)

_MIN (Str; arg)

Returns the number arg (value of str are ignored).

_MIN (Str1; str2)

Returns the smaller of the lengths of strings str1 and str2.

Examples:

_MIN (4, 6) = 6

_MIN ("Text" '; "Big text") = 8

_MIN ("Text"; 7) = 7

_MOD

_MOD (Arg1; arg2)

Returns the remainder after dividing by the number of arg1 arg2

_MOD (Str; arg)

_MOD (Arg; str)

Returns the number arg, if the other argument - the string str.

_MOD (Str1; str2)

Returns zero if the two arguments - the string.

Examples:

_MOD (19, 6) = 1

_MOD ("Text"; "Big text") = 0

_MOD ("Text"; 7) = 7

ConceptDraw DIAGRAM Third Party Developer’s Guide

98

_NOT

_NOT (Arg)

If arg - zero or an empty string, it returns 1.

Otherwise it returns 0.

Examples:

_NOT (0) = 1

_NOT (123) = 0

_OR

_OR (Arg1; arg2)

Returns the bitwise "or";

_OR (Str1; str2)

Returns 1 - if at least one line - a non-empty, 0 - if both lines - empty.

_OR (Str; arg)

_OR (Arg; str)

Vozvraschaetchislo arg.

Examples:

_OR (1, 0) = 1

_OR ("Hello!"; "") = 1

_OR ("Text1"; "Text2") = 1

_OR ("Text"; 2) = 2

_PAGENUMBER

_PAGENUMBER ()

Returns the page number where the object belongs.

_PAGESCOUNT

_PAGESCOUNT ()

Returns the number of pages in the document.

_PAGEWIDTH

_PAGEWIDTH ()

Returns the width of your document. Note that the page size is set in the Properties dialog box of the

document, the bookmark page.

_PI

_PI ()

Returns the value of pi

_POW

_POW (Arg1; arg2)

Returns the result of a number raised to the power arg1 arg2.

_POW (Str; arg)

_POW (Arg; str)

Returns the number arg, if the other argument - the string.

ConceptDraw DIAGRAM Third Party Developer’s Guide

99

_POW (Str1; str2)

Returns zero if the two arguments - the string.

Examples:

_POW (2, 3) = 8

_POW ("Text"; "Big text") = 0

_POW ("Text"; 7) = 7

_RAD

_RAD (Arg)

Converts arg number from degrees to radians.

Examples

_RAD (90) = 1.57

_RAND

_RAND ()

Returns a random number between 0 and 32K.

_ RGB

Gives the color values of the parameters in RGB. Used to set colors (parameters such as the section of

the FillColor Fill, LineColor LineProperties section of the table parameters of the object).

Syntax:

_RGB (R; G; B)

R, G, B - the components of red, green and blue, respectively. From 0 to 255.

Examples:

_RGB (255, 0, 0) gives a red color.

_ROUND

_ROUND (Arg; iarg)

Returns the result of rounding up the number of arg stochnostyu iarg digits after the decimal point.

Examples:

_ROUND (123.4567; 3) = 123.457

_ROUND (123.4567; -2) = 100

_ROUND (123.67; 0) = 124

_SCALE

_SCALE ()

Returns a string describing the scale of the current document in the form of "N: M"

Examples:

_SCALE () = "1: 1"

_SCALE () = "4 in: 1 ft"

_SETF

_SETF (Str; arg)

_SETF (Str; strarg)

The function is intended to change the values in table cells. In the string str is the name of the cell where to enter

ConceptDraw DIAGRAM Third Party Developer’s Guide

100

the data. The arg parameter must contain a new numeric for the cell. Strarg parameter should contain a line with

a new formula for the cell.

Examples:

_SETF ('' Geometry1.X2'';'' Geometry2.X3 / 2 + Geometry3.X2 / 4'')

_SETF ('' Width''; 125 cm)

_SIGN

_SIGN (Arg)

Returns the sign of arg:

-1 If arg <0,

1 if arg> 0

0 if arg = 0

Examples:

_SIGN (123.4567) = 1

_SIGN (-123.4567) = -1

_SIGN (0) = 0

_SIN

_SIN (Arg)

Returns the sine of arg (it is in the range from -1 to 1).

_SINH

_SINH (Arg)

Returns the hyperbolic sine of arg.

_SMARTCONNECTORTEXTX

NEW!!!

It is used in the program to calculate the coordinates of the starting point of the text of the connector along the

axis X.

Syntax:

_SMARTCONNECTORTEXTX (Width; Height); Event

There Width - the width, Height - the height, Event - an event.

Used in section TextTransform table parameters of the object for the field TextGPinX.

Example:

_SMARTCONNECTORTEXTX (TextWidht; TextHeight); EventResize

_SMARTCONNECTORTEXTY

NEW!!!

It is used in the program to calculate the coordinates of the starting point of the text of the connector along the

axis Y.

Syntax:

_SMARTCONNECTORTEXTY (Width; Height); Event

There Width - the width, Height - the height, Event - an event.

ConceptDraw DIAGRAM Third Party Developer’s Guide

101

Used in section TextTransform table parameters of the object for the field TextGPinY.

Example:

_SMARTCONNECTORTEXTY (TextWidht; TextHeight); EventResize

_SQRT

_SQRT (Arg)

Returns the square root of arg. For negative numbers, the value is not defined.

_ STYLED _ ENDSSIZE

Named to Fight this style returns the size of the arrows at the ends of lines.

Syntax:

_STYLED_ENDSSIZE ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program.

Returns a value from 0 to 4 for 5 possible sizes.

This function is used within a program object named in the appointment of style. In section LineProperties table

parameters of the object for the field is set to LineEndsSize _STYLED_ENDSSIZE ("style name"), and the

style name is always written in quotes.

_ STYLED _ FILLBGNDALPHA

NEW

Vozvraschaetvelichinu transparency of the background color of the fill for the named style.

Syntax:

_STYLED_FILLBGNDALPHA ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set

to FillPatAlpha _STYLED_FILLBGNDALPHA ("Style Name").

_ STYLED _ FILLCOLOR

Returns the fill color for the named style.

Syntax:

_STYLED_FILLCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set

to FillColor _STYLED_FILLCOLOR ("style name").

_ STYLED _ FILLCOLORBGND

NEW

Returns the background color for the named style.

Syntax:

ConceptDraw DIAGRAM Third Party Developer’s Guide

102

_STYLED_FILLCOLORBGND ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set

to FillPatColor _STYLED_FILLCOLORBGND ("style name").

_ STYLED _ FILLCOLORFGND

NEW

Returns the foreground color for the named style.

Syntax:

_STYLED_FILLCOLORFGND ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set

to FillColor _STYLED_FILLCOLORFGND ("style name").

_ STYLED _ FILLFGNDALPHA

NEW

Vozvraschaetvelichinu transparency of the foreground color for the named style.

Syntax:

_STYLED_FILLFGNDALPHA ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set

to FillAlpha _STYLED_FILLFGNDALPHA ("style name").

_ STYLED _ FILLPATCOLOR

Returns the background color of the fill for the named style.

Syntax:

_STYLED_FILLPATCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set

to FillPatColor _STYLED_FILLPATCOLOR ("style name").

_ STYLED _ FILLPATTERN

Returns the palette for the named style.

_STYLED_FILLPATTERN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

ConceptDraw DIAGRAM Third Party Developer’s Guide

103

In section FillFormat table parameters of the object for the field is set

to FillPattern _STYLED_FILLPATTERN ("style name").

_ STYLED _ FONTALPHA

NEW

Returns the transparency of the font color for the named style.

_STYLED_FONTALPHA ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table parameters of the object for the field is set

to Alpha _STYLED_FONTALPHA ("style name").

_ STYLED _ FONTCHARLANG

Returns the number of languages for the named style.

_STYLED_FONTCHARLANG ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table parameters of the object for the field Language is set

to _STYLED_FONTCHARLANG ("style name").

_ STYLED _ FONTCHARSET

NEW!!!

Returns for the named style.

_STYLED_FONTCHARSET ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

_ STYLED _ FONTCOLOR

Returns the font color of a named style.

_STYLED_FONTCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table parameters of the object for the field is set

to Color _STYLED_FONTCOLOR ("style name").

_ STYLED _ FONTNUM

Returns the font number for the named style.

STYLED FONTNUM ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

ConceptDraw DIAGRAM Third Party Developer’s Guide

104

In section CharacterFormat table parameters of the object for the field is set

to Font _STYLED_ FONTNUM ("style name").

_ STYLED _ FONTPOS

Returns the position of text characters (0 - plain text, 1 - superscript 2 - subscript) for the named style.

_STYLED_FONTPOS ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table parameters of the object for the field is set

to Pos _STYLED_ FONTPOS ("style name").

_ STYLED _ FONTSIZE

Returns the font size for the named style.

_STYLED_FONTSIZE ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table parameters of the object for the field Size is set

to _STYLED_ FONTSIZE ("style name").

_ STYLED _ FONTSPACING

Returns the distance between characters named for this style.

_STYLED_FONTSPACING ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table parameters of the object for the field is set

to Spacing _STYLED_ FONTSPACING ("style name").

_ STYLED _ FONTSTYLE

Returns a number that characterizes the set of styles for a block of text for the named style.

_STYLED_FONTSTYLE ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section CharacterFormat table settings for a field object Style is set

to _STYLED_FONTSTYLE ("style name").

_ STYLED _ LINEBEGIN

Returns the arrow type for the start of the geometry of an object to a named style.

_STYLED_LINEBEGIN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set to LineBegin _STYLED_LINEBEGIN

("style name").

ConceptDraw DIAGRAM Third Party Developer’s Guide

105

_ STYLED _ LINECOLOR

Returns the line color for the named style.

_STYLED_LINECOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set

to LineColor _STYLED_LINECOLOR ("style name").

_ STYLED _ LINEEND

Returns the arrow type for the end of each geometry object for the named style.

_STYLED_LINEEND ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set to LineEnd _STYLED_LINEEND

("style name").

_ STYLED _ LINEPATTERN

Returns the property lines of discontinuity for the named style.

_STYLED_LINEPATTERN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set

to LinePattern _STYLED_LINEPATTERN ("style name").

_ STYLED _ LINEWEIGHT

Returns the line width for the named style.

_STYLED_LINEWEIGHT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set

to LineWeight _STYLED_LINEWEIGHT ("style name").

_ STYLED _ PARAAFTERINDENT

NEW

Returns the size of indenting a paragraph for that named style.

_STYLED_PARAAFTERINDENT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to RightInd _STYLED_PARAAFTERINDENT ("style name").

ConceptDraw DIAGRAM Third Party Developer’s Guide

106

_ STYLED _ PARAAFTERSPACING

Returns the interval between this and the following paragraph for that named style.

_STYLED_PARAAFTERSPACING ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to AfterSpacing _STYLED_PARAAFTERSPACING ("style name").

_ STYLED _ PARABEFOREINDENT

NEW

Returns the amount of space before the paragraph for that named style.

_STYLED_PARABEFOREINDENT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to LeftInd _STYLED_PARABEFOREINDENT ("style name").

_ STYLED _ PARABEFORESPACING

Returns the interval between this and the preceding paragraph for that named style.

_STYLED_PARABEFORESPACING ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to BeforeSpacing _STYLED_PARABEFORESPACING ("style name").

_ STYLED _ PARABETWEENLINE

NEW

Returns the distance between lines of text for a range of named styles.

_STYLED_PARABETWEENLINE ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section ParagraphFormat table parameters of the object for the field is set to LineSpacing

_STYLED_PARABETWEENLINE ("style name").

_ STYLED _ PARAFIRSTLINE

Returns the size of the red line for the named style.

_STYLED_PARAFIRSTLINE ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

ConceptDraw DIAGRAM Third Party Developer’s Guide

107

In Paragraph Format section of the table object's parameters for the field is set

to FirstInd _STYLED_PARAFIRSTLINE ("style name").

_ STYLED _ PARAHALIGNMENT

Returns a number describing the type of horizontal alignment of this section with respect to the text box named for

this style.

_STYLED_PARAHALIGNMENT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to HAlign _STYLED_PARAHALIGNMENT ("style name").

_ STYLED _ PARALEFTINDENT

Returns the size of the left indent for the paragraph style named.

_STYLED_PARALEFTINDENT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to LeftInd _STYLED_PARALEFTINDENT ("style name").

_ STYLED _ PARALINESPACING

Returns the distance between lines of text for a range of named styles.

_STYLED_PARALINESPACING ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to LineSpacing _STYLED_PARALINESPACING ("style name").

_ STYLED _ PARARIGHTINDENT

Returns the size of the left indent for the paragraph style named for this.

_STYLED_PARARIGHTINDENT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In Paragraph Format section of the table object's parameters for the field is set

to RightInd _STYLED_PARARIGHTINDENT ("style name").

_STYLED_PENALPHA

NEW

Returns the value of the named prozrachnostiliniidlya style.

_STYLED_PENALPHA ("Style Name")

ConceptDraw DIAGRAM Third Party Developer’s Guide

108

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section LineProperties table parameters of the object for the field is set

to LineAlpha _STYLED_ PENALPHA ("style name").

_STYLED_PENCOLOR

NEW

Returns the line color for the named style.

_STYLED_PENCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set to LineColor _STYLED_PENCOLOR

("style name").

_STYLED_PENPATTERN

NEW

Returns the property lines of discontinuity for the named style.

_STYLED_PENPATTERN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set to LinePattern

_STYLED_PENPATTERN ("style name").

_STYLED_PENWEIGHT

NEW

Returns the line width for the named style.

_STYLED_PENWEIGHT ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section LineProperties table parameters of the object for the field is set to LineWeight

_STYLED_PENWEIGHT ("style name").

_ STYLED _ SHADOWBGNDALPHA

NEW

Returns the transparency plan tsvetazadnego shadow of a named style.

_STYLED_SHADOWBGNDALPHA ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

ConceptDraw DIAGRAM Third Party Developer’s Guide

109

In section FillFormat table parameters of the object for the field is set

to ShadowPatAlpha _STYLED_SHADOWBGNDALPHA ("style name").

_STYLED_SHADOWCOLOR

Returns the foreground color for the shade of a named style.

_STYLED_SHADOWCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section FillFormat table parameters of the object for the field is set to ShadowColor

_STYLED_SHADOWCOLOR ("style name").

_ STYLED _ SHADOWCOLORBGND

NEW

Returns the background color for the shadow of a named style.

_STYLED_SHADOWCOLORBGND ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section FillFormat table parameters of the object for the field is set

to ShadowPatColor _STYLED_SHADOWCOLORBGND ("style name").

_ STYLED _ SHADOWCOLORFGND

NEW

Returns the foreground color for the shade of a named style.

_STYLED_SHADOWCOLORFGND ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section FillFormat table parameters of the object for the field is set

to ShadowColor _STYLED_SHADOWCOLORFGND ("style name").

_ STYLED _ SHADOWFGNDALPHA

NEW

Returns the transparency of the foreground shadow of a named style.

_STYLED_SHADOWFGNDALPHA ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section FillFormat table parameters of the object for the field is set

to ShadowAlpha _STYLED_SHADOWFGNDALPHA ("style name").

_ STYLED _ SHADOWPATCOLOR

Returns the background color of the shadow of the figure for the named style.

ConceptDraw DIAGRAM Third Party Developer’s Guide

110

_STYLED_SHADOWPATCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section FillFormat table parameters of the object for the field is set

to ShadowPatColor _STYLED_SHADOWPATCOLOR ("style name").

_ STYLED _ SHADOWPATTERN

Returns the fill pattern for the shade of a named style.

_STYLED_SHADOWPATTERN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section FillFormat table parameters of the object for the field is set

to ShadowPattern _STYLED_SHADOWPATTERN ("style name").

_ STYLED _ TXTBKGNDCOLOR

Returns the background color, which displays the text for the named style.

_STYLED_TXTBKGNDCOLOR ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section TextBlockFormat table parameters of the object for the field is set

to TextBkgnd _STYLED_TXTBKGNDCOLOR ("style name").

_ STYLED _ TXTBOTTOMMARGIN

Returns the indentation from the bottom of the text box named for the style.

_STYLED_TXTBOTTOMMARGIN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section TextBlockFormat table parameters of the object for the field is set

to BottomMargin _STYLED_TXTBOTTOMMARGIN ("style name").

_ STYLED _ TXTDEFTABSTOP

NEW

Returns the tab in a text box named for this style.

_STYLED_TXTDEFTABSTOP ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section TextTabsTable table parameters of the object for the field is set

to DefaultTabStop _STYLED_TXTDEFTABSTOP ("style name").

_ STYLED _ TXTLEFTMARGIN

Returns the indentation from the left border of the text frame to a named style.

ConceptDraw DIAGRAM Third Party Developer’s Guide

111

_STYLED_TXTLEFTMARGIN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section TextBlockFormat table parameters of the object for the field is set

to LeftMargin _STYLED_TXTLEFTMARGIN ("style name").

_ STYLED _ TXTRIGHTMARGIN

Gets the indentation on the right edge of the text box named for the style.

_STYLED_TXTRIGHTMARGIN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section TextBlockFormat table parameters of the object for the field is set

to RightMargin _STYLED_TXTRIGHTMARGIN ("style name").

_ STYLED _ TXTTOPMARGIN

Returns the indentation of the upper limit for the text box named style.

_STYLED_TXTTOPMARGIN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.
In section TextBlockFormat table parameters of the object for the field is set

to TopMargin _STYLED_TXTTOPMARGIN ("style name").

_ STYLED _ TXTVALIGN

Returns an integer representing the type of vertical alignment of text relative to the text box named for this style.

_STYLED_TXTVALIGN ("Style Name")

The argument is the name of an existing named style that is created by the user or is already in the program. This

function is used within a program object named in the appointment of style.

In section TextBlockFormat table parameters of the object for the field is set to VAlign _STYLED_TXTVALIGN

("style name").

_TAN

_TAN (Arg)
Returns the tangent of arg.

_TANH

_TANH (Arg)
Returns the hyperbolic tangent of arg.

_TEXTHEIGHT

_TEXTHEIGHT (Str; arg)
The function is intended to clarify what would be the height of the text block in appointing him to the width of

the arg. As the string str is commonly used contents of a text field object (cell TheText). When calculating the

height of the text takes into account the current configuration of the object (styles, indentation of paragraphs, etc.).

ConceptDraw DIAGRAM Third Party Developer’s Guide

112

Examples:

_TEXTHEIGHT (TheText; Width)

_TEXTHEIGHT (TheText; 2 in)

_TEXTLEFT

_TEXTLEFT (Str; iarg)
Returns a substring of str, consisting of the first iarg characters (left substring).

Example:

_TEXTLEFT ("A big text."; 5) = "A big"

_TEXTLENGTH

_TEXTLENGTH (Str)
Returns the length of the string str (number of characters per line).

Example:

_TEXTLENGTH ("A big text.") = 11

_TEXTRIGHT

_TEXTRIGHT (Str; iarg)
Returns a substring of str, consisting of the last iarg characters (right substring).

Example:

_TEXTRIGHT ("A big text"; 4) = "text"

_TEXTWIDTH

_TEXTWIDTH (Str)
Returns the width of the string str according to the current text object settings (styles, indentation of paragraphs,

etc.). Typically, the function is used to assign the width of the text frame is equal to the longest string in the text

object.

Example:
_TEXTWIDTH (TheText)

_TIME

_TIME ()
Returns the last time changes to the document in the format "hours: minutes: seconds."

Example:
_TIME () = "19:27:13"

_VALTOTEXT

_VALTOTEXT (Arg)
Converts arg number to a string and returns it.

Example:
_VALTOTEXT (567.89) = "567.89"

_VALTOTEXTMES

_VALTOTEXTMES (Arg)
Converts number to string arg in view of current units of measurement specified in the document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

113

Examples:

_VALTOTEXTMES (15) = "1/16"

_VALTOTEXTMES (1.5 in) + "in." = "1 1/2 in."

_WORLDX

_WORLDX (X; Y)

Translates a point (X; Y) from local to global coordinates. Returns the X coordinate of the translated terms.

_WORLDY

_WORLDY (X; Y)

Translates a point (X; Y) from local to global coordinates. Returns the Y coordinate of the translated terms.

_XOR

_XOR (Arg1; arg2)
Returns an exclusive "or";

_XOR (Str1; str2)
Returns 1 - if the one and only one line - a non-empty, 0 - if both lines - empty, or both - non-empty.

_XOR (Str; arg)

_XOR (Arg; str)
Returns the number arg.

Examples:

_XOR (1, 1) = 0

_XOR ("Text1"; "Text2") = 0
_XOR ("Text"; 2) = 2

_XPATHVALUE

NEW

Returns the integer value of the specified XMLfaylaistochnika data.

_XPATHVALUE (DSNUM; XPATHEXPR; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

XPATHEXPR - XPATHvyrazhenie.

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available. The

value is an integer.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value).

Example:

_ XPATHVALUE (4; "/ Localization / XPATHValue"; -1)

_XPATHVALUED

ConceptDraw DIAGRAM Third Party Developer’s Guide

114

NEW

Returns the value of the specified XMLfaylaistochnika data.

The return value can not be an integer.

_XPATHVALUED (DSNUM; XPATHEXPR; DEFVAL)

The arguments are:

DSNUM - number of the source data in the source list.

XPATHEXPR - XPATHvyrazhenie.

DEFVAL - the default output for the case of addressing the range of the table or if the data are not available.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value).

Example:

_ XPATHVALUED (4; "/ Localization / XPATHValueD"; -1.5)

_XPATHTEXT

NEW

Returns the text written in ukazannomXMLfayleistochnika data.

_XPATHTEXT (DSNUM; XPATHEXPR; DEFSTR)

The arguments are:

DSNUM - number of the source data in the source list.

XPATHEXPR - XPATHvyrazhenie.

DEFSTR - the default setting for the case when the data are not available.

The value is in the right sections of one or more tables of parameters of the object (such as a table for

the field CustomProperties Value or table for the field TextField TheText).

Example:

_XPATHTEXT (4; "/ Localization / XPATHText"; Error ")

ConceptDraw DIAGRAM Third Party Developer’s Guide

115

Appendix 2. CDBasic reference

ConceptDraw Basic Reference

Welcome to ConceptDraw Basic Reference. The Reference gives you fast access to information

about all the ConceptDraw Basic language elements: statements, operators, constants, error

messages, objects, built-in methods and functions, and more.

 The Reference contains the following sections:

• Overview

• Conceptual Information

• Language Core Reference

• Objects Reference

• Trappable errors

• Glossary

Overview

Overview

 ConceptDraw Basic is a high-level scipting language. Starting from version 5.0 ConceptDraw

introduces support for its propietary built-in scripting language - ConceptDraw Basic. This adds

the following advantages:

• Extends the functionality of ConceptDraw according to the needs of the users.

• Allows to process and visualize external data in ConceptDraw.

• Makes possible integration of third-Elementy application with ConceptDraw.

• Enables a wide range of cross-platform solutions, based on ConceptDraw.

 ConceptDraw Basic technology (unlike Automation on Windows, AppleScript on the

Macintosh) is fully cross-platform , working in the ConceptDraw environment. The built-in

scripting language realizes the specification of the modern high-level scripting language

combined with support for ConceptDraw objects and database access objects. The supported list

of ConceptDraw objects provides virtually unlimited control over documents, application

windows, libraries, pages and shapes.

 ConceptDraw Basic has the power and simplicity of modern realizations of the BASIC

language. The language core of ConceptDraw Basic is almost fully compatible with such popular

realizations of BASIC, such as Visual Basic, REALbasic.

 With the introduction of ConceptDraw Basic technology СonceptDraw becomes one of the

most powerful platforms for your custom visual solutions.

ConceptDraw DIAGRAM Third Party Developer’s Guide

116

Conceptual Information

Conceptual Information

 This section describes the structure and principles of writing scripts in ConceptDraw Basic. It

contains the following paragraphs:

• Execution Levels

• Storing Scripts

• Editing Scripts

• The Structure of a Script

• Compilation and Execution of Scripts

Execution levels.

 ConceptDraw supports four execution levels of the ConceptDraw Basic scripting language:

Application level, Document level, Page level, Shape level. This means that for any ConceptDraw

document or it's page or any shape in the document you can assign a program written in

ConceptDraw Basic. Also one can create a program on the entire application level. Any execution

level contains at least a built-in module with program code in ConceptDraw Basic.

 Execution levels of ConceptDraw Basic are organized in a hierarchy (see the figure below),

which reflects how global variables and procedures are inherited from higher levels to the lower

ones.

ConceptDraw DIAGRAM Third Party Developer’s Guide

117

This means, that a script, created for any shape (on the shape level) also shows all global variables

and procedures that belong to higher levels: Page, Document and Application. In its turn, a page-

level script shows all global variables and procedures of the Document and Application levels.

And finally, a document-level script shows global variables and procedures of the Application

level. Thus, the hierarchy of execution levels determines the functional purpose of ConceptDraw

Basic scripts at different levels.

 Application levels script is intended for re-assigning the behavior of the entire application, and

also for defining global variables and procedures, which may be often used in various documents.

For instance, with the help of interface configuration and an application-level script in

ConceptDraw Basic it's possible to turn ConceptDraw into a specialized application for computer

network designers. One should just write the commonly used routines (for instance, calculation of

the cost of the components) as application-level scripts and run them using the user-defined menu.

Then the user will be able to automatically calculate the cost of the components for any network

diagram.

 Document level script is intended for document-specific calculations and also for defining

global variables and procedures, used in the code of different pages or shapes of the document.

For instance, a document-level script can be used to define specific procedures for creating

templates. This may look like a wizard, that asks questions specific to a certain document type.

Based on the user input, the script can determine the number and size of pages, create these pages

and place necessary shapes on them.

 Page level script is intended for calculations and actions, specific to a certain page of the

document, as well as for defining global variables and procedures, used in the code of the shapes

on that page. Scripts at this level may be used together with document-level scripts when creating

templates. Creating graphic objects (shapes) is slightly easier at the page level, than at the

document level.

 Shape level script is intended for calculations, specific to certain graphic object (shape). For

instance, it allows to program an element of a bar chart in such a way, that it can reflect values

from a data base or an external file. Library shapes can also have scripts.

Storing Scripts

 The code of the scripts of document, page and shape levels is stored together with the object, to

which the script is assigned. For instance, scripts for the document and its pages and shapes are

stored within the document. For shapes in a library the code is stored with the library.

 An application-level script is stored in a file with reserved name "AppCDBasicScript.cdb",

located in the application data folder. For example, full path to an external module of the

application-level script on the Windows platform may look like this: "C:\Documents and

Settings\Dime1.DIME\Application Data\CSOdessa\ConceptDraw\AppCDBasicScript.cdb". An

application-level script is only saved if compilation was successful.

 ConceptDraw Basic allows to use external modules with ConceptDraw Basic code by means of

the inline command #Include. This lets create various external libraries of routines.

 Source code of ConceptDraw Basic scripts is stored as text in the UTF-8 encoding, allowing to

use string constants and comments in any language.

ConceptDraw DIAGRAM Third Party Developer’s Guide

118

Editing Scripts

 For editing and debugging scripts ConceptDraw has a built-in ConceptDraw Basic script editor.

This editor allows to edit scripts of all execution levels, as well as external modules, connected by

the #Include command. Besides, ConceptDraw Basic script editor lets compile and run scripting

programs at available execution level. The "CDBasic Output" window serves for debugging and

showing warnings and errors.

 To edit external modules you can use any other text editor. However, if the code contains

comments or string constant, that include national characters (non-ANSI symbols), the editor

should be able to save text in the UTF-8 encoding.

The Structure of a Script

 A script at any execution level contains the global execution area, and a set of user procedures,

defining local execution areas.

 In the global area global variables are defined, user procedures are declared and defined,

external procedures declared. Also in the global area is located the code, executed immediately at

launch. Variables and named constants, defined in the global area, can be visible in all user

procedures, defined lower in the code from where they were declared.

 Local execution areas contain user procedures. Definitions of user procedures start with the

statements Sub or Function, and end with End Sub or End Function respectively. Variables,

defined in a local area, are visible within this area only. This allows to use local variables and

named constants with same names in different procedures.

 Any variables is visible down the code from where it was declared until the end of its visible

area.

 Below is an example of a ConceptDraw Basic script:
Dim gData(256) As Double ' Declare global variable gData as Double array

Dim gCount As Long ' Declare global variable gCount as Long

' Definition of InitGlobalData() procedure

Sub InitGlobalData() ' procedure begin

 ' Make global data initialization

 For i = 0 To 256

 gData(i)=i

 Next

End Sub ' procedure end

' Definition of TraceGlobalData() procedure

Sub TraceGlobalData () ' procedure begin

 For i = 0 To 256

 Trace gData(i)

 Next

End Sub ' procedure end

' Definition of RecalcGlobalData() procedure

Sub RecalcGlobalData () ' procedure begin

 For i = 0 To 256

 ' Do some calculation here

 gData(i)=gData(i)+Rnd()

 Next

End Sub ' procedure end

gCount = 0 ' set gCount to 0

ConceptDraw DIAGRAM Third Party Developer’s Guide

119

InitGlobalData() ' Call procedure for global data initialization

Stop

Compilation and Execution of Scripts

 Scripts are executed by the built-in virtual machine of ConceptDraw Basic. The source code in

ConceptDraw Basic is first compiled into so called p-code of the virtual machine, which is then

executed. So, the life cycle of a program in ConceptDraw Basic can be divided into two stages -

compilation and execution.

 During compilation the compiler finds all syntactic errors and informs about them in the

"CDBasic Output" window. Normally (where possible) it displays the error number, short error

description and shows the source module and the line number, in which the error was found.

 When compilation of a script starts, the scripts of higher execution level are compiled

automatically if they weren't compiled earlier. When writing scripts you should remember that

namespaces of variables and procedures at different levels should not overlap. If variables or

procedures were earlier defined at a higher execution level, this will lead to a compilation error of

"Duplicate definition" type. Also, a compilation error will be caused by declaring variables or

constants with names, coinciding with the names of the built-in constants or run-time procedures.

The same would happen with reserved words of the ConceptDraw Basic language. Detailed

description of compilation errors can be found in the "Trappable errors" section.

 Successfully compiled code of a ConceptDraw Basic script can be executed. It can be launched

either by the user from the menu or a toolbar button, or automatically when loading the script-

containing object.

 Once a script is launched, scripts of the upper execution levels are launched automatically if

they haven't been launched by the moment (not resident).

 ConceptDraw Basic starts running the script from executing the statements of the global area.

Procedures are skipped at this stage, because procedures start executed only when they are called.

Once the statements of the global area have been executed, or on executing the Stop statement,

the program goes to the stand-by mode, remaining resident. In this case any procedure can be

called from scripts of lower execution level, or from the procedures that process reserved events.

For instance, a document-level script can add items to the custom menu of the document and

process them by using its own procedures. Below is an example of such program:
' Definition of procedure

Sub MenuItem1_CmdProc(cmdArgs As String)

 Trace "MenuItem1 : " & cmdArgs

 ' ...

 ' ...

End Sub

Dim mi As MenuItem

' Enable Document custom menu

thisDoc.CustomMenu.Caption = "My Doc menu"

' Add menu item

set mi = thisDoc.CustomMenu.AddMenuItem(0)

' Set menu item caption

mi.Caption = "Item 1"

mi.OnCmdArgs = "Args string from menu item"

ConceptDraw DIAGRAM Third Party Developer’s Guide

120

' Set processing procedure

mi.SetCmdProcessing("MenuItem1_CmdProc")

' Suspends execution

Stop

On executing the End statement the program stops. All global variables are cleared, and all

procedures defined at this level become inaccessible for subsequent calls.

 In automatic mode a script is launched as soon as the object containing it is loaded. That is, an

application-level script is run as soon as the application is launched. After you open a document

or a template, a document-level script is launched. Then, if the document-level script remains

resident, the scripts at all page levels are executed subsequently, starting from the first page. Once

a page-level program has been executed, and provided it remains resident (i.e. it wasn't stopped

by the End statement), scripts of the shapes on the page are launched. A shape-level script is also

started automatically, once the script-containing object has been inserted into the document from

a library or duplicated.

 A flag in the application preferences dialog controls whether scripts may be launched

automatically or not.

Language Core Reference

Language Core Reference

• Statements

• Operators

• Functions

• Constants

• Keywords

• Data Type Summary

Abs Function

Abs Function

Returns a value of the same type that is passed to it specifying the absolute value of a number.

Syntax
Abs([num])

The optional num argument is any valid numeric expression. If this argument is omitted, is a non-

initialized variable, or Null, the function returns 0.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

121

The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both

return 1.

Example
Dim MyNumber

MyNumber = Abs(36.6) ' Returns 36.6.

MyNumber = Abs(-36.6) ' Returns 36.6.

See Also Sgn Function

ADDRESSOF Operator

ADDRESSOF Operator

A unary operator that returns the address of a variable.

Syntax
result = AddressOf varname

The AddressOf operator syntax has these Elements:

Element Description

result Required; any numeric variable.

varname Required; any variable.

Remarks

The AddressOf operator returnns the address of any variable. If the variable was declared as

object and wasn't initialized, AddressOf returns 0. If the variable was declared and initialized

with the Set statement, AddressOf returns the address of the variable in memory.

Example
Dim MyAddress, AddressOfMyAddress, MyPoint as DPoint

MyAddress = AddressOF MyPoint ' Returns 0.

trace MyAddress

Set MyPoint = New DPoint

MyAddress = AddressOF MyPoint ' Returns address of object MyPoint.

trace Hex(MyAddress)

AddressOfMyAddress = AddressOF MyAddress ' Returns address of variable

MyAddress.

trace Hex(AddressOfMyAddress)

ConceptDraw DIAGRAM Third Party Developer’s Guide

122

See Also Operators

+ Operator

+ Operator

Used to sum two numbers.

Syntax
result = expression1 + expression2

The + operator syntax has these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

If at least one expression is not a Variant, the following rules apply:

If Then result is

Both expressions are numeric data types (Byte, Boolean,

Integer, Long, Single, Double, Date)
Add.

Both expressions are String Concatenate.

One expression is a numeric data type and the other is any

Variant except Null
Add.

One expression is a String and the other is any Variant except

Null
Concatenate.

If both expressions are Variant expressions, the following rules apply:

If Then

Both Variant expressions are numeric Add.

Both Variant expressions are strings Concatenate.

ConceptDraw DIAGRAM Third Party Developer’s Guide

123

One Variant expression is numeric and the other is a string Add.

For simple arithmetic addition involving only expressions of numeric data types, the data type of

result is usually the same as that of the most precise expression. The order of precision, from least

to most precise, is Byte, Integer, Long, Single, Double. The following are exceptions to this

order:

If Then result is

The data type of result is a Long, Single, or Date variant that

overflows its legal range,

converted to a Double

variant.

The data type of result is a Byte variant that overflows its legal

range,

converted to an Integer

variant.

The data type of result is an Integer variant that overflows its

legal range,

converted to a Long

variant.

A Date is added to any data type, a Date.

Example
Dim MyNumber, Var1, Var2

MyNumber = 2 + 2 ' Returns 4.

trace MyNumber

MyNumber = 4257.04 + 98112 ' Returns 102369.04.

trace MyNumber

Var1 = "34": Var2 = 6 ' Initialize mixed variables.

MyNumber = Var1 + Var2 ' Returns 40.

trace MyNumber

Var1 = "34": Var2 = "6" ' Initialize variables with strings.

MyNumber = Var1 + Var2 ' Returns "346" (string concatenation).

trace MyNumber

See Also Operators

AND Operator

AND Operator

Used to perform a logical conjunction on two expressions.

ConceptDraw DIAGRAM Third Party Developer’s Guide

124

Syntax
result = expression1 And expression2

The And operator syntax has these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

If both expressions evaluate to True, result is True. If either expression evaluates to False, result

is False. The following table illustrates how result is determined:

If expression1 is And expression2 is The result is

True True True

True False False

False True False

False False False

The And operator also performs a bitwise comparison of identically positioned bits in two

numeric expressions and sets the corresponding bit in result according to the following table:

If expression1 is And expression2 is The result is

0 0 0

0 1 0

1 0 0

1 1 1

Example
Dim A, B, C, D, MyCheck

A = 10: B = 8: C = 6: D = Null ' Initialize variables.

MyCheck = A > B And B > C ' Returns True.

trace MyCheck

MyCheck = B > A And B > C ' Returns False.

trace MyCheck

MyCheck = A > B And B > D ' Returns True.

trace MyCheck

MyCheck = A And B ' Returns 8 (bitwise comparison).

trace MyCheck

ConceptDraw DIAGRAM Third Party Developer’s Guide

125

See Also Operators

Asc Function

Asc Function

Returns an Integer representing the character code corresponding to the first letter in a string.

Syntax
Asc([string])

The optional string argument is any valid string expression. If this argument is omitted, is a non-

initialized variable, or Null, the function returns 0.

Remarks

The range for returns is 0 – 255 on non-DBCS systems, but –32768 – 32767 on DBCS systems.

Example
Dim MyNumber

MyNumber = Asc("A") ' Returns 65.

MyNumber = Asc("a") ' Returns 97.

MyNumber = Asc("Apple") ' Returns 65.

See Also Chr Function, Type Conversion Functions

Atn Function

Atn Function

Returns a Double specifying the arctangent of a number.

Syntax
Atn([num])

ConceptDraw DIAGRAM Third Party Developer’s Guide

126

The optional num argument is a Double or any valid numeric expression. If this argument is

omitted, is a non-initialized variable, or Null, the function returns 0.

Remarks

The Atn function takes the ratio of two sides of a right triangle (num) and returns the

corresponding angle in radians. The ratio is the length of the side opposite the angle divided by

the length of the side adjacent to the angle.

The range of the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply

radians by 180/pi.

Note Atn is the inverse trigonometric function of Tan, which takes an angle as its argument

and returns the ratio of two sides of a right triangle. Do not confuse Atn with the cotangent,

which is the simple inverse of a tangent (1/tangent).

Example
Dim pi

pi = 4 * Atn(1) ' Calculate the value of pi.

See Also Cos Function, Sin Function, Tan Function

Beep Statement

Beep Statement

Plays a sound signal through computer's built-in speaker.

Syntax
Beep

Remarks

Frequency and lenght of the sound signal depends on computer hardware and software and vary

with different computers. .

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

127

In this example the Beep statement is used to play three sound signals through the speaker.
Dim I

For I = 1 To 3 ' The cycle repeats 3 times

 Beep ' Play sound signal

Next I

See Also

Bin Function

Bin Function

Returns a FixStr (String) value representing the binary value of a number.

Syntax
Bin[$]([number])

The optional number argument is any valid numeric expression or string expression in the range

from -2147483648 to 2147483647. If this argument is omitted, is a non-initialized variable, or

Null, the function returns 0.

Remarks

If number is not already a whole number, it's rounded to the nearest whole number before being

evaluated. If number is Empty or Null, the function returns 0. For any other number the Bin

function returns up to 32 binary symbols.

You can represent binary numbers directly by preceding numbers in the proper range with &B.

For example, &B10 represents decimal 2 in binary notation.

The Bin$ returns String values. The Bin form returns FixStr values.

Example
Dim MyBin

MyBin = Bin(5) ' Returns 101.

MyBin = Bin(10) ' Returns 1010.

MyBin = Bin(459) ' Returns 111001011.

ConceptDraw DIAGRAM Third Party Developer’s Guide

128

See Also Oct Function,Hex Function,Type Conversion Functions

Call Statement

Call Statement

Transfers control to a Sub procedure, Function procedure, or dynamic-link library (DLL)

procedure.

Syntax
[Call] name ([argumentlist])

The Call statement syntax has these Elements:

Element Description

Call
Optional; keyword. Supported for compatibility with other

versions of BASIC.

name Required. Name of the procedure to call.

argumentlist

Optional. Comma-delimited list of variables, array items, or

expressions to pass to the procedure. Components of argumentlist

may include the keywords ByVal or ByRef to describe how the

arguments are treated by the called procedure.

Remarks

You are not required to use the Call keyword when calling a procedure. However, if you use the

Call keyword to call a procedure that requires arguments, argumentlist must be enclosed in

parentheses. If you use either Call syntax to call any intrinsic or user-defined function, the

function's return value is discarded.

Example

This example illustrates how the Call statement is used to transfer control to a Sub procedure, an

intrinsic function.
Declare Sub PrintToOutputWindow(AnyString As String)

' Call a Sub procedure.

Call PrintToOutputWindow("Hello World")

' The above statement causes control to be transfered to the following

' Sub procedure.

Sub PrintToOutputWindow(AnyString As String)

ConceptDraw DIAGRAM Third Party Developer’s Guide

129

 Trace AnyString ' Print to the Output window.

End Sub

' Call is an intrinsic function. The returned value of the function is

discarded.

Call MsgBox("Call an intrinsic MsgBox function")

See Also Declare Statement , Function Statement , Sub Statement

Type Conversion Functions

Type Conversion Functions

Each function coerces an expression to a specific data type.

Syntax
CBool([expression])

CByte([expression])

CDbl([expression])

CInt([expression])

CLng([expression])

CSng([expression])

CVar([expression])

CStr([expression])

CDate([expression])

CVDate([expression])

The optional expression argument is any string expression or numeric expression.

Return Types

Function Return Type

CBool Bool

CByte Byte

CDbl Double

CInt Integer

ConceptDraw DIAGRAM Third Party Developer’s Guide

130

CLng Long

CSng Single

CVar Variant

CStr String

CDate Date

CVDate Date

Remarks

If the expression passed to the function is outside the range of the data type being converted to,

it's transformed according to the following rules (on example of CInt):

CInt

-32768(min).....................0........................32767(max)

CInt(32768) returns -32768

CInt(32769) returns -32767

...

CInt(-32769) returns 32767

CInt(-32770) returns 32766

In general, you can document your code using the data-type conversion functions to show that the

result of some operation should be expressed as a Elementicular data type rather than the default

data type.

When the fractional Element is exactly 0.5, CInt and CLng as well as CByte always round it to

the nearest even number. For example, 0.5 rounds to 0, and 1.5 rounds to 2. CInt and CLng differ

from the Fix and Int functions, which truncate, rather than round, the fractional Element of a

number. Also, Fix and Int always return a value of the same type as is passed in.

If the expression argument is omitted, CVar and CStr return an empty string, other functions

return 0.

A CVDate function is identical to CDate and is provided for compatibility with other versions of

BASIC.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

131

Dim MyDouble, MyInteger, MyDate

MyDouble = CDbl("3.2") ' Convert result to a Double -> 3.2

MyInteger = CInt(MyDouble) ' Convert result to a Integer -> 3

MyDate = CDate(MyInteger) ' Convert result to a Date -> 2 Jan 1990

See Also Fix Function, Int Function , Round Function

ChDir Statement

ChDir Statement

Sets a new current directory or folder.

Syntax
ChDir path

The required argument path is a string that specifies a new current directory (or folder). The path

argument may contain the disk name. If the disk name is not specified, ChDir assumes it's the

current disk.

Remarks

The ChDir statement changes the current directory, but doesn't change the current disk. For

instance, if drive C is current, the command below will change the current directory to one on

drive D, however drive C remains the current drive:

ChDir "D:\TMP"

ChDir Statement (Apple Power Macintosh)

On Power Macintosh the current disk is always changed to the disk, specified in the path. A full

path should start with the volume name, a relative path starts with a colon (:). ChDir allows using

random names in the path line. ChDir "MacDrive:Tmp" ' on the Macintosh.

Note, that Microsoft Windows and Macintosh use different symbols for relative path changes:

ChDir ".." ' Go up one level in Microsoft Windows.

ChDir "::" ' Go up one level on the Macintosh.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

132

In this example the ChDir statement is used to change the current directory or folder.

' Change current directory or folder to "MYDIR".

ChDir "MYDIR"

'In Microsoft Windows:

' Current disk is drive "C:". The following statement sets a new current

' directory on drive "D:". "C:" remains current drive.

ChDir "D:\WINDOWS\SYSTEM"

' On the Macintosh:

' Changes current folder and current drive.

ChDir "HD:MY FOLDER"

See Also
ChDrive Statement, MkDir Statement , RmDir Statement, CurDir

Statement, Dir Function

ChDrive Statement

ChDrive Statement

Changes the current drive.

Syntax
ChDrive drive

Remarks

The required argument drive is a string specifying an existing drive. If the string is empty (""),

current drive doesn't change. If drive contains more than one symbol, only the first symbol will be

used by ChDrive.

On the Macintosh ChDrive also sets current folder to the root folder of the specified drive.

Example

In the example below the ChDrive statement is used to change the current drive.

' In Microsoft Windows:

ChDrive "D" ' Makes drive "D" current.

' On the Macintosh:

' Makes the drive "MY DRIVE" current.

ChDrive "MY DRIVE:"

' Makes drive "MY DRIVE" current. Current folder will be

' the root folder of the drive.

ChDrive "MY DRIVE:MY FOLDER"

ConceptDraw DIAGRAM Third Party Developer’s Guide

133

See Also
ChDir Statement, MkDir Statement , RmDir Statement, CurDir

Function

Chr Function

Chr Function

Returns a FixStr (String) value containing the character, associated with the specified character

code.

Syntax
Chr[$]([charcode])

The optional charcode argument is a Long that identifies a character. If this argument is omitted,

is a non-initialized variable, or Null, the function returns an empty string.

The Chr$ form returns String values. The Chr form returns FixStr values.

Remarks

Numbers from 0 – 31 are the same as standard, nonprintable ASCII codes. For example, Chr(10)

returns a linefeed character. The normal range for charcode is 0 – 255. However, on DBCS

systems, the actual range for charcode is -32768 to 65535.

If charcode is outside the 0-255 range, it will be adjusted to this range using the following

formula: charcode Mod 256.

Example
Dim Char

Char = Chr(65) ' Returns A.

Char = Chr(97) ' Returns a.

Char = Chr(62) ' Returns >.

Char = Chr(37) ' Returns %.

See Also Asc Function, Str Function, Type Conversion Functions

ConceptDraw DIAGRAM Third Party Developer’s Guide

134

Close Statement

Close Statement

Terminates imput/output operations with the file, opened with the Open statement.

Syntax
Close [filenumberlist]

Optional argument filenumberlist can contain one or more file numbers. It's syntax looks the as

shown below (filenumber is any allowable file number):

[[#]filenumber] [, [#]filenumber] . . .

Remarks

If the filenumberlist argument is omitted, all active files opened with the Open statement are

closed.

When closing a file opened in the Output or Append modes, the contents of the last ouptut

buffer is added into the file. All buffers, associated with the closed file are cleared.

The Close statement breaks relationship between the filename and associated file number.

Example

Here the Close statement is used to close three files that have been opened in the Output mode.
Dim I, FileName

For I = 1 To 3 ' The loop repeats 3 times.

 FileName = "TEST" & I 'Create the filename.

 Open FileName For Output As #I 'Open the file.

 Print #I, "Example." ' Write a string into the file.

 Next I

Close ' Close all 3 open files.

See Also
Recording Data in a File, End Statement , Open Statement, Reset

Statement, Stop Statement

Comparison Operators

Comparison Operators

ConceptDraw DIAGRAM Third Party Developer’s Guide

135

Used to compare expressions.

Syntax
result = expression1 comparisonoperator expression2

Comparison operators have these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

comparisonoperator Required; any comparison operator.

Remarks

The following table contains a list of the comparison operators and the conditions that determine

whether result is True or False:

Operator True if False if

< (Less than) expression1 < expression2 expression1 >= expression2

<= (Less than or equal to) expression1 <= expression2 expression1 > expression2

> (Greater than) expression1 > expression2 expression1 <= expression2

>= (Greater than or equal to) expression1 >= expression2 expression1 < expression2

= (Equal to) expression1 = expression2 expression1 <> expression2

<> (Not equal to) expression1 <> expression2 expression1 = expression2

When comparing two expressions, you may not be able to easily determine whether the

expressions are being compared as numbers or as strings. The following table shows how the

expressions are compared or the result when either expression is not a Variant:

If Then

Both expressions are numeric data types (Byte, Boolean,

Integer, Long, Single, Double, or Date)

Perform a numeric

comparison.

Both expressions are String Perform a string comparison.

One expression is a numeric data type and the other is a

Variant that is, or can be, a number

Perform a numeric

comparison.

One expression is a numeric data type and the other is a

string Variant that can't be converted to a number

A Type Mismatch error

occurs.

If expression1 and expression2 are both Variant expressions, their underlying type determines

how they are compared. The following table shows how the expressions are compared or the

result from the comparison, depending on the underlying type of the Variant:

ConceptDraw DIAGRAM Third Party Developer’s Guide

136

If Then

Both Variant expressions are numeric Perform a numeric comparison.

Both Variant expressions are strings Perform a string comparison.

One Variant expression is numeric and the

other is a string

The numeric expression is less than the

string expression.

Example
Dim MyResult, Var1, Var2

MyResult = (45 < 35) ' Returns False.

trace MyResult

MyResult = (45 = 45) ' Returns True.

trace MyResult

MyResult = (4 <> 3) ' Returns True.

trace MyResult

MyResult = ("5" > "4") ' Returns True.

trace MyResult

Var1 = "5": Var2 = 4 ' Initialize variables.

MyResult = (Var1 > Var2) ' Returns True.

trace MyResult

Var1 = 5: Var2 = Empty

MyResult = (Var1 > Var2) ' Returns True.

trace MyResult

Var1 = 0: Var2 = Empty

MyResult = (Var1 = Var2) ' Returns True.

trace MyResult

See Also Operators

& Operator

& Operator

Used to force string concatenation of two expressions.

Syntax
result = expression1 & expression2

The & operator syntax has these Elements:

Element Description

result Required; any String or Variant variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

137

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

If an expression is not a string, it is converted to a String variant. The data type of result is String

if both expressions are string expressions; otherwise, result is a String variant. If both expressions

are Null, result is zero-length string (""). However, if only one expression is Null, that expression

is treated as a zero-length string ("") when concatenated with the other expression.

Example

This example uses the & operator to force string concatenation.

Dim MyStr

MyStr = "Hello" & " World" ' Returns "Hello World".

trace MyStr

MyStr = "Check " & 123 & " Check" ' Returns "Check 123 Check".

trace MyStr

See Also Operators

Language Core Constants

Language Core

Constants

Date Format Constants

Constant Value Description

cdbGeneralDate 0

cdbLongDate 1

cdbShortDate 2

cdbLongTime 3

ConceptDraw DIAGRAM Third Party Developer’s Guide

138

cdbShortTime 4

File Attributes Constants

Constant Value Description

cdbNormal 0

cdbReadOnly 1

cdbHidden 2

cdbSystem 4

cdbArchive 32

Format Function Constants

Constant Value Description

cdbUseSystem 0

cdbSunday 1

cdbMonday 2

cdbTuesday 3

cdbWednesday 4

cdbThursday 5

cdbFriday 6

cdbSaturday 7

Constant Value Description

cdbUseSystem 0

cdbFirstJan1 1

cdbFirstFourDays 2

cdbFirstFullWeek 3

FormatNumber Function Constants

ConceptDraw DIAGRAM Third Party Developer’s Guide

139

Constant Value Description

TristateTrue -1 True

TristateFalse 0 False

TristateUseDefault -2 Use the setting from the computer's regional settings.

VarType Constants

Constant Value Description

cdbEmpty 0

cdbNull 1

cdbInteger 2

cdbLong 3

cdbSingle 4

cdbDouble 5

cdbDate 7

cdbString 8

cdbObject 9

cdbBoolean 11

cdbByte 17

Const Statement

Const Statement

Declares named constants for use in place of literal values.

Syntax
Const constname [As type] = const_expression

The Const statement syntax has these Elements:

Element Description

constname
Required. Name of the constant; follows standard variable naming

conventions.

ConceptDraw DIAGRAM Third Party Developer’s Guide

140

type

Optional. Data type of the variable; may be Byte, Boolean, Integer, Long,

Single, Double, Date, String (for variable-length strings), String * length

(for fixed-length strings), Variant. Use a separate As type clause for each

variable you declare.

const_expressio

n

Required. Constatnt expression; may be numeric constant, string constant,

or any combination that includes all arithmetic or logical operators.

Remarks

To combine several constant declarations on the same line, separate each constant assignment

with a comma.

You can't use variables, user-defined functions, or intrinsic Basic functions (such as Chr)

inexpressions assigned to constants.

 Note: Constants can make your programs self-documenting and easy to modify. Unlike

variables, constants can't be inadvertently changed while your program is running.

If you don't explicitly declare the constant type using As type, the constant has the data type that

is most appropriate for const_expression.

Constants declared in a Sub or Function procedure are local to that procedure. A constant

declared outside a procedure is defined throughout the module in which it is declared. You can

use constants anywhere you can use an expression.

Example

This example uses the Const statement to declare constants for using instead of literal values.
' Declare some constants

Const MyVar = 459

Const MyString = "HELP"

' Declare an Integer constant.

Private Const MyInt As Integer = 5

' Declare multiple constants in the same line.

Const MyStr = "Hello", MyDouble As Double = 3.4567

See Also Data Type Summary, Let Statement, Function Statement, Sub Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

141

Cos Function

Cos Function

Returns a Double specifying the cosine of an angle.

Syntax
Cos([num])

The optional num argument is a Double or any valid numeric expression, specifying the angle in

radians. If this argument is omitted, is a non-initialized variable, or Null, the function returns 1.

Remarks

The Cos function takes an angle in radians and returns the ratio of two sides of a right triangle.

The ratio is the length of the side adjacent to the angle divided by the length of the hypotenuse.

The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply

radians by 180/pi.

Example
Dim MyAngle, MySecant

MyAngle = 1.3 ' Define angle in radians.

MySecant = 1 / Cos(MyAngle) ' Calculate secant.

See Also Atn Function, Sin Function, Tan Function

CurDir Function

CurDir Function

Returns a FixStr (String) representing the current path.

Syntax
CurDir[$][(drive)]

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

142

The optional drive argument is a string expression that specifies an existing drive. If no drive is

specified or if drive is a zero-length string (""), CurDir returns the path for the current drive.

CurDir Function (Apple Power Macintosh)

The optional drive argument is a string expression that specifies an existing drive. The CurDir

function ignores any specified drive and simply returns the path for the current drive.

The CurDir$ for returns String values. The CurDir form returns FixStr values.

Example

This example uses the CurDir function to return the current path.

' In Microsoft Windows:

' Assume current path on C drive is - "C:\WINDOWS\SYSTEM".

' Assume current path on D drive is "D:\EXCEL".

' Assume C is the current drive.

Dim MyPath

MyPath = CurDir ' Returns "C:\WINDOWS\SYSTEM".

MyPath = CurDir("C") ' Returns "C:\WINDOWS\SYSTEM".

MyPath = CurDir("D") ' Returns "D:\EXCEL".

' For Mac:

' Drive names are ignored. The path for the current disk is returned.

' Assume current path on drive HD is - "HD:MY FOLDER".

' Assume HD is the current drive.

' Assume drive MD also exists on this computer.

Dim MyPath2

MyPath2 = CurDir ' Returns "HD:MY FOLDER".

MyPath2 = CurDir("HD")' Returns "HD:MY FOLDER".

MyPath2 = CurDir("MD")' Returns "HD:MY FOLDER".

See Also
ChDir Statement, ChDrive Statement , MkDir Statement, RmDir

Statement

Data Type Summary

Data Type Summary

The following table shows the supported data types, including storage sizes and ranges.

Data type Storage size Range

Byte (byte) 1 byte From 0 to 255.

Boolean (logical) 2 bytes True or False.

Integer (integer) 2 bytes From -32 768 to 32 767

ConceptDraw DIAGRAM Third Party Developer’s Guide

143

Long

(long integer)
4 bytes

From -2 147 483 648 to 2 147 483

647.

Single

(single-precision floating point)
4 bytes

From -3,402823E38 to -

1,401298E-45 for negative values;

from 1,401298E-45 to

3,402823E38 for positive values.

Double

(double-precision floating point)
8 bytes

From -1,79769313486232E308 to

-4,94065645841247E-324 for

negative values;

from 4,94065645841247E-324 to

1,79769313486232E308 for

positive values.

Date (date and time) 8 bytes
From 1 January 100 to 31

December 9999

Object (object) 4 bytes Address that refers to an object

String

(variable-length string)

10 bytes +

string length

From 0 up to approximately 2

billion (2^31) characters.

String * n

(FixStr, fixed-length string)
String length

From 1 up to approximately 65

400 characters.

Variant

(numeric subtypes)
16 bytes

Any numeric value within the

Double range.

Variant

(string subtypes)

22 bytes +

string length
As for a variable-length string.

See Also

Date Function

Date Function

Returns a Date (String) containing the current system date.

Syntax
Date[$]()

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

144

The Date$ form returns String values. The Date form returns Date values. Use the Date

statement to set system date.

Example
Dim MyDate

MyDate = Date() ' Assign current system date

See Also
Date Statement, Format Function, Now Function, Time Function, Time

Statement

Date= Statement

Date= Statement

Sets the current system date.

Syntax
Date = date

Remarks

If date is a string, Date attempts to convert it to a date using the date separators you specified for

your system. If it can't be converted to a valid date, an error occurs.

For systems running Microsoft Windows, the required date specification must be a date from

January 1, 1980 through December 31, 2079. For systems running Mac OS 9 and later, date must

be a date from January 1, 1901 through December 31, 2037.

Note: Changing date is only possible if you have enough rights, required by the system.

Example
Dim MyDate

MyDate = #2/17/1995# ' Assign a date.

Date = MyDate ' Change system date.

See Also Date Function, Time Function, Time Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

145

Declare Statement

Declare Statement

Used to declare references to user-defined procedures or external procedures in a dynamic-link

library (DLL).

Syntax
Declare Sub name [Lib "libname"] [Alias "aliasname"] ([arglist])

Declare Function name [Lib "libname"] [Alias "aliasname"] ([arglist]) [As type]

The Declare statement syntax has these Elements:

Element Description

Sub
Optional (either Sub or Function must appear). Indicates that the

procedure doesn't return a value.

Function
Optional (either Sub or Function must appear). Indicates that the

procedure returns a value that can be used in an expression.

name
Required. Any valid procedure name. Note that DLL entry points

are case sensitive.

Lib

Optional. Indicates that a DLL contains the procedure being

declared. The Lib clause is required for all external procedures

declarations.

libname
Required if Lib keyword used. Name of the DLL or code resource

that contains the declared procedure.

Alias

Optional. Indicates that the procedure being called has another

name in the DLL. This is useful when the external procedure name

is the same as a keyword. You can also use Alias when a DLL

procedure has the same name as a variable, constant, or any other

procedure. Alias is also useful if any characters in the DLL

procedure name aren't allowed by the DLL naming convention.

aliasname Optional. Name of the procedure in the DLL.

arglist
Optional. List of variables representing arguments that are passed

to the procedure when it is called.

type

Optional. Data type of the value returned by a Function procedure;

may be Byte, Boolean, Integer, Long, Single, Double, Date, String

(variable length only), Variant or an object type.

The arglist argument has the following syntax and Elements:

[ByVal | ByRef] varname [As type] [=defval]

ConceptDraw DIAGRAM Third Party Developer’s Guide

146

Element Description

ByVal
Optional. Indicates that the argument is passed by value. ByVal is

the default in ConceptDraw Basic.

ByRef Optional. Indicates that the argument is passed by reference.

varname

Required. Name of the variable representing the argument being

passed to the procedure; follows standard variable naming

conventions.

type

Optional. Data type of the argument passed to the procedure; may

be Byte, Boolean, Integer, Long, Single, Double, Date, String

(variable length only), Object, Variant or an object type.

defval
Optional. Constant that determine the value that will be passed to

the procedure by default if this argument is omitted.

Remarks

For Function procedures, the data type of the procedure determines the data type it returns. You

can use an As clause following arglist to specify the return type of the function. Within arglist,

you can use an As clause to specify the data type of any of the arguments passed to the procedure.

In addition to specifying any of the standard data types, you can specify As Any in arglist to

inhibit type checking and allow any data type to be passed to the procedure.

Empty parentheses indicate that the Sub or Function procedure has no arguments and that

ConceptDraw Basic should ensure that none are passed. In the following example, First takes no

arguments. If you use arguments in a call to First, an error occurs:

Declare Sub First Lib "MyLib" ()

If you include an argument list, the number and type of arguments are checked each time the

procedure is called. In the following example, First takes one Long argument:

Declare Sub First Lib "MyLib" (X As Long)

 Note: You can't have fixed-length strings in the argument list of a Declare statement; only

variable-length strings can be passed to procedures. Fixed-length strings can appear as procedure

arguments, but they are converted to variable-length strings before being passed.

 Note: The cdbNullString constant is used when calling external procedures, where the external

procedure requires a string whose value is zero. This is not the same thing as a zero-length string

("").

 Note: If the specified name coincides with a keyword, a compilaton error will occur. Make sure

you give a unique name to the procedure.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

147

This example shows declaring of a user procedure PrintToOutputWindow using the Declare

instruction before the procedure is called.
Declare Sub PrintToOutputWindow(AnyString As String)

' Call a Sub procedure.

Call PrintToOutputWindow("Hello World")

' The above statement causes control to be transferred to the following

' Sub procedure.

Sub PrintToOutputWindow(AnyString As String)

 Trace AnyString ' Print to the Output window.

End Sub

See Also Call Statement , Function Statement , Sub Statement

Dim Statement

Dim Statement

Declares variables and allocates storage space.

Syntax
Dim varname[([subscripts])] [As [New] type] [, varname[([subscripts])] [As [New] type]] . . .

The Dim statement syntax has these Elements:

Element Description

varname
Required. Name of the variable; follows standard variable naming

conventions.

subscripts

Optional. Dimensions of an array variable; up to 10 multiple dimensions

may be declared. The subscripts argument uses the following syntax:

count1[, count2] . . .

where count1, count2 are constants, indicating the upper limit of allowable

indices for the defined array. The lower limit of allowable indices always

equals 0. So, for a one-dimensional array the number of elements can be

calculated as count1+1 .

New

Optional. Keyword that enables implicit creation of an object. If you use

New when declaring the object variable, a new instance of the object is

created during declaration, so you don't have to use the Set statement to

assign the object reference. The New keyword can't be used to declare

ConceptDraw DIAGRAM Third Party Developer’s Guide

148

variables of any intrinsic data type, can't be used to declare instances of

dependent objects or objects that don't have built-in constructor.

type

Optional. Data type of the variable; may be Byte, Boolean, Integer, Long,

Single, Double, Date, String (for variable-length strings), String * length

(for fixed-length strings), Object, Variant, or an object type. Use a separate

As type clause for each variable you declare.

Remarks

Variables declared with Dim at the module level are available to all procedures within the

module. At the procedure level, variables are available only within the procedure.

Use the Dim statement at module or procedure level to declare the data type of a variable. For

example, the following statement declares a variable as an Integer.

Dim Number As Integer

Also use a Dim statement to declare the object type of a variable. The following declares a

variable for a new instance of a database engine.

Dim Eng As New dbEngine

If the New keyword is not used when declaring an object variable, the variable that refers to the

object must be assigned an existing object using the Set statement before it can be used. Until it is

assigned to an object, the declared object variable has the special value Nothing, which indicates

that it doesn't refer to any Elementicular instance of an object. When you use the New keyword in

the declaration, an instance of the object will be created.

You can also use the Dim statement with empty parentheses to declare a dynamic array. After

declaring a dynamic array, use the ReDim statement within a procedure to define the number of

dimensions and elements in the array.

If you don't specify a data type or object type, the variable is Variant by default.

All declared variables except those declared with New, take the Empty value, which indicates that

they are not initialized.

 Tip: It's recommended to place all declarations in the beginning of a module or a procedure.

This shortens the time of compilation.

Example

This example shows the Dim statement used to declare variables. It also shows the Dim statement

used to declare arrays.
' AnyValue and MyValue are declared as Variant by default.

Dim AnyValue, MyValue

' Explicitly declare a variable of type Integer.

ConceptDraw DIAGRAM Third Party Developer’s Guide

149

Dim Number As Integer

' Multiple declarations on a single line. AnotherVar is of type Variant

' because its type is omitted.

Dim AnotherVar, Choice As Boolean, BirthDate As Date

' DayArray is an array of Variants with 51 elements indexed, from

' 0 thru 50

Dim DayArray(50)

' Matrix is a two-dimensional array of integers.

Dim Matrix(3, 4) As Integer

' MyArray is a dynamic array of variants.

Dim MyArray()

See Also
Data Type Summary, ReDim Statement, Set Statement, Static Statement,

Const Statement

Dir Function

Dir Function

Returns a String representing the name of a file, directory, or folder that matches a specified

pattern or file attribute, or the volume label of a drive.

Syntax

Dir[(pathname[, attributes])]

The Dir function syntax has these Elements:

Element Description

pathname

Optional. String expression that specifies a file name — may include

directory or folder, and drive. A zero-length string ("") is returned if

pathname is not found.

attributes
Optional. Constant or numeric expression, that specifies file attributes. If

omitted, returns all files that match pathname.

Values

The attributes argument settings are:

Constant Value Description

cdbNormal 0 Normal

cdbHidden 2 Hidden

ConceptDraw DIAGRAM Third Party Developer’s Guide

150

cdbSystem 4 System (Microsoft Windows only)

cdbVolume 8
Volume label; if specified, any other attributes are

ignored (Microsoft Windows only)

cdbDirectory 16 Directory or folder

cdbAlias 64 Specified file name is an Alias (Macintosh only)

Note. These constants are specified by the application, that is they can be used anywhere in your

code in place of the actual values.

Remarks

When Dir is called first time, a path should be specified - otherwise an error will occur. If file

attributes are specified, the pathname argument is required.

The Dir function returns the first file name that matches pathname. To get other file names,

matching pathname, call Dir again without arguments. When there are no more matching file

names, an empty string ("") is returned. When calling the function after an empty string has been

returned, pathname must be specified - otherwise an error occurs. You can modify pathname at

any time. Dir can't be called recursively. Calling Dir with the cdbDirectory attribute doesn't

return subfolders subsequently.

Note. As file names are returned in random order, you may store them in an array and then sort.

Example

This example uses the Dir function to look for certain files and directories.
Dim MyFile, MyPath, MyName

' In Microsoft Windows:

' Returns"WIN.INI" (if exists).

MyFile = Dir("C:\WINDOWS\WIN.INI")

' Returns a file name with specified extension. If more than one *.INI file

exist

' returns the first file found.

MyFile = Dir("C:\WINDOWS*.INI")

' Call Dir again with no arguments to get the next *.INI file

' located in the same directory.

MyFile = Dir

' Returns the first found *.TXT file with hidden attribute.

MyFile = Dir("*.TXT", cdbHidden)

' Returns the list of directories on drive C:.

MyPath = "c:\" ' Specify path.

MyName = Dir(MyPath, cdbDirectory) ' Retrieve the first entry.

Do While MyName <> "" ' Start the loop.

 ' Ignore the current directory and the encompassing directory.

 If MyName <> "." And MyName <> ".." Then

 ' Use bitwise comparison to make sure MyName is a directory.

 If (GetAttr(MyPath & MyName) And cdbDirectory) = cdbDirectory Then

 Trace MyName ' Display entry only if it represents a directory

 End If

 End If

 MyName = Dir ' Get next entry.

Loop

ConceptDraw DIAGRAM Third Party Developer’s Guide

151

See Also Инструкция ChDir, Функция CurDir

/ Operator

/ Operator

Used to divide two numbers and return a floating-point result.

Syntax
result = number1 / number2

The + operator syntax has these Elements:

Element Description

result Required; any numeric variable.

number1 Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

The data type of result is usually a Double or a Double variant. The following are exceptions to

this rule:

If Then result is

Both expressions are Byte variants,

a Byte variant unless it overflows its legal range;

in which case, result is a Variant containing a

Integer.

Both expressions are Integer variants,

a Integer variant unless it overflows its legal

range; in which case, result is a Variant

containing a Long.

Both expressions are Long, Single

variants,

a Long, Single variant unless it overflows its

legal range; in which case, result is a Variant

containing a Double.

If one expressions are Null or Empty expressions, result is 0.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

152

This example uses the / operator to perform floating-point division.
Dim MyValue

MyValue = 10 / 4 ' Returns 2.5.

trace MyValue

MyValue = 10 / 3 ' Returns 3.333333.

trace MyValue

See Also Operators

Do...Loop Statement

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax
Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

Or, you can use this syntax:

Do

[statements]

[Exit Do]

[statements]

Loop [{While | Until} condition]

The Do Loop statement syntax has these Elements:

Element Description

condition Optional. Expression that is True or False.

statements
One or more statements that are repeated while, or until, condition is

True.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

153

Any number of Exit Do statements may be placed anywhere in the Do…Loop as an alternate way

to exit a Do…Loop. Exit Do is often used after evaluating some condition, for example,

If…Then, in which case the Exit Do statement transfers control to the statement immediately

following the Loop.

When used within nested Do…Loop statements, Exit Do transfers control to the loop that is one

nested level above the loop where Exit Do occurs.

Example

This example shows how Do...Loop statements can be used. The inner Do...Loop statement loops

10 times, sets the value of the flag to False, and exits prematurely using the Exit Do statement.

The outer loop exits immediately upon checking the value of the flag.
Dim Check, Counter

Check = True: Counter = 0 ' Initialize variables.

Do ' Outer loop.

 Do While Counter < 20 ' Inner loop.

 Counter = Counter + 1 ' Increment Counter.

 If Counter = 10 Then ' If condition is True.

 Check = False ' Set value of flag to False.

 Exit Do ' Exit inner loop.

 End If

 Loop

Loop Until Check = False ' Exit outer loop immediately.

See Also Exit Statement , For...Next Statement , While...Wend Statement

End Statement

End Statement

Ends a procedure or block.

Syntax
End

End Function

End If

End Select

End Sub

ConceptDraw DIAGRAM Third Party Developer’s Guide

154

The End statement syntax has these forms:

Statement Description

End

Terminates running the script. It's not required, but can be placed

anywhere in the program for closing files, opened with Open, and for

clearing variables.

End Function Required statement to close the Function construction.

End If Required statement to close the IfEThenEElse construction.

End Select Required statement to close the Select Case construction.

End Sub Required statement to close the Sub construction.

Remarks

The End statement resets all variables at the module level and all static local variables in all

modules. Current-level script stops running, which causes script on lower execution levels stop

running too. For instance, if the End statement was performed in the document's script, scripts at

the Page and Shape level immediately stop running.

If you need to save values of global variables and leave the program waiting for its procedure

calls, you should use the Stop statement.

Note: The End statement immediately stops execution of the script. Files open with the Open

statement are closed, and memory used by the program is cleared.

Example

In the example below the End statement is used to terminate the program if the user provides an

incorrect password.
Sub EndSample()

 Dim Pword

 const PassWord = "password"

 Pword = InputBox("Enter password")

 If Pword <> PassWord Then

 MsgBox "Illegal password"

 End ' Stops program execution

 End If

End Sub

See Also
Function Statement, If ... Then ... Else Statement, Select Case Statement ,

Stop_Statement, Sub Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

155

Enum Statement

Enum Statement

Declares enumeration.

Syntax
Enum Name

 constName1 [= value1]

 [constName2 [= value2]]

 ...

End Enum

The Enum statement syntax has these Elements:

Element Description

Enum Required; keyword.

constName1, constName2... First is required. Names of the enumeration constants.

value1, value2... Optional. The enumeration constants values.

Remarks

Declaring enumerations is a quick way to declare several named constants. If their values are not

assigned directly, they start from 0 and increase by 1 every next constName. If the value of a

certain constant is set, next value will differ by 1.

Example
Enum numbers

 zero ' = 0

 five = 5 ' = 5

 six ' = 6

End Enum

See Also Const Statement

EOF Function

EOF Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

156

Returns the Boolean value True when the end of a file has been reached.

Syntax
EOF(filenumber)

The required filenumber argument is an Integer containing any valid file number.

Remarks

Use EOF to avoid the error generated by attempting to get input past the end of a file.

The EOF function returns False until the end of the file has been reached. With files opened for

Random or Binary access, EOF returns False until the last executed Get statement is unable to

read an entire record.

With files opened for Binary access, an attempt to read through the file using the Input function

until EOF returns True generates an error. Use the LOF and Loc functions instead of EOF when

reading binary files with Input, or use Get when using the EOF function.

Example

This example uses the EOF function to detect the end of a file.

This example assumes that TESTFILE is a text file with a few lines of text.
Dim InputData

Open "TESTFILE" For Input As #1 ' Open file for input.

Do While Not EOF(1) ' Check for end of file.

 Line Input #1, InputData ' Read line of data.

 Trace InputData ' Print to the Output window.

Loop

Close #1 ' Close file.

See Also Get Statement , Open Statement , Loc Function, LOF Function

EQV Operator

EQV Operator

Used to perform a logical equivalence on two expressions.

Syntax
result = expression1 Eqv expression2

The Eqv operator syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

157

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

The following table illustrates how result is determined:

If expression1 is And expression2 is The result is

True True True

True False False

False True False

False False True

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric

expressions and sets the corresponding bit in result according to the following table:

If expression1 is And expression2 is The result is

0 0 1

0 1 0

1 0 0

1 1 1

Example
Dim A, B, C, D, MyCheck

A = 10: B = 8: C = 6: D = Null ' Initialize variables.

MyCheck = A > B Eqv B > C ' Returns True.

trace MyCheck

MyCheck = B > A Eqv B > C ' Returns False.

trace MyCheck

MyCheck = A > B Eqv B > D ' Returns True.

trace MyCheck

MyCheck = A Eqv B ' Returns -3 (bitwise comparison).

trace MyCheck

See Also Operators

ConceptDraw DIAGRAM Third Party Developer’s Guide

158

Erase Statement

Erase Statement

Reinitializes the elements of arrays

Syntax
Erase arraylist

The required arraylist argument is one or more comma-delimited array variables to be erased.

Remarks

Erase sets the elements of an array to Empty.

Example

This example uses the Erase statement to reinitialize the elements of arrays.
' Declare array variables.

Dim NumArray(10) As Integer ' Integer array.

Dim StrVarArray(10) As String ' Variable-string array.

Dim StrFixArray(10) As String * 10 ' Fixed-string array.

Dim VarArray(10) As Variant ' Variant array.

Erase NumArray ' Each element is set to Empty, which is equivalent to 0.

Erase StrVarArray ' Each element is set to Empty, which is equivalent to

NULL.

Erase StrFixArray ' Each element is set to Empty, which is equivalent to an

empty string"".

Erase VarArray ' Each element is set to Empty.

See Also Dim Statement, ReDim Statement, Static Statement

Erl Function

Erl Function

Returns the script code line number where the most recent run-time error occured.

ConceptDraw DIAGRAM Third Party Developer’s Guide

159

Syntax
Erl()

Remarks

Use the Erl function to determine the line number of the source code where a run-time error

occured. Usually it may be needed for debugging in an error handler defined by the On Error

statement.

Example
Sub ErlFuncDemo()

 On Error GoTo ErrorHandler ' Enable error-handling routine.

 Open "TESTFILE" For Output As #1 ' Open file for output.

 Kill "TESTFILE" ' Attempt to delete open file.

 Dim d As Double

 d = 10 / sin(0) ' "Division by zero" error

 d = 20 / cos(0)

 Trace d

Exit Sub ' Exit to avoid handler.

ErrorHandler: ' Error-handling routine.

 errNumber = Err() ' Get error number

 errLine = Erl() ' Get source code line

 Trace "ErrorNumber " & errNumber & " at line " & errLine

 Select Case errNumber ' Evaluate error number.

 Case 55, 75 ' "File already open" or "Path/File access error" error.

 Trace """File already open"" or ""Path/File access error"" error"

 Close #1 ' Close open file.

 Case Else

 ' Handle other situations here...

 Resume Next

 End Select

 Resume ' Resume execution at same line that caused the error.

End Sub

See Also Err Function , Error$ Function , On Error Statement , Trappable Errors

Error$ Function

Error$ Function

Returns the error message that corresponds to a given error number.

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

160

Error$([errornumber])

The optional errornumber argument can be any valid error number. If errornumber is a valid

error number, but is not defined or errornumber is not valid, Error returns the string "Undefined

internal error". If errornumber is omitted, the message corresponding to the most recent run-time

error is returned.

Example

This example uses the Error function to print error messages that correspond to the specified

error numbers.
Dim ErrorNumber

For ErrorNumber = 1 To 99 ' Loop through values 1 - 99.

 Trace Error(ErrorNumber) ' Print error to Output window.

Next ErrorNumber

See Also Erl Function , Err Function , Trappable Errors

Error Statement

Error Statement

Simulates the occurrence of an error.

Syntax
Error errornumber

The required errornumber can be any valid error number.

Remarks

The Error statement is used to generate run-time errors.

Example

This example uses the Error statement to simulate error number 11.
On Error Resume Next ' Defer error handling.

Error 11 ' Simulate the "Division by zero" error.

ConceptDraw DIAGRAM Third Party Developer’s Guide

161

See Also
Erl Function , Err Function , Error$ Function , On Error Statement , Resume

Statement , Trappable Errors

Err Function

Err Function

Returns the error number corresponding to the most recent run-time error.

Syntax
Err()

Remarks

The Err function is normally used to determine the number of an occured run-time error. Usually

it may be needed in an error handler defined by the On Error statement.

Example

This example shows how the Err function is used in the ErrorHandler error-handling routine:
Sub ErrFuncDemo()

 On Error GoTo ErrorHandler ' Enable error-handling routine.

 Open "TESTFILE" For Output As #1 ' Open file for output.

 Kill "TESTFILE" ' Attempt to delete open file.

 Dim d As Double

 d = 10 / sin(0) ' "Division by zero" error

 d = 20 / cos(0)

 Trace d

Exit Sub ' Exit to avoid handler.

ErrorHandler: ' Error-handling routine.

 errNumber = Err() ' Get error number

 Trace "ErrorNumber " & errNumber

 Select Case errNumber ' Evaluate error number.

 Case 55, 75 ' "File already open" or "Path/File access error" error.

 Trace """File already open"" or ""Path/File access error"" error"

 Close #1 ' Close open file.

 Case Else

 ' Handle other situations here...

 Resume Next

 End Select

 Resume ' Resume execution at same line that caused the error.

End Sub

ConceptDraw DIAGRAM Third Party Developer’s Guide

162

See Also Erl Function , Error$ Function , On Error Statement , Trappable Errors

Exit Statement

Exit Statement

Exits a block of Do…Loop, For...Next, Function, or Sub code.

Syntax
Exit Do

Exit For

Exit Function

Exit Sub

The Exit statement syntax has these forms:

Statement Description

Exit Do

Provides a way to exit a Do...Loop statement. It can be used only

inside a Do...Loop statement. Exit Do transfers control to the

statement following the Loop statement. When used within nested

Do...Loop statements, Exit Do transfers control to the loop that is

one nested level above the loop where Exit Do occurs.

Exit For

Provides a way to exit a For loop. It can be used only in a

For...Next loop. Exit For transfers control to the statement

following the Next statement. When used within nested For loops,

Exit For transfers control to the loop that is one nested level above

the loop where Exit For occurs.

Exit Function

Immediately exits the Function procedure in which it appears.

Execution continues with the statement following the statement

that called the Function.

Exit Sub

Immediately exits the Sub procedure in which it appears.

Execution continues with the statement following the statement

that called the Sub procedure.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

163

Do not confuse Exit statements with End statements. Exit does not define the end of a code

block.

Example

This example uses the Exit statement to exit a For...Next loop, a Do...Loop, and a Sub

procedure.
Sub ExitStatementDemo()

Dim I As Integer, MyNum As Integer

 Do ' Set up infinite loop.

 For I = 1 To 1000 ' Loop 1000 times.

 MyNum = CInt(Rnd() * 1000) ' Generate random numbers.

 Select Case MyNum ' Evaluate random number.

 Case 7:

 Trace "Exit For"

 Exit For ' If 7, exit For...Next.

 Case 29:

 Trace "Exit Do"

 Exit Do ' If 29, exit Do...Loop.

 Case 54:

 Trace "Exit Sub"

 Exit Sub ' If 54, exit Sub procedure.

 End Select

 Next I

 Loop

End Sub

ExitStatementDemo()

See Also
Do...Loop Statement , End Statement , For...Next Statement , Function

Statement , Stop Statement , Sub Statement

Exp Function

Exp Function

Returns a Double specifying e (the base of natural logarithms) raised to a power.

Syntax
Exp([num])

The optional num argument is a Double or any valid numeric expression. If this argument is

omitted, is a non-initialized variable, or Null, the function returns 1.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

164

If the value of number exceeds 709.782712893, an error occurs. The constant e is approximately

2.718282.

Note The Exp function complements the action of the Log function and is sometimes

referred to as the antilogarithm.

Example
Dim MyAngle, MyHSin

' Define angle in radians.

MyAngle = 1.3

' Calculate hyperbolic sine.

MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2

See Also Log Function

^ , ** Operators

^ , ** Operators

Used to raise a number to the power of an exponent.

Syntax
result = expression1 ^expression2

result = expression1 **expression2

The ^ operator (** operator) syntax has these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

A number can be negative only if exponent is an integer value. When more than one

exponentiation is performed in a single expression, the ^ operator is evaluated as it is encountered

from right to left.

Usually, the data type of result is a Double or a Variant containing a Double. However, if either

number or exponent is a Null expression, result is 1.

ConceptDraw DIAGRAM Third Party Developer’s Guide

165

Example

This example uses the ^ operator to raise a number to the power of an exponent.
Dim MyValue

MyValue = 2 ^ 2 ' Returns 4.

trace MyValue

MyValue = 3 ^ 3 ^ 2 ' Returns 19683.

trace MyValue

MyValue = (-5) ^ 3 ' Returns -125.

trace MyValue

See Also Operators

FileAttr Function

FileAttr Function

Returns a Long representing the file mode for files opened using the Open statement.

Syntax

FileAttr(filenumber, returntype)

The FileAttr function syntax has these named arguments:

Element Description

filenumber Required; Integer. Any validfile number.

returntype
Required; Integer. Number indicating the type of information to return.

Specify 1 to return a value indicating the file mode.

Return Values

When the returntype argument is 1, the following return values indicate the file access mode:

Mode Value

Input 1

Output 2

Random 4

Append 8

Binary 32

ConceptDraw DIAGRAM Third Party Developer’s Guide

166

Example

This example uses the FileAttr function to return the file mode of an open file.
Dim FileNum, Mode

FileNum = FreeFile() ' Assign file number.

Open "TESTFILE" For Append As FileNum ' Open file.

Mode = FileAttr(FileNum, 1) ' Returns 8 (Append file mode).

Close FileNum ' Close file.

Trace Mode

See Also Open Statement, SetAttr Statement , GetAttr Function

FileCopy Statement

FileCopy Statement

Copies the file.

Syntax

FileCopy source, destination

The FileCopy statement syntax contains the following Elements:

Element Description

source
Required. A string indicating the name of the file to be copied. Path may

include folder and disk name.

destination
Required. A string that specifies the name of the resulting file. Path may

include folder and disk name.

Remarks

An attempt to copy an open file with FileCopy will generate an error.

Example

In this example FileCopy is used to create a copy of a file. Assume that the file SRCFILE exists

and is not empty.

Dim SourceFile, DestinationFile

SourceFile = "SRCFILE" ' Source File.

DestinationFile = "DESTFILE" ' Destination File.

ConceptDraw DIAGRAM Third Party Developer’s Guide

167

FileCopy SourceFile, DestinationFile ' File Copy.

See Also Kill Statement, Name Statement

FileDateTime Function

FileDateTime Function

Returns a Variant (Date) value that indicates the date and time when a file was created or last

modified.

Syntax

FileDateTime(path)

Remarks

The required path argument is a string expression that specifies a file name. The path may include

the directory or folder, and the drive.

Example

This example uses the FileDateTime function to determine the date and time a file was created or

last modified. The format of the date and time displayed is based on the locale settings of your

system.
Dim MyStamp

' Assume TESTFILE was created on February 12, 1993 at 16:35:47.

' Assume Russian locale settings.

MyStamp = FileDateTime("TESTFILE") ' Returns"12.02.93 16:35:47".

Trace MyStamp

See Also FileLen Function, GetAttr Function , VarType Function

FileLen Function

FileLen Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

168

Returns a Long specifying the length of a file in bytes.

Syntax
FileLen(path)

The required path argument is a string expression that specifies a file. The path may include the

directory or folder, and the drive.

Remarks

If the specified file is open when the FileLen function is called, the value returned represents the

size of the file immediately before it was opened.

Note. To obtain the length of an open file, use the LOF function.

Example

This example uses the FileLen function to return the length of a file in bytes.

For purposes of this example, assume that TESTFILE is a file containing some data.
Dim MySize

MySize = FileLen("TESTFILE") ' Returns file length (bytes).

Trace MySize

See Also FileDateTime Function, GetAttr Function , LOF Function

FormatDateTime Function

FormatDateTime Function

Returns a FixStr value formatted as a date or time.

Syntax
FormatDateTime([Date[,NamedFormat]])

The FormatDateTime function syntax has these Elements:

Element Description

Date Optional. Date expression to be formatted.

NamedFormat Optional. Numeric value that indicates the date/time format used. If omitted,

cdbGeneralDate is used.

ConceptDraw DIAGRAM Third Party Developer’s Guide

169

If the Date argument is omitted, is a non-initialized variable, or Null, the function returns zero

time and/or date.

Settings

The NamedFormat argument has the following settings:

Name Setting Description

cdbGeneralDate 0 Display a date and/or time. If there is a date Element, display it as a

short date. If there is a time Element, display it as a long time. If

present, both Elements are displayed.

cdbLongDate 1 Display a date using the long date format specified in your

computer's regional settings.

cdbShortDate 2 Display a date using the short date format specified in your

computer's regional settings.

cdbLongTime 3 Display a time using the time format specified in your computer's

regional settings.

cdbShortTime 4 Display a time using the 24-hour format (hh:mm).

See Also FormatNumber Function, Format Function

FormatNumber Function

FormatNumber Function

Returns a FixStr value formatted as a number.

Syntax
FormatNumber([Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit

[,UseParensForNegativeNumbers [,GroupDigits]]]]])

If the Expression argument is omitted, is a non-initialized variable, or Null, the function returns 0.

The FormatNumber function syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

170

Element Description

Expression Optional. Expression to be formatted.

NumDigitsAfterDecimal Optional. Numeric value indicating how many places to

the right of the decimal are displayed. Default value is -1,

which indicates that the computer's regional settings are

used.

IncludeLeadingDigit Optional. Tristate constant that indicates whether or not a

leading zero is displayed for fractional values. See

Settings section for values.

UseParensForNegativeNumbers Optional. Tristate constant that indicates whether or not to

place negative values within parentheses. See Settings

section for values.

GroupDigits Optional. Tristate constant that indicates whether or not

numbers are grouped using the group delimiter specified

in the computer's regional settings. See Settings section

for values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the

following settings:

Constant Value Description

TristateTrue -1 True

TristateFalse 0 False

TristateUseDefault -2 Use the setting from the computer's

regional settings.

Remarks

When one or more optional arguments are omitted, the values for omitted arguments are provided

by the computer's regional settings. If the expression argument is omitted, it's value is considered

0.

Note All settings information comes from the Regional Settings Number tab. In

expression point (.) is used as decimal separator.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

171

The following example uses the FormatNumber function to format a number to have four decimal

places:
Dim MyAngle, MySecant, MyNumber

MyAngle = 1.3 ' Define angle in radians.

MySecant = 1 / Cos(MyAngle) ' Calculate secant.

MyNumber = FormatNumber(MySecant,4) ' Format MySecant to four decimal

places.

See Also Format Function, FormatDateTime Function

Format Function

Format Function

Returns a FixStr (String) value containing an expression formatted according to instructions

contained in a format expression.

Syntax
Format[$]([expression[, format[, firstdayofweek[, firstweekofyear]]]])

The Format function syntax has these Elements:

Element Description

expression Optional. Any valid expression.

format Optional. A valid named or user-defined format expression.

firstdayofwe

ek
Optional. A constant that specifies the first day of the week.

firstweekofy

ear
Optional. A constant that specifies the first week of the year.

If the expression argument is omitted, is a non-initialized variable, or Null, the function returns an

empty string.

ConceptDraw DIAGRAM Third Party Developer’s Guide

172

Settings

The firstdayofweek argument has these settings:

Constant Value Description

cdbUseSyst

em
0 Use NLS API setting.

cdbSunday 1 Sunday (default)

cdbMonda

y
2 Monday.

cdbTuesda

y
3 Tuesday.

cdbWednes

day
4 Wednesday.

cdbThursd

ay
5 Thursday.

cdbFriday 6 Friday.

cdbSaturda

y
7 Saturday.

The firstweekofyear argument has these settings:

Constant Value Description

cdbUseSyst

em
0 Use NLS API setting.

cdbFirstJa

n1
1

Start with week in which January 1 occurs

(default).

cdbFirstFo

urDays
2

Start with the first week that has at least four days

in the year.

cdbFirstFul

lWeek
3 Start with the first full week of the year.

Remarks

To Format Do This

Numbers
Use predefined named numeric formats or create user-defined numeric

formats.

ConceptDraw DIAGRAM Third Party Developer’s Guide

173

Strings Create your own user-defined string formats.

Dates and times
Use predefined named date/time formats or create user-defined date/time

formats.

If you try to format a number without specifying format, Format provides functionality similar to

the Str function. However, positive numbers formatted as strings using Format don’t include a

leading space reserved for the sign of the value; those converted using Str retain the leading

space.

Named Date/Time Formats

The following table identifies the predefined date and time format names:

Format Name Description

Long Date Display a date according to your system's long date format.

Medium Date Display a date using the medium date format appropriate for the language

version of the host application.

Short Date Display a date using your system's short date format.

Long Time Display a time using your system's long time format; includes hours,

minutes, seconds.

Medium Time Display time in 12-hour format using hours and minutes and the AM/PM

designator.

Short Time Display a time using the 24-hour format, for example, 17:45.

User-Defined Date/Time Formats

The following table identifies characters you can use to create user-defined date/time formats:

Character Description

(:) Time separator. In some locales, other characters may be used to represent

the time separator. The time separator separates hours, minutes, and

seconds when time values are formatted. The actual character used as the

time separator in formatted output is determined by your system settings.

(/) Date separator. In some locales, other characters may be used to represent

the date separator. The date separator separates the day, month, and year

when date values are formatted. The actual character used as the date

separator in formatted output is determined by your system settings.

ConceptDraw DIAGRAM Third Party Developer’s Guide

174

с

Display the date as ddddd and display the time as ttttt, in that order.

Display only date information if there is no fractional Element to the date

serial number; display only time information if there is no integer portion.

d Display the day as a number without a leading zero (1-31).

dd Display the day as a number with a leading zero (01-31).

ddd Display the day as an abbreviation (Sun-Sat).

dddd Display the day as a full name (Sunday-Saturday).

ddddd Display the date as a complete date (including day, month, and year),

formatted according to your system's short date format setting. The default

short date format is m/d/yy.

dddddd Display a date serial number as a complete date (including day, month, and

year) formatted according to the long date setting recognized by your

system. The default long date format is mmmm dd, yyyy.

w Display the day of the week as a number (1 for Sunday through 7 for

Saturday).

ww Display the week of the year as a number (1-54).

m Display the month as a number without a leading zero (1-12). If m

immediately follows h or hh, the minute rather than the month is

displayed.

mm Display the month as a number with a leading zero (01-12). If m

immediately follows h or hh, the minute rather than the month is

displayed.

mmm Display the month as an abbreviation (Jan-Dec).

mmmm Display the month as a full month name (January-December).

q Display the quarter of the year as a number (1-4).

y Display the day of the year as a number (1-366).

yy Display the year as a 2-digit number (00-99).

yyyy Display the year as a 4-digit number (100-9999).

h Display the hour as a number without leading zeros (0-23).

Hh Display the hour as a number with leading zeros (00-23).

N Display the minute as a number without leading zeros (0-59).

ConceptDraw DIAGRAM Third Party Developer’s Guide

175

Nn Display the minute as a number with leading zeros (00-59).

S Display the second as a number without leading zeros (0-59).

Ss Display the second as a number with leading zeros (00-59).

t t t t t Display a time as a complete time (including hour, minute, and second),

formatted using the time separator defined by the time format recognized

by your system. A leading zero is displayed if the leading zero option is

selected and the time is before 10:00 A.M. or P.M. The default time format

is h:mm:ss.

AM/PM Use the 12-hour clock and display an uppercase AM with any hour before

noon; display an uppercase PM with any hour between noon and 11:59

P.M.

A/P Use the 12-hour clock and display an uppercase A with any hour before

noon; display an uppercase P with any hour between noon and 11:59 P.M.

AMPM Use the 12-hour clock and display the AM string literal as defined by your

system with any hour before noon; display the PM string literal as defined

by your system with any hour between noon and 11:59 P.M. AMPM can

be either uppercase or lowercase, but the case of the string displayed

matches the string as defined by your system settings. The default format

is AM/PM.

User-Defined String Formats

You can use the following characters for formatting strings. In this case the string must begin with

one these characters. If you use more than one characters, (<) or (>) must go first, then (!) and

then other characters. If the leading character in format is a character not listed in the table below,

the result will be indefinite.

Character Description

@ Placeholder for a character from expression. Display a character from

expression or a space. If expression has a character in the position where

the at symbol (@) appears in the format string, display it; otherwise,

display a space in that position.

Below is an example of how words are aligned to the right. The underline

(_) sign is used to imitate a space. It looks as if the resulting line were

filled from right to left with the help of the format argument:

Format("Wasya", "@@@@@@'s") Format("Dime", "@@@@@@'s")

Format("Ruslan", "@@@@@@'s") Return: "_Wasya's" Return:

"__Dime's" Return: "Ruslan's"

ConceptDraw DIAGRAM Third Party Developer’s Guide

176

If the number of at signs (@) is less than the number of characters in

expression, all symbols defined in expression will be displayed. The the

example below the result will be the whole expression, and non-special

characters are placed in the same positions, as in format.
Format("Fine Scotch Whisky", "@@@@ Old")

Return: "Fine Old Scotch Whisky"

& Placeholder for a character from expression. Display a character from

expression or nothing. If the string has a character in the position where

the ampersand (&) appears, display it; otherwise, display nothing. Below

is an example that aligns sentences to the left:
Format("Red", "&&&&& Hat")

Format("Green", "&&&&& Hat")

Format("Blue", "&&&&& Hat")

Return: "Red Hat"

Return: "Green Hat"

Return: "Blue Hat"

Format("7305305", "Your phonenumber is &&&&&&&&&&&&&. Isn't

it ?")

Format("8(0482)266576", "Your phonenumber is &&&&&&&&&&&&&.

Isn't it ?")

Return: "Your phonenumber is 7305305. Isn't it ?"

Return: "Your phonenumber is 8(0482)266575. Isn't it ?"

If the number of ampersand (&) characters is less than the number of

characters in expression, the result is equivalent to (@) in the same case.
Format("RockRoll", "&&&&\&")

Return: "Rock&Roll"

< Force lowercase. Display all characters in lowercase format.

> Force uppercase. Display all characters in uppercase format.

! Force left to right fill of placeholders. The default is to fill placeholders

from right to left. When the number of at signs (@) in format is greater

than the number of characters in expression, the resulting expression is

filled from left to right instead of right to left. That is, spaces are added to

the right. Example:

Format("September","!@@@@@@@@@@@9")

Format("October", "!@@@@@@@@@@10")

Format("November", "!@@@@@@@@@@11")

Return: "September__9"

Return: "October___10"

Return: "November__11"

If the number of at and ampersand signs (@) (&) is less than the number

of signs in expression, placeholders are filled right to left, and "extra"

characters are not displayed. Example:
Format("www.conceptdraw.com","!@@@")

Format("www.abc.net","!@@@")

Return: "com"

Return: "net"

ConceptDraw DIAGRAM Third Party Developer’s Guide

177

User-Defined Numeric Formats

Format Name Description

None Display the number with no formatting.

(0) Digit placeholder. Display a digit or a zero. If theexpression has a digit in

the position where the 0 appears in the format string, display it; otherwise,

display a zero in that position.

If the number has fewer digits than there are zeros (on either side of the

decimal) in the format expression, display leading or trailing zeros. If the

number has more digits to the right of the decimal separator than there are

zeros to the right of the decimal separator in the format expression, round

the number to as many decimal places as there are zeros. If the number

has more digits to the left of the decimal separator than there are zeros to

the left of the decimal separator in the format expression, display the extra

digits without modification.

(#) Digit placeholder. Display a digit or nothing. If the expression has a digit

in the position where the # appears in the format string, display it;

otherwise, display nothing in that position.

This symbol works like the 0 digit placeholder, except that leading and

trailing zeros aren't displayed if the number has the same or fewer digits

than there are # characters on either side of the decimal separator in the

format expression.

(.) Decimal placeholder. In somelocales, a comma is used as the decimal

separator. The decimal placeholder determines how many digits are

displayed to the left and right of the decimal separator. If the format

expression contains only number signs to the left of this symbol, numbers

smaller than 1 begin with a decimal separator. To display a leading zero

displayed with fractional numbers, use 0 as the first digit placeholder to

the left of the decimal separator. The actual character used as a decimal

placeholder in the formatted output depends on the Number Format

recognized by your system.

(\) Display the next character in the format string. To display a character that

has special meaning as a literal character, precede it with a backslash (\).

The backslash itself isn't displayed. Using a backslash is the same as

enclosing the next character in double quotation marks. To display a

backslash, use two backslashes (\\).

Named Numeric Formats

ConceptDraw DIAGRAM Third Party Developer’s Guide

178

Format Name Description

Scientific Use standard scientific notation.

Remarks

If you want to form a string but don't want some characters in format to be treated as special

characters, put "\" before each such character.

"\" is not required for formatting numbers.

Example
Dim MyTime, MyDate, MyStr

MyTime = #17:04:23#

MyDate = #January 27, 1993#

' Returns current system time in the system-defined long time format.

MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.

MyStr = Format(Date, "Long Date")

MyStr = Format(MyTime, "h:m:s") ' Returns "17:4:23".

MyStr = Format(MyTime, "hh:mm:ss AM/PM") ' Returns "05:04:23 PM".

MyStr = Format(MyDate, "dddd, mmm d yyyy") ' Returns "Wednesday, Jan 27

1993".

' If format is not supplied, a string is returned.

MyStr = Format(23) ' Returns "23".

' User-defined formats.

MyStr = Format(15, "She is # years old") ' Returns "She is 15 years old".

MyStr = Format(346.3, "+0.000") ' Returns "+346.300".

MyStr = Format("HELLO", "<") ' Returns "hello".

MyStr = Format("NewYork", ">!&&&&") ' Returns "YORK"

MyStr = Format("Black Sea", "&&&&& Nice")' Returns "Black Nice Sea"

MyStr = Format("32 June", "This is very strange date: &&&&&&&&&&, isn't it?")

 'Returns "This is very strange date: 32 June, isn't

it?"

See Also Type Conversion Functions

For...Next Statement

For...Next Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

179

Repeats a group of statements a specified number of times.

Syntax
For counter = start To end [Step step]

[statements]

[Exit For]

[statements]

Next [counter]

The ForENext statement syntax has these Elements:

Element Description

counter
Required. Numeric variable used as a loop counter. The variable can't be a

Boolean or an array element.

start Required. Initial value of counter.

end Required. Final value of counter.

step
Optional. Amount counter is changed each time through the loop. If not

specified, step defaults to one.

statements
Optional. One or more statements between For and Next that are executed the

specified number of times.

Remarks

The step argument can be either positive or negative. The value of the step argument determines

loop processing as follows:

Value Loop executes if

Positive or 0 counter <= end

Negative counter >= end

After all statements in the loop have executed, step is added to counter. At this point, either the

statements in the loop execute again (based on the same test that caused the loop to execute

initially), or the loop is exited and execution continues with the statement following the Next

statement.

 Note: Changing the value of counter while inside a loop can make it more difficult to read and

debug your code.

Any number of Exit For statements may be placed anywhere in the loop as an alternate way to

exit. Exit For is often used after evaluating of some condition, for example If...Then, and

transfers control to the statement immediately following Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each loop a

unique variable name as its counter. The following construction is correct:

ConceptDraw DIAGRAM Third Party Developer’s Guide

180

For I = 1 To 10

 For J = 1 To 10

 For K = 1 To 10

 ...

 Next K

 Next J

Next I

 Note: If you omit counter in a Next statement, execution continues as if counter were included.

In fact, the "Next counter" construction in ConceptDraw Basic is supported only for the purpose

of compatibility with other popular releases of BASIC language. Counter is not necessary in the

Next statement, and ConceptDraw Basic doesn't use it. ConceptDraw Basic keeps track of nested

For...Next loops using just the keywords For and Next. Each Next matches the most recent For.

Example

This example uses the For...Next statement to create a string that contains 10 instances of the

numbers 0 through 9, each string separated from the other by a single space. The outer loop uses a

loop counter variable that is decremented each time through the loop.
Dim Words, Chars, MyString

For Words = 10 To 1 Step -1 ' Set 10 repetitions.

 For Chars = 0 To 9 ' Set 10 repetitions.

 MyString = MyString & Chars ' Append number to string.

 Next ' Increment Chars counter

 MyString = MyString & " " ' Append a space.

Next

Trace ">" & MyString & "<"

See Also Do..Loop Statement, Exit Statement , While...Wend Statement

FreeFile Function

FreeFile Function

Returns an Integer representing the next file number available for use by the Open statement.

Syntax
FreeFile[(rangenumber)]

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

181

The optional rangenumber argument is a Variant that specifies the range from which the next

free file number is to be returned. Specify a 0 (default) to return a file number in the range 1 –

255, inclusive. Specify a 1 to return a file number in the range 256 – 511.

Remarks

Use FreeFile to supply a file number that is not already in use.

Example

This example uses the FreeFile function to return the next available file number. Five files are

opened for output within the loop, and some sample data is written to each.
Dim MyIndex, FileNumber

For MyIndex = 1 To 5 ' Loop 5 times.

 FileNumber = FreeFile ' Get unused file number.

 Open "TEST" & MyIndex For Output As #FileNumber ' Create file name.

 Write #FileNumber, "Hello World." ' Output text

 Close #FileNumber ' Close file.

Next MyIndex

See Also Open Statement

Functions Index

Functions Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• Abs

• Asc

• Atn

• Bin

• Bin$

•
CBool

• CByte

• CDate

• CDbl

• Chr

• Chr$

• CInt

ConceptDraw DIAGRAM Third Party Developer’s Guide

182

• CLng

• Cos

• CSng

• CStr

• CurDir

• CurDir$

• CVar

• CVDate

• Date

• Dir

• EOF

• Erl

• Err

• Error$

• Exp

• FileAttr

• FileDateTime

• FileLen

• Fix

• Format

• Format$

• FormatDateTime

• FormatNumber

• FreeFile

• GetAttr

• GetOpenFileName

• GetSaveFileName

• Hex

• Hex$

• Input

• Input$

• InputBox

• InputBox$

• InStr

• Int

• IsDate

• IsEmpty

• IsNull

• IsNumeric

ConceptDraw DIAGRAM Third Party Developer’s Guide

183

•
LCase

• LCase$

• Left

• Left$

• Len

• Loc

• LOF

• Log

• LTrim

• LTrim$

• Mid

• Mid$

• MsgBox

• Now

• Oct

• Oct$

•
Right

• Right$

• Rnd

• Round

• RTrim

• RTrim$

• Seek

• Shell

• Sin

• Sgn

• Space

• Space$

• Spc

• Str

• Str$

• StrComp

• String

• String$

• Sqr

ConceptDraw DIAGRAM Third Party Developer’s Guide

184

• Tab

• Tan

• Time

• Timer

• Trim

• Trim$

• UCase

• UCase$

• Val

•
VarType

Functions

Functions

Category Actions Functions

Converting ANSI value to string Chr, Chr$

 Decimal numbers to other Bin, Bin$, Hex, Hex$, Oct, Oct$

 Date to string FormatDateTime

 Number to string
Format, Format$, FormatNumber, Str,

Str$

 One numeric data type to another

CBool, CByte, CDbl, CInt, CLng,

CSng, CStr, CVar, CDate, CVDate,

Fix, Int

 String to ASCII value Asc

 String to number Val

Date/time Get current date or time Date, Now, Time, Timer

Error trapping Get error message Error$

 Get error-status data Err, Erl

File I/O Control output appearance Spc, Tab

 Get information about a file
EOF, FileAttr, FileDateTime,

FileLen, FreeFile, Loc, LOF, Seek

 Manage directories CurDir, CurDir$, Dir

ConceptDraw DIAGRAM Third Party Developer’s Guide

185

 Read from a file Input, Input$

 Get file attribute GetAttr

Math General calculations Exp, Log, Sqr

 Generate random numbers Rnd

 Get absolute value Abs

 Get the sign of an expression Sgn

 Numeric conversion Fix, Int, Round

 Trigonometry Atn, Cos, Sin, Tan

Strings Compare two strings StrComp

Convert to lowercase or

uppercase letters
LCase, LCase$, UCase, UCase$

Create strings of repeating

characters
Space, Space$, String, String$

 Get the length of a string Len

 Format strings Format, Format$

 Manipulate strings

InStr, Left, Left$, LTrim, LTrim$,

Mid, Mid$, Right, Right$, RTrim,

RTrim$, Trim, Trim$

Work with ASCII and ANSI

values
Asc, Chr, Chr$

Variables and constants Get information about a variable
IsDate, IsEmpty, IsNull, IsNumeric,

VarType

Miscellaneous Run other programs Shell

Show input box dialog or

message box dialog
InputBox, InputBox$, MsgBox

 Show open/save dialogs GetOpenFileName, GetSaveFileName

Index Alphabetical list of functions

Function...End Function Statement

Function...End Function Statement

Declares the name, arguments, and code that form the body of a Function procedure.

Syntax
Function name ([arglist]) [As type]

[statements]

ConceptDraw DIAGRAM Third Party Developer’s Guide

186

[name = expression]

[Exit Function]

[statements]

[name = expression]

End Function

The Function statement syntax has these Elements:

Element Description

name
Required. Name of the Function; follows standard variable

naming conventions.

arglist

Optional. List of variables representing arguments that are passed

to the Function procedure when it is called. Multiple variables are

separated by commas.

type

Optional. Data type of the value returned by the Function

procedure; may be Byte, Boolean, Integer, Long, Single, Double,

Date, String (except fixed length), Object , Variant or an object

type.

statements
Optional. Any group of statements to be executed within the

Function procedure.

expression Optional. Return value of the Function.

The arglist argument has the following syntax and Elements:

[ByVal | ByRef] varname [As type] [=defval]

Element Description

ByVal
Optional. Indicates that the argument is passed by value. ByVal is

the default in ConceptDraw Basic.

ByRef Optional. Indicates that the argument is passed by reference.

varname

Required. Name of the variable representing the argument being

passed to the procedure; follows standard variable naming

conventions.

type

Optional. Data type of the argument passed to the procedure; may

be Byte, Boolean, Integer, Long, Single, Double, Date, String

(variable length only), Object, Variant or an object type.

defval
Optional. Constant that determine the value that will be passed to

the procedure by default if this argument is omitted.

Remarks

 Function procedures can be recursive; that is, they can call themselves to perform a given task.

However, recursion can lead to stack overflow.

ConceptDraw DIAGRAM Third Party Developer’s Guide

187

 The Exit Function statement causes an immediate exit from a Function procedure. Program

execution continues with the statement following the statement that called the Function

procedure. Any number of Exit Function statements can appear anywhere in a Function

procedure.

 Like a Sub procedure, a Function procedure is a separate procedure that can take arguments,

perform a series of statements, and change the values of its arguments. However, unlike a Sub

procedure, you can use a Function procedure on the right side of an expression in the same way

you use any intrinsic function, such as Sqr, Cos, or Chr, when you want to use the value returned

by the function.

 You call a Function procedure using the function name, followed by the argument list in

parentheses, in an expression. See the Call statement for specific information on how to call

Function procedures.

 To return a value from a function, assign the value to the function name. Any number of such

assignments can appear anywhere within the procedure. If no value is assigned to name, the

procedure returns a default value: a numeric function returns 0, a string function returns a zero-

length string (""), and a Variant function returns Empty. A function that returns an object

reference returns Nothing if no object reference is assigned to name (using Set) within the

Function.

 Variables used in Function procedures fall into two categories: those that are explicitly

declared within the procedure and those that are not. Variables that are explicitly declared in a

procedure (using Dim or the equivalent) are always local to the procedure. Variables that are used

but not explicitly declared in a procedure are also local unless they are explicitly declared at some

higher level outside the procedure.

Example

 This example uses the Function statement to declare the name, arguments, and code that form

the body of a Function procedure.
' The following user-defined function returns the square root of the

' argument passed to it.

Function CalculateSquareRoot(NumberArg As Double) As Double

 If NumberArg < 0 Then ' Evaluate argument.

 Exit Function ' Exit to calling procedure.

 Else

 CalculateSquareRoot = Sqr(NumberArg) ' Returns square root.

 End If

End Function

See Also Call Statement , Dim Statement , Exit Statement , Sub Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

188

GetAttr Function

GetAttr Function

Returns an Integer representing the attributes of a file, directory, or folder.

Syntax
GetAttr(path)

Remarks

The required path argument is a string expression that specifies a file name. The path may include

the directory or folder, and the drive.

Return Values

The value returned by GetAttr is the sum of the following attribute values:

Constant Value Description

cdbNormal 0 Normal

cdbHidden 2 Hidden

cdbSystem 4 System (Microsoft Windows only)

cdbDirectory 16 Directory or folder

cdbArchive 32
File has changed since last backup (Microsoft

Windows only)

cdbAlias 64 File name is an alias (Macintosh only)

Remarks

To determine which attributes are set, use the And operator to perform a bitwise comparison of

the value returned by the GetAttr function and the value of the individual file attribute you want.

If the result is not zero, that attribute is set for the named file. For example, the return value of the

following And expression is zero if the Archive attribute is not set:

Result = GetAttr(FName) And cdbArchive

A nonzero value is returned if the Archive attribute is set.

Example

This example uses the GetAttr function to determine the attributes of a file and directory or

folder.
Dim MyAttr

ConceptDraw DIAGRAM Third Party Developer’s Guide

189

' Assume file TESTFILE has hidden attribute set.

MyAttr = GetAttr("TESTFILE") ' Returns 2.

' Returns nonzero if hidden attribute is set on TESTFILE.

Trace MyAttr And cdbHidden

' Assume file TESTFILE has hidden and read-only attributes set.

MyAttr = GetAttr("TESTFILE") ' Returns 3.

' Returns nonzero if hidden and read-only attributes are set on TESTFILE.

Trace MyAttr And (cdbHidden + cdbReadOnly)

' Assume MYDIR is a directory or folder.

MyAttr = GetAttr("MYDIR") ' Returns 16.

See Also SetAttr Statement, And Operator , FileAttr Function

GetOpenFileName Function

GetOpenFileName Function

Creates a dialog box, allowing the user to chose a drive, directory and file name and returns a

FixStr value containing full path to the file.

Syntax
GetOpenFileName([extention][,extentionInfo][,title][,preview])

The GetOpenFileName function syntax has these arguments:

Element Description

extention Optional; Variant (String). File extentions separated with (|).

extentionInf

o

Optional; Variant (String). Describes extentions, specified in extention.

Elements in extentionInfo are separated with (|).

title
Optional. String expression, displayed in the title bar of the dialog box. If you

omit title, the application name is placed in the title bar.

preview
Optional; Boolean. Specifies whether Preview is turned on or off in the dialog

box. The default value is False.

Example
Dim RetVal, Path

Path = GetOpenFileName("exe|any", "Executable Files|Any Format", "MyTitle",

False)

RetVal = Shell(Path, 1) ' Run a application.

ConceptDraw DIAGRAM Third Party Developer’s Guide

190

See Also GetSaveFileName

GetSaveFileName Function

GetSaveFileName Function

Creates a dialog box, allowing the user to chose a drive, directory and file name and returns a

FixStr value containing full path to the file.

Syntax

GetSaveFileName([extention][,extentionInfo][,title][,defaultFile][,readonlyFlag])

The GetSaveFileName function syntax has these arguments:

Element Description

extention Optional; Variant (String). File extentions separated with (|).

extentionInf

o

Optional; Variant (String). Describes extentions, specified in extention.

Elements in extentionInfo are separated with (|).

title
Optional. String expression, displayed in the title bar of the dialog box. If you

omit title, the application name is placed in the title bar.

defaultFile
Optional. String expression displayed in the edit line of the dialog box. Specifies

a filename suggested by default.

readonlyFla

g

Optional; Boolean. If the file chosen by the user in the dialog box is read-only,

and the readonlyFlag is True, a warning is displayed and the user is asked to

choose another file name. If readonlyFlag is False, no warning will be

displayed and the function will return the path to the specified file. The default

value of this argument is False.

Example

This example uses GetSaveFileName to call a the dialog box and write a string to the selected

file.
Dim Path, n, Check

Path = GetSaveFileName("cdb|txt", "CD Basic|Text Format", "MyTitle",

"example1.cdb", True)

Check = StrComp(Path, "")

If Check = 0 Then MsgBox("No file is chosen")

Else

ConceptDraw DIAGRAM Third Party Developer’s Guide

191

 n = FreeFile()

 Open Path For Output As #n

 Print #n,"some text"

 Close #n

EndIf

See Also GetOpenFileName

Get Statement

Get Statement

Reads data into a variable from an open file on the disk.

Syntax
Get [#]filenumber, [recnumber], varname

The Get statement syntax contains the following Elements:

Element Description

filenumber Requied, any valid file number.

recnumber

Optional, of Variant (Long) type. Sets the record number (for files in the

Random mode) or byte number (for files in the Binary mode) from which to

start reading.

varname Required, a valid name of the variable in which the read data will be stored.

Remarks

Data, read using the Get statement are normally written to a file with the Put statement.

Number 1 corresponds to the first record (or byte) of the file, number 2 - to the second one, and so

on. If the recnumber argument is omitted, reading starts from the record (byte) to which the

pointer has been moved after the most recent Get or Put operation (or where it has been moved

after the last Seek function call). The comma separators are required, for instance:

Get #4,,FileBuffer

The following rules apply to the files, opened in the Random mode:

• Even if the lenght of data to be read is less than the lenght of the record, specified in the Len

parameter of the Open statement, the Get statement starts reading each subsequent record

from the beginning of this record. The space between the end of one record and the start of

ConceptDraw DIAGRAM Third Party Developer’s Guide

192

the following one gets filled with the contents of the file buffer. As it's hard to calculate

exactly the amount of data, used for filling, it's recommended that the record lenght be the

same as the lenght of data being read.

• If data is read to a string of variable lenght, the Get statement first reads the 2-byte

descriptor indicating the string lenght, and then the data to be put into the variable. So the

record lenght specified in the Len parameter of the Open statement must be at least 2 byte

greater than the actual string lenght.

• If data is read into a Variant variable of numeric type, the Get statement first reads the 2

bytes indicating the subtype (VarType) of this variable, and then the data to be put into this

variable. For instance, when reading the Variant variable of VarType 3 subtype the Get

statement reads 6 bytes: 2 bytes indicating the subtype of the Variant variable as VarType

3 (Long), and 4 bytes containing the value of the Long type. The record lenght specified in

the Len parameter of the Open statement must be at least 2 byte greater than the actual size

needed to store this variable.

The above rules apply to files opened in the Binary mode, except of the following:

• The Len parameter of the Open statement is ignored. Get reads all variables from the disk

continuously - i.e. without filling the space between records with file buffer contents.

• When reading any arrays, except for those which are elements of user-defined types, the Get

statement reads only data. The descriptor is not read.

• When reading strings of variable lenght which are not elements of user-defined types the 2-

byte descriptor is not read. The number of bytes being read is equal to the number of

symbols contained in the string. The statements below read 10 bytes from the file with

number 1:

VarString = String(10," ")

Get #1,,VarString

Example

In this example the Get statement is used for reading data from a file into a variable. It's assumed

that the TESTFILE file contains 5 records (see the example of using Put).
Dim sName As String * 20, nPosition ' Declares variable.

' Opens file for random access.

Open "TESTFILE" For Random As #1 Len = 21

' Reads from the file using the Get statement.

nPosition = 3 ' Determines record number.

Get #1, nPosition, sName ' Reads the third record.

MsgBox(sName)

Close #1 ' Closes file.

See Also
Recording data in a file, Put Statement, Open Statement, Seek Function,

VarType Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

193

GoSub...Return Statement

GoSub...Return Statement

Branches to and returns from a subroutine.

Syntax
GoSub line

...

line

...

Return

The line argument can be any line label or line number.

Remarks

You can use GoSub and Return anywhere in a procedure, but GoSub and the corresponding

Return statement must be in the same procedure. A subroutine can contain more than one

Return statement, but the first Return statement encountered causes the flow of execution to

branch back to the statement immediately following the most recently executed GoSub statement.

Also GoSub...Return can be used in global area of visibility.

 Note: You can't enter or exit Sub/Function procedures with GoSub...Return.

 Tip: Creating separate procedures that you can call may provide a more structured alternative

to using GoSub...Return.

Example

This example uses GoSub to call a subroutine within a Sub procedure. The Return statement

causes the execution to resume at the statement immediately following the GoSub statement. The

Exit Sub statement is used to prevent control from accidentally flowing into the subroutine.
Sub GosubDemo()

Dim Num

' Solicit a number from the user.

 Num = InputBox("Enter a positive number to be divided by 2.")

' Only use routine if user enters a positive number.

 If Num > 0 Then

 GoSub MyRoutine

 End If

 Trace Num

 Exit Sub ' Use Exit to prevent an error.

MyRoutine:

 Num = Num/2 ' Perform the division.

 Return ' Return control to statement.

ConceptDraw DIAGRAM Third Party Developer’s Guide

194

End Sub ' End of the GosubDemo() Sub.

See Also
GoTo Statement, On..GoSub Statement, On...GoTo Statement, Sub

Statement, Function Statement

GoTo Statement

GoTo Statement

Branches unconditionally to a specified line.

Syntax
GoTo line

The required line argument can be any line label or line number.

Remarks

GoTo can branch only to lines within the procedure where it appears.

GoTo can also be used in the global area of visibility.

 Note: Too many GoTo statements can make code difficult to read and debug. Use structured

control statements (Do...Loop, For...Next, If...Then...Else, Select Case) whenever possible.

Example
Sub GotoDemo()

Dim Number As Double, MyString

 Number = InputBox("Enter number :") ' Initialize variable.

 ' Evaluate Number and branch to appropriate label.

 If Number = 1 Then

 GoTo Line1

 Else

 GoTo Line2

 End If

Line1:

 MyString = "Number equals 1"

 GoTo LastLine ' Go to LastLine.

Line2:

 MyString = "Number equals " & Number

LastLine:

 Trace MyString

End Sub

ConceptDraw DIAGRAM Third Party Developer’s Guide

195

See Also
Do...Loop Statement, For...Next Statement, GoSub...Return Statement,

If...Then...Else Statement, Select Case Statement

Hex Function

Hex Function

Returns a FixStr (String) value representing the hexadecimal value of a number.

Syntax
Hex[$]([number])

The optional number argument is any valid numeric expression or string expression in the range

from -2147483648 to 2147483647. If this argument is omitted, is a non-initialized variable, or

Null, the function returns 0.

Remarks

If number is not already a whole number, it's rounded to the nearest whole number before being

evaluated. If number is Empty or Null, the function returns 0. For any other number the Hex

function returns up to 8 hexadecimal symbols.

You can represent hexadecimal numbers directly by preceding numbers in the proper range with

&H. For example, &H10 represents decimal 16 in hexadecimal notation.

The Hex$ form returns String values. The Hex form returns FixStr values.

Example
Dim MyHex

MyHex = Hex(5) ' Returns 5.

MyHex = Hex(10) ' Returns A.

MyHex = Hex(459) ' Returns 1CB.

See Also Bin Function, Oct Function, Type Conversion Functions

ConceptDraw DIAGRAM Third Party Developer’s Guide

196

If...Then...Else Statement

#If...#Else...#Endif Preprocessor Directive

Used to control conditional compilation.

Syntax
#If TargetBoolean

[statements] //OS-specific code

[#Else

[elsestatements]] // Other OS-specific code

#EndIf

The #If...#Else..#Endif directive syntax has these Elements:

Element Description

TargetBoolean

Required. Target_MacOS, Target_Win32 constant, used to

determine the operating system that will include the code the

follows.

statements
Optional. One or more statements that are executed if

TargetBoolean is True.

elsestatements
Optional. One or more statements executed if TargetBoolean is

False.

Remarks

Use conditional compilation to isolate platform-specific statements such as toolbox calls or

AppleEvent routines. The code following the #If directive is included only in the build for that

operating system.

Example
Dim Separator as String

#If Target_MacOS

Separator=":"

#Endif

#If Target_Win32

Separator="\"

#Endif

See Also

ConceptDraw DIAGRAM Third Party Developer’s Guide

197

If...Then...Else Statement

Conditionally executes a group of statements, depending on the value of an expression.

Syntax
If condition Then

[statements]

[ElseIf condition-n Then

[elseifstatements] ...

[Else

[elsestatements]]

End If

The If...Then...Else statement syntax has these Elements:

Element Description

condition Required. Expression that is True or False.

statements
Optional. One or more statements that are executed if condition is

True.

condition-n Optional. Same as condition.

elseifstatements
Optional. One or more statements executed if associated condition-

n is True.

elsestatements
Optional. One or more statements executed if no previous

condition or condition-n expression is True.

Remarks

The If statement must be the first statement on a line. The Else, ElseIf, and End If Elements of

the statement can have only a line number or line label preceding them. The If block must end

with an End If statement.

The Else and ElseIf clauses are both optional. You can have as many ElseIf clauses as you want

in a If block, but none can appear after an Else clause. If statements can be nested; that is,

contained within one another.

When executing a If block, condition is tested. If condition is True, the statements following

Then are executed. If condition is False, each ElseIf condition (if any) is evaluated in turn. When

a True condition is found, the statements immediately following the associated Then are

executed. If none of the ElseIf conditions are True (or if there are no ElseIf clauses), the

ConceptDraw DIAGRAM Third Party Developer’s Guide

198

statements following Else are executed. After executing the statements following Then or Else,

execution continues with the statement following End If.

 Tip Select Case may be more useful when evaluating a single expression that has several

possible actions.

Example

This example illustrates the use of the If...Then...Else statement.
Dim Number As Integer, Digits As Integer

Number = InputBox("Enter a number (0-999):") ' Initialize variable.

If Number < 10 Then

 Digits = 1

ElseIf Number < 100 Then

 Digits = 2

Else

 Digits = 3

End If

Trace Digits

See Also Select Case Statement

IMP Operator

IMP Operator

Used to perform a logical implication on two expressions.

Syntax
result = expression1 Imp expression2

The Imp operator syntax has these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

199

The following table illustrates how result is determined:

If expression1 is And expression2 is The result is

True True True

True False False

False True True

False False True

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric

expressions and sets the corresponding bit in result according to the following table:

If expression1 is And expression2 is The result is

0 0 1

0 1 1

1 0 0

1 1 1

Example
Dim A, B, C, D, MyCheck

A = 10: B = 8: C = 6: D = Null ' Initialize variables.

MyCheck = A > B Imp B > C ' Returns True.

trace MyCheck

MyCheck = A > B Imp C > B ' Returns False.

trace MyCheck

MyCheck = B > A Imp C > B ' Returns True.

trace MyCheck

MyCheck = B > A Imp C > D ' Returns True.

trace MyCheck

MyCheck = C > D Imp B > A ' Returns False.

trace MyCheck

MyCheck = B Imp A ' Returns -1 (bitwise comparison).

trace MyCheck

See Also Operators

InputBox Function

InputBox Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

200

Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a

FixStr (String) containing the contents of the text box.

Syntax
InputBox[$]([prompt][, title] [, default] [, xpos] [, ypos] [, helpfile, context])

Element Description

prompt

Optional. String expression displayed as the message in the dialog box. The

maximum length of prompt is approximately 256 characters, depending on

the width of the characters used. If prompt consists of more than one line,

you can separate the lines using a carriage return character (Chr(13)), a

linefeed character (Chr(10)), or carriage return–linefeed character

combination (Chr(13) & Chr(10)) between each line.

title
Optional. String expression displayed in the title bar of the dialog box. If

you omit title, the application name is placed in the title bar.

default

Optional. String expression displayed in the text box as the default response

if no other input is provided. If you omit default, the text box is displayed

empty.

xpos

Optional. Numeric expression that specifies, in twips, the horizontal

distance of the left edge of the dialog box from the left edge of the screen.

If xpos is omitted, the dialog box is horizontally centered.

ypos

Optional. Numeric expression that specifies, in twips, the vertical distance

of the upper edge of the dialog box from the top of the screen. If ypos is

omitted, the dialog box is vertically positioned approximately one-third of

the way down the screen

helpfile

Optional. String expression that identifies the Help file to use to provide

context-sensitive Help for the dialog box. If helpfile is provided, context

must also be provided.

context

Optional. Numeric expression that is the Help context number assigned to

the appropriate Help topic by the Help author. If context is provided,

helpfile must also be provided.

The InputBox$ form returns String values. The InputBox form returns FixStr values.

Remarks

If the user clicks OK or presses ENTER , the InputBox function returns whatever is in the text

box. If the user clicks Cancel or presses Esc, the function returns a zero-length string ("").

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

201

This example shows various ways to use the InputBox function to prompt the user to enter a

value. If the x and y positions are omitted, the dialog box is automatically centered for the

respective axes. The variable MyValue contains the value entered by the user if the user clicks

OK or presses the ENTER key . If the user clicks Cancel, a zero-length string is returned.
Dim Message, Title, Default, MyValue

Message = "Enter a value between 1 and 3" ' Set prompt.

Title = "InputBox Demo" ' Set title.

Default = "1" ' Set default.

' Display message, title, and default value.

MyValue = InputBox(Message, Title, Default)

' Use Helpfile and context. The Help button is added automatically.

MyValue = InputBox(Message, Title, , , , "DEMO.HLP", 10)

' Display dialog box at position 100, 100.

MyValue = InputBox(Message, Title, Default, 100, 100)

See Also MsgBox Function

Input Function

Input Function

Returns FixStr (String) containing characters from a file opened in Input or Binary mode.

Syntax
Input[$](number, filenumber)

The Input function syntax has these Elements:

Element Description

number
Required. Any valid numeric expression specifying the number of

characters to return.

filenumber Required. Any valid file number.

Remarks

Data read with the Input function is usually written to a file with Print # or Put. Use this

function only with files opened in Input or Binary mode.

Unlike the Input # statement, the Input function returns all of the characters it reads, including

commas, carriage returns, linefeeds, quotation marks, and leading spaces.

ConceptDraw DIAGRAM Third Party Developer’s Guide

202

With files opened for Binary access, an attempt to read through the file using the Input function

until EOF returns True generates an error. Use the LOF and Loc functions instead of EOF when

reading binary files with Input, or use Get when using the EOF function.

The Input$ form returns String values. The Input form returns FixStr values.

Example

This example uses the Input function to read one character at a time from a file and print it to the

Output window.

This example assumes that TESTFILE is a text file with a few lines of sample data.
Dim MyChar

Open "TESTFILE" For Input As #1 ' Open file.

Do While Not EOF(1) ' Loop until end of file.

 MyChar = Input(1, 1) ' Get one character.

 Trace MyChar ' Print to the Output window.

Loop

Close #1 ' Close file.

See Also Input # Statement

Input Statement

Input # Statement

Reads data from an open ... file and assigns them to variables.

Syntax
Input #filenumber, varlist

The Input # statement syntax has the following Elements:

Element Description

filenumber Required, any valid file number.

varlist

Comma-delimited list of variables, to which the values read from the file

are to be assigned. These can't be arrays or object variables. However

variables describing array elements can be used.

Remarks

Normally data read with the Input # statement is written to a file with the help of the Write #

statement. This statement can only be applied to the files, opened in the Input or Binary modes.

ConceptDraw DIAGRAM Third Party Developer’s Guide

203

Standard strings and numeric values that have been input are assigned to variables without any

changes. The following table demonstrates how other data is processed:

Data Value, assigned to variable

Comma-separator or an

empty string
Empty

#NULL# NULL

#TRUE# or #FALSE# True or False

#yyyy-mm-dd hh:mm:ss# Resulting date and/or time.

Quotation marks (" ") inside data being read are ignored.

Data elements in the file must follow in the same order as the variables in the varlist and have

data types corresponding to the variables. If a variable is numeric, and the data element is non-

numeric, the variable is set to null value.

If end of file is reached when reading a data element, data input stops and an error is generated.

Note: To ensure correct input of file data into variables when using Input #, you should always

use the Write # statement (rather than Print #) when writing data into files. Using this statement

ensures correct placement of separators between data elements.

Example

In this example the Input # statement is used for reading data from a file into two variables. It's

assumed that the TESTFILE file exists and contains several text strings, which have been written

with the Write # statement - i.e. each string contains a string in quotation marks and a number,

separated by a comma, e.g. ("Hello World", 234).
Dim MyString

Open "TESTFILE" For Input As #1 ' Opens file for reading.

Do While Not EOF(1) ' Loop until the end of file.

 Input #1, MyString ' Read data into two variables.

 Trace MyString ' Outputs data into the output window.

Loop

Close #1 ' Closes file.

See Also
Recording Data in a File, Open Statement, Print # Statement, Write #

Statement, Input Function

InStr Function

InStr Function

Returns a Long specifying the position of the first occurrence of one string within another.

ConceptDraw DIAGRAM Third Party Developer’s Guide

204

Syntax
InStr([start,]string1, string2[, compare])

The InStr function syntax has these arguments:

Element Description

start

Optional. Numeric expression that sets the starting position for each search. If

omitted, search begins at the first character position. If start contains Null, an

error occurs. The start argument is required if compare is specified.

string1 Required. String expression being searched.

string2 Required. String expression sought.

compare

Optional. Specifies the type of string comparison. The compare may be omitted

or have 0 or 1 values. Specify 0 (default) for binary comparison. For textual

comparison which is not case-sensitive, specify 1. If compare is Null, an error

occurs.

Remarks

Return Values

If InStr returns

string1 is zero-length 0

string1 is Null Null

string2 is zero-length start

string2 is Null Null

string2 is not found 0

string2 is found in string1 Position at which match is found

start > string2 0

Example

This example uses the InStr function to return the position of the first occurrence of one string

within another.
Dim SearchString, SearchChar, MyPos

SearchString ="XXpXXpXXPXXP" ' String to search in.

SearchChar = "P" ' Search for "P".

' A textual comparison starting at position 4. Returns 6.

MyPos = Instr(4, SearchString, SearchChar, 1)

' A binary comparison starting at position 1. Returns 9.

MyPos = Instr(1, SearchString, SearchChar, 0)

' Comparison is binary by default (last argument is omitted).

MyPos = Instr(SearchString, SearchChar) ' Returns 9.

MyPos = Instr(1, SearchString, "W") ' Returns 0.

ConceptDraw DIAGRAM Third Party Developer’s Guide

205

See Also StrComp Function

\ Operator

\ Operator

Used to divide two numbers and return an integer result.

Syntax
result = number1 \ number2

The \ operator syntax has these Elements:

Element Description

result Required; any numeric variable.

number1 Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

Before division is performed, the numeric expressions are rounded to Byte, Integer, or Long

expressions.

Usually, the data type of result is a Byte, Byte variant, Integer, Integer variant, Long, or Long

variant, regardless of whether result is a whole number. Any fractional portion is truncated.

However, if one expression is Null or Empty, result is 0.

Example

This example uses the \ operator to perform integer division.
Dim MyValue

MyValue = 11 \ 4 ' Returns 2.

trace MyValue

MyValue = 9 \ 3 ' Returns 3.

trace MyValue

MyValue = 100 \ 3 ' Returns 33.

trace MyValue

ConceptDraw DIAGRAM Third Party Developer’s Guide

206

See Also Operators

Int,Fix Function

Int,Fix Functions

Returns the integer portion of a number. The returned value has the same data type as the

argument.

Syntax
Int([num])

Fix([num])

The optional num argument is a Double or any valid numeric expression. If this argument is

omitted, is a non-initialized variable, or Null, the function returns 0.

Remarks

Both Int and Fix remove the fractional Element of number and return the resulting integer value.

The difference between Int and Fix is that if number is negative, Int returns the first negative

integer less than or equal to number, whereas Fix returns the first negative integer greater than or

equal to number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

Fix(num) is equivalent to:

Sgn(num) * Int(Abs(num))

Example

This example illustrates how the Int and Fix functions return integer portions of numbers. In the

case of a negative num argument, the Int function returns the first negative integer less than or

equal to the num; the Fix function returns the first negative integer greater than or equal to the

num.
Dim MyNumber

MyNumber = Int(99.8) ' Returns 99.

MyNumber = Fix(99.2) ' Returns 99.

MyNumber = Int(-99.8) ' Returns -100.

MyNumber = Fix(-99.8) ' Returns -99.

MyNumber = Int(-99.2) ' Returns -100.

MyNumber = Fix(-99.2) ' Returns -99.

ConceptDraw DIAGRAM Third Party Developer’s Guide

207

See Also Round Function, Type Conversion Functions

IsDate Function

IsDate Function

Returns a Boolean value indicating whether an expression can be converted to a date.

Syntax
IsDate(expression)

The required expression argument is a date expression or string expression recognizable as a date

or time.

Remarks

IsDate returns True if the expression is a date or is recognizable as a valid date; otherwise, it

returns False. In Microsoft Windows, the range of valid dates is January 1, 100 A.D. through

December 31, 9999 A.D.; the ranges vary among operating systems.

Example

This example uses the IsDate function to determine if an expression can be converted to a date.
Dim MyDate, YourDate, NoDate, MyCheck

MyDate = "February 12, 1969"

YourDate = #2/12/69#

NoDate = "Hello"

MyCheck = IsDate(MyDate) ' Returns True.

Trace MyCheck

MyCheck = IsDate(YourDate) ' Returns True.

Trace MyCheck

MyCheck = IsDate(NoDate) ' Returns False.

Trace MyCheck

See Also
IsEmpty Function , IsNull Function , IsNumeric Function , VarType

Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

208

IsEmpty Function

IsEmpty Function

Returns a Boolean value indicating whether a variable has been initialized.

Syntax
IsEmpty(expression)

The required expression argument is a numeric or string expression. However, because IsEmpty

is used to determine if individual variables are initialized, the expression argument is most often a

single variable name.

Remarks

IsEmpty returns True if the variable is uninitialized, or is explicitly set to Empty; otherwise, it

returns False. False is always returned if expression contains more than one variable.

Example

This example uses the IsEmpty function to determine whether a variable has been initialized.
Dim MyVar, MyCheck

MyCheck = IsEmpty(MyVar) ' Returns True.

Trace MyCheck

MyVar = Null ' Assign Null.

MyCheck = IsEmpty(MyVar) ' Returns False.

Trace MyCheck

MyVar = Empty ' Assign Empty.

MyCheck = IsEmpty(MyVar) ' Returns True.

Trace MyCheck

See Also IsDate Function , IsNull Function , IsNumeric Function , VarType Function

IsNull Function

IsNull Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

209

Returns a Boolean value indicating whether an expression contains no valid data (Null) or can be

evaluated to 0.

Syntax
IsNull(expression)

The required expression argument is a numeric expression , string expression or object variable.

Remarks

IsNull returns True if expression is Null; otherwise, IsNull returns False.

Null is not the same as Empty, which indicates that a variable has not yet been initialized. It is

also not the same as a zero-length string (""), which is sometimes referred to as a null string.

Example

This example uses the IsNull function to determine if a variable contains a Null.
Dim MyVar, MyCheck, MyStr As String

MyCheck = IsNull(MyStr) ' Returns True.

Trace MyCheck

MyVar = ""

MyCheck = IsNull(MyVar) ' Returns False.

Trace MyCheck

MyVar = Null

MyCheck = IsNull(MyVar) ' Returns True.

Trace MyCheck

See Also
IsDate Function , IsEmpty Function , IsNumeric Function , VarType

Function

IsNumeric Function

IsNumeric Function

Returns a Boolean value indicating whether an expression can be evaluated as a number.

Syntax
IsNumeric(expression)

The required expression argument is a numeric or string expression.

ConceptDraw DIAGRAM Third Party Developer’s Guide

210

Remarks

IsNumeric returns True if the entire expression is recognized as a number; otherwise, it returns

False.

If expression contains a string, the string is evaluated whether it can be converted to a number

starting from the beginning until the first non-numeric character.

Example

This example uses the IsNumeric function to determine if a variable can be evaluated as a

number.
Dim MyVar, MyCheck

MyVar = "53" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns True.

Trace MyCheck

MyVar = "459.95" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns True.

Trace MyCheck

MyVar = "Help" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns False.

Trace MyCheck

MyVar = 33 ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns True.

Trace MyCheck

MyVar = "33 la-la-la" ' Assign value.

MyCheck = IsNumeric(MyVar) ' Returns True, because can be evaluated to 33

Trace MyCheck

See Also IsDate Function , IsEmpty Function , IsNull Function , VarType Function

IS Operator

IS Operator

Used to compare two object reference variables.

Syntax
result = object1 Is object2

The Is operator syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

211

result Required; any numeric variable.

object1 Required; any object name.

object2 Required; any object name.

Remarks

If object1 and object2 both refer to the same object, result is True; if they do not, result is False.

Two variables can be made to refer to the same object in several ways.

In the following example, A has been set to refer to the same object as B:

Set A = B

The following example makes A and B refer to the same object as C

Set A = C

Set B = C

Example

This example uses the Is operator to compare two object references. The object variable names

are generic and used for illustration purposes only.
Dim MyObject, YourObject, ThisObject, OtherObject, ThatObject, MyCheck

Set MyObject = New DPoint

Set OtherObject = New DPoint

Set YourObject = MyObject ' Assign object references.

Set ThisObject = MyObject

Set ThatObject = OtherObject

MyCheck = YourObject Is ThisObject ' Returns True.

trace MyCheck

MyCheck = ThatObject Is ThisObject ' Returns False.

trace MyCheck

' Assume MyObject <> OtherObject

MyCheck = MyObject Is ThatObject ' Returns False.

trace MyCheck

See Also Operators, Comparison Operators

Keywords

Keywords

ConceptDraw DIAGRAM Third Party Developer’s Guide

212

Keyword is a word or symbol recognized as Element of the ConceptDraw Basic programming

language; for example, a statement, function name, or operator.

Some keywords can be met in several different constructions of the language. These keywords are

listed in the table below:

Keyword Context of usage

As

Const Statement, Declare Statement, Dim Statement, Function Statement,

Name Statement, Open Statement, ReDim Statement, Static Statement, Sub

Statement

ByRef Declare Statement, Function Statement, Sub Statement

ByVal Declare Statement, Function Statement, Sub Statement

Date Date Data Type, Date Function, Date Statement

Else If...Then...Else Statement, Select Case Statement

Empty
The Empty keyword is used as a Variant subtype. It indicates an

uninitialized variable value.

Error Error Function, Error Statement, On Error Statement

False The False keyword has a value equal to 0.

For For...Next Statement, Open Statement

Input Input Function, Input Statement, Line Input Statement, Open Statement

Is Is Operator, Select Case Statement

Len Len Function, Open Statement

Mid Mid Function, Mid Statement

New Dim Statement, Set Statement, Static Statement

Next For...Next Statement, On Error Statement, Resume Statement

Nothing

The Nothing keyword is used to disassociate an object variable from an

actual object. Use the Set statement to assign Nothing to an object variable.

For example:

Set MyObject = Nothing

Several object variables can refer to the same actual object. When Nothing is

assigned to an object variable, that variable no longer refers to an actual

object.

Null
The Null keyword is used as a Variant subtype. It indicates that a variable

contains no valid data.

On On Error Statement, On...GoSub Statement, On...GoTo Statement

Resume On Error Statement, Resume Statement

Seek Seek Function, Seek Statement

Static Function Statement, Static Statement, Sub Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

213

String String Data Type, String Function

Time Time Function, Time Statement

To For...Next Statement, Select Case Statement

True
The True keyword has a value equal to 1 for arithmetical operations and -1

for logical operations.

Kill Statement

Kill Statement

Deletes files from the disk.

Syntax
Kill pathname

The required pathname argument is a string, specifying the names of one or more files to be

deleted. The pathname argument may include names of directory/folder, or a drive name.

Remarks

An attempt to delete an open file with the Kill statement generates an error.

Note: Use the RmDir statement to delete directories or folders.

Example

In this example the Kill statement is used to delete a file from disk.

' Assume the TESTFILE file exists and is not empty.

Kill "TestFile" 'Deletes the file.

See Also RmDir Statement

LCase Function

LCase Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

214

Returns a FixStr (String) that has been converted to lowercase.

Syntax
LCase[$](string)

The required string argument is any valid string expression. If string contains Null, Null is

returned.

Remarks

Only uppercase letters are converted to lowercase; all lowercase letters and nonletter characters

remain unchanged.

The LCase$ form returns String values. The LCase form returns FixStr values.

Example

This example uses the LCase function to return a lowercase version of a string.

Dim UpperCase, LowerCase

Uppercase = "Hi All 1234" ' String to convert.

Lowercase = Lcase(UpperCase) ' returns "hi all 1234".

See Also UCase Function

Left Function

Left Function

Returns a FixStr (String) containing a specified number of characters from the left side of a

string.

Syntax
Left(string, length)

The Left function syntax has these named arguments:

Element Description

string
Required. String expression from which the leftmost characters are

returned. If string contains Null, Null is returned.

ConceptDraw DIAGRAM Third Party Developer’s Guide

215

length

Required; Long. Numeric expression indicating how many characters to

return. If 0, a zero-length string ("") is returned. If greater than or equal to

the number of characters in string, the entire string is returned.

Remarks

To determine the number of characters in string, use the Len function.

The Left$ form returns String values. The Left form returns FixStr values.

Example

This example uses the Left function to return a specified number of characters from the left side

of a string.
Dim AnyString, MyStr

AnyString = "Hi all" ' Define string.

MyStr = Left(AnyString, 1) ' Returns "H".

MyStr = Left(AnyString, 4) ' Returns "Hi a".

MyStr = Left(AnyString, 20) ' Returns "Hi all".

See Also Len Function, Mid Function , Right Function

Len Function

Len Function

Returns a Long containing the number of characters in a string or the number of bytes required to

store a variable.

Syntax
Len(string | varname)

The Len function syntax has these Elements:

Element Description

string Any valid string expression. If string contains Null, Null is returned.

varname

Any valid variable name. If varname contains Null, Null is returned. If

varname is a Variant, Len treats it the same as a String and always

returns the number of characters it contains.

ConceptDraw DIAGRAM Third Party Developer’s Guide

216

Remarks

One (and only one) of the two possible arguments must be specified.

Example
Dim MyInt As Integer

Dim MyString, MyLen

MyString = "Hi all" ' Initialize variable.

MyLen = Len(MyInt) ' Returns 2.

MyLen = Len(MyString) ' Returns 6.

See Also Data Types, InStr Function

Let Statement

Let Statement

Assigns the value of an expression to a variable or property.

Syntax
[Let] varname = expression

The Let statement syntax has these Elements:

Element Description

Let
Optional. Explicit use of the Let keyword is a matter of style, but it is

usually omitted.

varname
Required. Name of the variable or property; follows standard variable

naming conventions.

expression Required. Value assigned to the variable or property.

Remarks

In ConceptDraw Basic value expression, assigned to variable varname can be of any type. The

type of expression will become the same as the type of varname.

If varname is of Variant type, then varname will be given the same type as expression. It's

assumed that the Variant-variable varname has subtype identical to the type of expression.

ConceptDraw DIAGRAM Third Party Developer’s Guide

217

Use the Set statement to assign object references to variables.

Example

This example assigns the values of expressions to variables using the explicit Let statement.
Dim MyStr, MyInt

' The following variable assignments use the Let statement.

Let MyStr = "Hello World"

Let MyInt = 5

The following are the same assignments without the Let statement.
Dim MyStr, MyInt

MyStr = "Hello World"

MyInt = 5

See Also Data Type Summary, Set Statement, Const Statement

Like Operator

Like Operator

Used to compare two strings.

Syntax
result = string Like pattern

The Like operator syntax has these Elements:

Element Description

result Required; any numeric variable.

string Required; any string expression.

pattern
Required; any string expression conforming to the pattern-matching

conventions described in Remarks.

Remarks

If string matches pattern, result is True; if there is no match, result is False.

ConceptDraw DIAGRAM Third Party Developer’s Guide

218

In Microsoft Windows the sort order is determined by the code page. In the following example, a

typical sort order is shown:

0 < 9 <A < B < E < Z < a < b < e < z

Built-in pattern matching provides a versatile tool for string comparisons. The pattern-matching

features allow you to use wildcard characters, character lists, or character ranges, in any

combination, to match strings. The following table shows the characters allowed in pattern and

what they match in string:

Characters in

pattern
Matches in string

? Any single character.

* Zero or more characters.

Any single digit (0–9).

[charlist] Any single character in charlist.

[!charlist] Any single character not in charlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any

single character in string and can include almost any character code, including digits.

To match the special characters question mark (?), number sign (#), and asterisk (*), enclose them

in brackets. The left bracket ([) is also a special character, but only if it's followed by the right

bracket (]). Otherwise it's treated as a regular character. Likewise, right bracket (]) in a group is

always treated as a special character, but can be used outside a group as an individual character.

By using a hyphen (–) to separate the upper and lower bounds of the range, charlist can specify a

range of characters. For example, [A-Z] results in a match if the corresponding character position

in string contains any uppercase letters in the range A–Z. Multiple ranges are included within the

brackets without delimiters.

Other important rules for pattern matching include the following:

 An exclamation point (!) at the beginning of charlist means that a match is made if any

character except the characters in charlist is found in string. When used outside brackets, the

exclamation point matches itself.

 A hyphen (–) can appear either at the beginning (after an exclamation point if one is used) or at

the end of charlist to match itself. In any other location inside the brackets, the hyphen is used to

identify a range of characters.

 When a range of characters is specified, they may appear in ascending or descending order. The

range can be specified by ASCII symbols from number 48 to 122. The only exception is right

bracket (]), which is number 93 in the ASCII table. For example, [A-Z], [4-1], [a-Z], [;-Z] are

ConceptDraw DIAGRAM Third Party Developer’s Guide

219

valid patterns. The expressions in brackets [*-4], [Z-.] [z-]] won't be considered as range, but will

be treated as individual characters.

 Empty brackets [] are ignored, they are considered a zero-lenght string ("").

Example
Dim Result

Result = "aBBBa" Like "a*a" ' Returns True.

trace Result

Result = "F" Like "[A-Z]" ' Returns True.

trace Result

Result = "F" Like "[!A-Z]" ' Returns False.

trace Result

Result = "a2a" Like "a#a" ' Returns True.

trace Result

Result = "aM5b" Like "a[L-P]#[!c-e]" ' Returns True.

trace Result

Result = "BAT123khg" Like "B?T*" ' Returns True.

trace Result

Result = "CAT123khg" Like "B?T*" ' Returns False.

trace Result

See Also Operators, Comparison Operators, InStr Function, StrComp Function

Line Input Statement

Line Input # Statement

Reads a string from an opened file and assigns it to a variable of the String type.

Syntax
Line Input #filenumber, varname

The Line Input # statement syntax has the following Elements:

Element Description

filenumber Required, any valid file number.

varname Required, any legal variable name of Variant or String type.

Remarks

Data read with the Line Input # statement are normally written to file with the Print # statement.

ConceptDraw DIAGRAM Third Party Developer’s Guide

220

The Line Input # statement reads by one symbol at a time until it reaches the carriage return

symbol (Chr(13)) or the combination of carriage return and line feed symbols (Chr(13) +

Chr(10)). When the string is assigned to the variable, the carriage return and line feed symbols are

discarded.

Example

In this example the Line Input # statement reads a string from a file and assigns it to a variable.

It's assumed that the TESTFILE file exists and contains several lines of text.
Dim TextLine

Open "TESTFILE" For Input As #1 ' Opens file.

Do While Not EOF(1) ' Loop until the end of file.

 Line Input #1, TextLine 'Inputs string into variable.

 Trace TextLine 'Outputs the string into Output window.

Loop

Close #1 ' Closes file.

See Also Input # Statement, Chr Function

Loc Function

Loc Function

Returns a Long specifying the current read/write position within an open file.

Syntax
Loc(filenumber)

The required filenumber argument is any valid Integerfile number.

Remarks

The following describes the return value for each file access mode:

Mode Return Value

Random Number of the last record read from or written to the file.

Sequential
Current byte position in the file divided by 128. However, information

returned by Loc for sequential files is neither used nor required.

Binary Position of the last byte read or written.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

221

This example uses the Loc function to return the current read/write position within an open file.

This example assumes that TESTFILE is a text file with a few lines of sample data.
Dim MyLocation, MyLine

Open "TESTFILE" For Binary As #1 ' Open file just created.

Do While MyLocation < LOF(1) ' Loop until end of file.

 MyLine = MyLine & Input(1, #1) ' Read line into variable.

 MyLocation = Loc(1) ' Get current position within file.

 Trace MyLine ' Print to the Output window.

 Trace Tab

 Trace MyLocation

Loop

Close #1 ' Close file.

See Also
Writing Data to a File, Seek Statement , EOF Function, LOF Function,

Seek Function

LOF Function

LOF Function

Returns a Long representing the size, in bytes, of a file opened using the Open statement.

Syntax
LOF(filenumber)

The required filenumber argument is an Integer containing a valid file number.

Remarks

Use the FileLen function to obtain the length of a file that is not open.

Example

This example uses the LOF function to determine the size of an open file.

This example assumes that TESTFILE is a text file containing sample data.

Dim FileLength

Open "TESTFILE" For Input As #1 ' Open file.

FileLength = LOF(1) ' Get length of file.

Trace FileLength

Close #1 ' Close file.

ConceptDraw DIAGRAM Third Party Developer’s Guide

222

See Also Open Statement, Loc Function , EOF Function, FileLen Function

Log Function

Log Function

Returns a Double specifying the natural logarithm of a number.

Syntax
Log(num)

The required num argument is a Double or any valid numeric expression greater than zero. If this

argument is a non-initialized variable, or Null, an error occurs.

Remarks

The natural logarithm is the logarithm to the base e. The constant e is approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of x by

the natural logarithm of n as follows:

Log n(x) = Log(x) / Log(n)

Example

The following example illustrates a custom Function that calculates base-10 logarithms:
Function Log10(X)

Log10 = Log(X) / Log(10)

End Function

See Also Exp Function

LSet Statement

LSet Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

223

Justifies the string by the left edge of the string variable.

Syntax
LSet stringvar = string

The LSet statement syntax has these Elements:

Element Description

stringvar Required. The name of the string variable.

string
Required. The string expression to be justified by the left edge of the string

variable.

Remarks

The LSet function replaces all symbols, remaining in the string variable with spaces.

If the string is longer, than the variable, the LSet function copies as many symbols from the start

of the string as can fit into the variable.

Example

In this example the LSet statement is used to justify the string by the left edge of the string

variable.

Dim MyString

MyString = "0123456789" ' Initializes the string.

Lset MyString = "<-Left" ' MyString contains "<-Left ".

Trace "|"&MyString&"|"

See Also RSet Statement, Data Types

LTrim Function

LTrim Function

Returns a FixStr (String) containing a copy of a specified string without leading spaces.

Syntax
LTrim(string)

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

224

The required string argument is any valid string expression. If string contains Null, Null is

returned.

The LTrim$ form returns String values. The LTrim form returns FixStr values.

Example

This example uses the LTrim function to strip leading spaces and the RTrim function to strip

trailing spaces from a string variable. It uses the Trim function alone to strip both types of spaces.

Dim MyString, TrimString

MyString = " <-Trim-> " ' Initialize string.

TrimString = LTrim(MyString) ' TrimString = "<-Trim-> ".

TrimString = RTrim(MyString) ' TrimString = " <-Trim->".

TrimString = LTrim(RTrim(MyString)) ' TrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

TrimString = Trim(MyString) ' TrimString = "<-Trim->".

See Also Left Function, Right Function

Mid Function

Mid Function

Returns a FixStr (String) containing a specified number of characters from a string.

Syntax
Mid(string, start[, length])

The Mid function syntax has these named arguments:

Element Description

string
Required. String expression from which characters are returned. If string

contains Null, Null is returned.

start

Required; Long. Character position in string at which the Element to be

taken begins. If start is greater than the number of characters in string,

Mid returns a zero-length string ("").

length

Optional; Long. Number of characters to return. If omitted or if there are

fewer than length characters in the text (including the character at start),

all characters from the start position to the end of the string are returned.

ConceptDraw DIAGRAM Third Party Developer’s Guide

225

Remarks

To determine the number of characters in string, use the Len function.

The Mid$ form returns String values. The Mid form returns FixStr values.

Example

This example uses the Mid function to return a specified number of characters from a string.

Dim MyString, FirstWord, LastWord, MidWords

MyString = "Mid Function Demo" ' Create text string.

FirstWord= Mid(MyString, 1, 6) ' Returns "Mid".

LastWord = Mid(MyString, 16, 3) ' Returns "Function".

MidWords = Mid(MyString, 8) ' Returns "Function Demo".

See Also Len Function, Left Function, Right Function

Mid Statement

Mid Statement

Replaces the specified number of symbols in the string of Variant (String) type with symbols

from another string.

Syntax
Mid(stringvar, start[, length]) = string

The Mid statement syntax has these Elements:

Element Description

stringvar Required. Name of the string variable to be changed.

start
Required. Value of Variant (Long) type. Defines the position of the

symbol in the variable from where to start replacing.

length
Optional. Value of Variant (Long) type. Defiines the number of symbols

to be replaced. If this argument is omitted, the entire string will be used.

string
Required. String expression, that serves to replace a Element of string

variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

226

Remarks

The number of replaced symbols can't exceed the number of symbols in the variable.

Example

This example shows how the Mid statement is used to replace the specified number of symbols of

the string variable with symbols from another string.
Dim MyString

MyString = "The dog jumps" ' Initialize string.

Trace MyString

Mid(MyString, 5, 3) = "fox" ' MyString = "The fox jumps".

Trace MyString

Mid(MyString, 5) = "cow" ' MyString = "The cow jumps".

Trace MyString

Mid(MyString, 5) = "cow jumped over" ' MyString = "The cow jumpe".

Trace MyString

Mid(MyString, 5, 3) = "duck" ' MyString = "The duc jumpe".

Trace MyString

See Also Mid Function

- Operator

- Operator

Used to find the difference between two numbers or to indicate the negative value of a numeric

expression.

Syntax 1
result = number1 – number2

Syntax 2
–number

The - operator syntax has these Elements:

Element Description

result Required; any numeric variable.

number Required; any numeric expression.

number1 Required; any numeric expression.

number2 Required; any numeric expression.

ConceptDraw DIAGRAM Third Party Developer’s Guide

227

Remarks

In Syntax 1, the – operator is the arithmetic subtraction operator used to find the difference

between two numbers.

In Syntax 2, the – operator is used as the unary negation operator to indicate the negative value of

an expression.

The data type of result is usually the same as that of the most precise expression. The order of

precision, from least to most precise, is Byte, Integer, Long, Single, Double. The following are

exceptions to this order:

If Then result is

The data type of result is a Long, Single, or Date variant

that overflows its legal range,

converted to a Variant containing

a Double.

The data type of result is a Byte variant that overflows

its legal range,
converted to an Integer variant.

The data type of result is an Integer variant that

overflows its legal range,
converted to a Long variant.

Subtraction involves a Date and any other data type, a Date.

One or both expressions are Null or Empty expressions, result is 0.

The order of precision used by addition and subtraction is not the same as the order of precision

used by multiplication.

Example

This example uses the - operator to calculate the difference between two numbers.

Dim MyResult, Var1

MyResult = 4 - 2 ' Returns 2.

trace MyResult

MyResult = 459.35 - 334.90 ' Returns 124.45.

trace MyResult

Var1 = 5

MyResult = -Var1 ' Returns -5.

trace MyResult

See Also Operators

ConceptDraw DIAGRAM Third Party Developer’s Guide

228

MkDir Statement

MkDir Statement

Creates a new directory or folder.

Syntax
MkDir path

Remarks

The required argument path is a string specifying the directory or folder to be created. It can

contain the drive name. If drive is not specified, MkDir created the directory or folder on the

current drive.

Example

In this example the MkDir statement is used to create a directory or folder. If the drive is not

specified, the new directory/folder will be created on the current drive.

MkDir "MYDIR" ' Creates new directory or folder.

See Also ChDir Statement, RmDir Statement , CurDir Function

MOD Operator

MOD Operator

Used to divide two numbers and return only the remainder.

Syntax
result = number1 Mod number2

The Mod operator syntax has these Elements:

Element Description

result Required; any numeric variable.

number1 Required; any numeric expression.

ConceptDraw DIAGRAM Third Party Developer’s Guide

229

number2 Required; any numeric expression.

Remarks

The modulus, or remainder, operator divides number1 by number2 (rounding floating-point

numbers to integers) and returns only the remainder as result.

For example, in the following expression, A (result) equals 5.
A = 19 Mod 6.7

Usually, the data type of result is a Byte, Byte variant, Integer, Integer variant, Long, or

Variant containing a Long, regardless of whether or not result is a whole number. Any fractional

portion is truncated.

However, if one expression is Null or Empty is treated as 0.

Example

This example uses the Mod operator to divide two numbers and return only the remainder. If

either number is a floating-point number, it is first rounded to an integer.
Dim MyResult

MyResult = 10 Mod 5 ' Returns 0.

trace MyResult

MyResult = 10 Mod 3 ' Returns 1.

trace MyResult

MyResult = 12 Mod 4.3 ' Returns 0.

trace MyResult

MyResult = 12.6 Mod 5 ' Returns 3.

trace MyResult

See Also Operators

MsgBox Function

MsgBox Function

Displays a message in a dialog box, waits for the user to click a button, and returns an Integer

indicating which button the user clicked.

Syntax
MsgBox([prompt][, buttons] [, title])

ConceptDraw DIAGRAM Third Party Developer’s Guide

230

The MsgBox function syntax has these named arguments:

Element Description

prompt

Optional. String expression displayed as the message in the dialog box. The

maximum length of prompt is approximately 1024 characters, depending on

the width of the characters used. If prompt consists of more than one line, you

can separate the lines using a carriage return character (Chr(13)), a linefeed

character (Chr(10)), or carriage return – linefeed character combination

(Chr(13) & Chr(10)) between each line.

buttons

Optional. Numeric expression that is the sum of values specifying the number

and type of buttons to display, the icon style to use, the identity of the default

button, and the modality of the message box. If omitted, the default value for

buttons is 0.

title
Optional. String expression displayed in the title bar of the dialog box. If you

omit title, the application name is placed in the title bar.

Settings

The buttons argument settings are:

Constant Value Description

cdbOKOnly 0 Display OK button only.

cdbOKCancel 1 Display OK and Cancel buttons.

cdbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

cdbYesNoCancel 3 Display Yes, No, and Cancel buttons.

cdbYesNo 4 Display Yes and No buttons.

cdbRetryCancel 5 Display Retry and Cancel buttons.

cdbCritical 16 Display Critical Message icon.

cdbQuestion 32 Display Warning Query icon.

cdbExclamation 48 Display Warning Message icon.

cdbInformation 64 Display Information Message icon.

cdbDefaultButton1 0 First button is default.

cdbDefaultButton2 256 Second button is default.

cdbDefaultButton3 512 Third button is default.

ConceptDraw DIAGRAM Third Party Developer’s Guide

231

The first group of values (0–5) describes the number and type of buttons displayed in the dialog

box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512)

determines which button is the default. When adding numbers to create a final value for the

buttons argument, use only one number from each group.

These constants are specified by ConceptDraw Basic for applications. As a result, the names can

be used anywhere in your code in place of the actual values.

Return Values

Constant Value Description

cdbOK 1 OK

cdbCancel 2 Cancel

cdbAbort 3 Abort

cdbRetry 4 Retry

cdbIgnore 5 Ignore

cdbYes 6 Yes

cdbNo 7 No

Remarks

If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking

Cancel.

If some arguments are omitted, you must include the corresponding comma delimiters.

Example

This example uses the MsgBox function to display a critical-error message in a dialog box with

Yes and No buttons. The No button is specified as the default response. The value returned by the

MsgBox function depends on the button chosen by the user.
Dim Msg, Style, Title, Response, MyString

Msg = "Do you want to continue ?" ' Define message.

Style = cdbYesNo + cdbCritical + cdbDefaultButton2 ' Define buttons.

Title = "MsgBox Demonstration" ' Define title.

Response = MsgBox(Msg, Style, Title)

If Response = cdbYes Then ' User chose Yes.

 MyString = "Yes" ' Perform some action.

Else ' User chose No.

 MyString = "No" ' Perform some action.

End If

ConceptDraw DIAGRAM Third Party Developer’s Guide

232

See Also InputBox Function

* Operator

* Operator

Used to multiply two numbers.

Syntax
result = expression1 * expression2

The * operator syntax has these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any numeric expression.

expression2 Required; any numeric expression.

Remarks

The data type of result is usually the same as that of the most precise expression. The order of

precision, from least to most precise, is Byte, Integer, Long, Single, Double. The following are

exceptions to this order:

If Then result is

The data type of result is a Long, Single, or Date variant that

overflows its legal range,

converted to a Variant

containing a Double.

The data type of result is a Byte variant that overflows its legal

range,

converted to an Integer

variant.

The data type of result is an Integer variant that overflows its

legal range,

converted to a Long

variant.

If one or both expressions are Null or Empty expressions, result is 0.

The order of precision used by multiplication is not the same as the order of precision used by

addition and subtraction.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

233

This example uses the * operator to multiply two numbers.
Dim MyValue

MyValue = 2 * 2 ' Returns 4.

trace MyValue

MyValue = 459.35 * 334.90 ' Returns 153836.315.

trace MyValue

See Also Operators

Name Statement

Name Statement

Renames a file, directory or folder.

Syntax
Name oldpathname As newpathname

The Name statement syntax has the following Elements:

Element Description

oldpathname
Required. A string specifying the name and path to an existing file. It may

include folder and drive names.

newpathname
Required. A string specifying the new file name and path. It may include

folder and drive names. A file with such name must not exist.

Remarks

Both arguments, oldpathname and newpathname, should point to the same drive. If path specified

in newpathname exists and is different to the path in oldpathname, the Name statement will move

the file into the new directory or folder and rename it (if needed). If the paths in newpathname

and oldpathname are different but the filenames are the same, the Name statement will move the

file to the new directory or folder without renaming it. With the Name statement you can move a

file from one directory to another, but you can't move a directory or a folder.

An attempt to renamed an open file using Name generates an error. You should close the file

prior to renaming it. You can't use wildcards such as (*) or (?) in arguments of the Name

statement.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

234

In this example the Name statement is used to rename a file. Assume that the specified files and

folders exist.

Dim OldName, NewName

OldName = "OLDFILE"

NewName = "NEWFILE" ' Specifies filenames.

Name OldName As NewName ' Renames the file.

' In Microsoft Windows:

OldName = "C:\MYDIR\OLDFILE"

NewName = "C:\YOURDIR\NEWFILE"

Name OldName As NewName ' Moves and renames file.

' On the Macintosh:

OldName = "HD:MY FOLDER:OLDFILE"

NewName = "HD:YOUR FOLDER:NEWFILE"

Name OldName As NewName ' Moves and renames file.

See Also Kill Statement

NOT Operator

NOT Operator

Used to perform logical negation on an expression.

Syntax
result = Not expression

The Not operator syntax has these Elements:

Element Description

result Required; any numeric variable.

expression Required; any expression.

Remarks

The following table illustrates how result is determined:

If expression is Then result is

True False

False True

In addition, the Not operator inverts the bit values of any variable and sets the corresponding bit

in result according to the following table:

ConceptDraw DIAGRAM Third Party Developer’s Guide

235

If bit in expression is Then bit in result is

0 1

1 0

Example
Dim A, B, C, D, MyCheck

A = 10: B = 8: C = 6: D = Null ' Initialize variables.

MyCheck = Not(A > B) ' Returns False.

trace MyCheck

MyCheck = Not(B > A) ' Returns True.

trace MyCheck

MyCheck = Not(C > D) ' Returns False.

trace MyCheck

MyCheck = Not A ' Returns -11 (bitwise comparison).

trace MyCheck

See Also Operators

Now Function

Now Function

Returns a Date value specifying the current date and time according your computer's system date

and time.

Syntax
Now()

Example
Dim Today

Today = Now() ' Assign current system date and time

See Also Date Function, Date Statement, Time Function, Time Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

236

Oct Function

Oct Function

Returns a FixStr (String) value representing the octal value of a number.

Syntax
Oct[$]([number])

The optional number argument is any valid numeric expression or string expression in the range

from -2147483648 to 2147483647. If this argument is omitted, is a non-initialized variable, or

Null, the function returns 0.

Remarks

If number is not already a whole number, it's rounded to the nearest whole number before being

evaluated. If number is Empty or Null, the function returns 0. For any other number the Hex

function returns up to 11 octal symbols.

You can represent octal numbers directly by preceding numbers in the proper range with &O. For

example, &O10 represents decimal 8 in octal notation.

The Oct$ form returns String values. The Oct form returns FixStr values.

Example
Dim MyOct

MyOct = Oct(4) ' Returns 4.

MyOct = Oct(8) ' Returns 10.

MyOct = Oct(459) ' Returns 713.

See Also Bin Function, Hex Function, Type Conversion Functions

On Error Statement

On Error Statement

Enables an error-handling routine and specifies the location of the routine; can also be used to

disable an error-handling routine.

ConceptDraw DIAGRAM Third Party Developer’s Guide

237

Syntax
On Error GoTo line

On Error Resume Next

On Error GoTo 0

The On Error statement syntax can have any of the following forms:

Statement Description

On Error GoTo line

Enables the error-handling routine that starts at line

specified in the required line argument. The line

argument is any line label or line number. If a run-

time error occurs, control branches to line, making the

error handler active. The specified line must be in the

same procedure as the On Error statement;

otherwise, a compile-time error occurs.

If the On Error statement is in the local area of

visibility, the specified specified line should be

defined in the same area.

On Error Resume Next

Specifies that when a run-time error occurs, control

goes to the statement immediately following the

statement where the error occurred where execution

continues. Use this form rather than On Error GoTo

when accessing objects.

On Error GoTo 0
Disables any enabled error handler in the current

procedure.

Remarks

If you don't use an On Error statement, any run-time error that occurs is fatal; that is, an error

message is displayed and execution stops.

An "enabled" error handler is one that is turned on by an On Error statement; an "active" error

handler is an enabled handler that is in the process of handling an error. If an error occurs while

an error handler is active (between the occurrence of the error and a Resume, Exit Sub or Exit

Function statement), the current procedure's error handler can't handle the error. Control returns

to the calling procedure. If the calling procedure has an enabled error handler, it is activated to

handle the error. If the calling procedure's error handler is also active, control passes back through

previous calling procedures until an enabled, but inactive, error handler is found. If no inactive,

enabled error handler is found, the error is fatal at the point at which it actually occurred. Each

time the error handler passes control back to a calling procedure, that procedure becomes the

current procedure. Once an error is handled by an error handler in any procedure, execution

resumes in the current procedure at the point designated by the Resume statement.

 Note: An error-handling routine is not a Sub procedure or Function procedure. It is a section

of code marked by a line label or line number.

ConceptDraw DIAGRAM Third Party Developer’s Guide

238

To determine the cause of an error error-handling routines use the value returned by the Err()

function. Error-handling routines should check or save the values returned by Err() and Erl()

before a new error may occur, or prior to calling a procedure, which may cause an error. These

values describe respectively the number of the last error and the line number in the source

module. Text of the error message corresponding to the error code can be obtained by using the

Error$() function.

On Error Resume Next causes execution to continue with the statement immediately following

the statement that caused the run-time error, or with the statement immediately following the most

recent call out of the procedure containing the On Error Resume Next statement. This statement

allows execution to continue despite a run-time error. You can place the error-handling routine

where the error would occur, rather than transferring control to another location within the

procedure. An On Error Resume Next statement becomes inactive when another procedure is

called, so you should execute an On Error Resume Next statement in each called routine if you

want inline error handling within that routine.

 Note: The On Error Resume Next construction may be preferable to On Error GoTo when

handling errors generated during access to other objects.

On Error GoTo 0 disables error handling in the current procedure. It doesn't specify line 0 as the

start of the error-handling code, even if the procedure contains a line numbered 0. Without an On

Error GoTo 0 statement, an error handler is automatically disabled when a procedure is exited.

To prevent error-handling code from running when no error has occurred, place an Exit Sub or

Exit Function statement immediately before the error-handling routine, as in the following

fragment:

Sub foo()

On Error GoTo ErrorHandler

. . .

Exit Sub

ErrorHandler:

. . .

Resume Next

End Sub

Here, the error-handling code follows the Exit Sub statement and precedes the End Sub

statement to separate it from the procedure flow. Error-handling code can be placed anywhere in a

procedure.

 Note: System errors during calls to dynamic-link libraries (DLL) do not raise exceptions and

cannot be trapped with ConceptDraw Basic error trapping. When calling DLL functions, you

should check each return value for success or failure (according to the API specifications).

Example
Sub OnErrorStatementDemo()

 On Error GoTo ErrorHandler ' Enable error-handling routine.

 Open "TESTFILE" For Output As #1 ' Open file for output.

ConceptDraw DIAGRAM Third Party Developer’s Guide

239

 Kill "TESTFILE" ' Attempt to delete open file.

 On Error Goto 0 ' Turn off error trapping.

 On Error Resume Next ' Defer error trapping.

 Dim d As Double

 d = 10 / sin(0) ' "Division by zero" error and resume next statement

 d = 20 / cos(0)

 Trace d

Exit Sub ' Exit to avoid handler.

ErrorHandler: ' Error-handling routine.

 Select Case Err() ' Evaluate error number.

 Case 55, 75 ' "File already open" or "Path/File access error" error.

 Trace """File already open"" or ""Path/File access error"" error"

 Close #1 ' Close open file.

 Case Else

 ' Handle other situations here...

 Resume Next

 End Select

 Resume ' Resume execution at same line that caused the error.

End Sub

See Also
End Statement, Err Function, Erl Function, Exit Function Statement, Exit

Sub Statement, Resume Statement , Trappable errors

On...GoSub Statement

On...GoSub Statement

Branch to one of several specified subroutines , depending on the value of an expression.

Syntax
On expression GoSub destinationlist

The On...GoSub statement syntax has these Elements:

Element Description

expression

Required. Any numeric expression that evaluates to a whole

number between 0 and 255, inclusive. If expression is any

number other than a whole number, it is rounded before it is

evaluated.

destinationlist
Required. List of line numbers or line labels separated by

commas.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

240

The value of expression determines which line is branched to in destinationlist. If the value of

expression is less than 1 or greater than the number of items in the list or greater than 255 then

control drops to the statement following On...GoSub.

You can mix line numbers and line labels in the same list.

 Tip: Select Case provides a more structured and flexible way to perform multiple branching.

Example
Sub OnGosubDemo()

Dim Number, MyString

 MyString = "Nothing"

 Number = InputBox("Enter branch number:") ' Initialize variable.

 ' Branch to Sub<Number>.

 On Number GoSub Sub1, Sub2

 Trace MyString

 Exit Sub

Sub1:

 MyString = "In Sub1" : Return

Sub2:

 MyString = "In Sub2" : Return

End Sub

See Also
GoSub...Return Statement, GoTo Statement, On...GoTo Statement, Select

Case Statement

On...GoTo Statement

On...GoTo Statement

Branch to one of several specified lines, depending on the value of an expression.

Syntax
On expression GoTo destinationlist

The On...GoTo statement syntax has these Elements:

Element Description

expression

Required. Any numeric expression that evaluates to a whole

number between 0 and 255, inclusive. If expression is any

number other than a whole number, it is rounded before it is

evaluated.

ConceptDraw DIAGRAM Third Party Developer’s Guide

241

destinationlist
Required. List of line numbers or line labels separated by

commas.

Remarks

The value of expression determines which line is branched to in destinationlist. If the value of

expression is less than 1 or greater than the number of items in the list or greater than 255 then

control drops to the statement following On...GoTo.

You can mix line numbers and line labels in the same list.

 Tip: Select Case provides a more structured and flexible way to perform multiple branching.

Example
Sub OnGoToDemo()

Dim Number, MyString

 MyString = "Nothing"

 Number = InputBox("Enter branch number:") ' Initialize variable.

 ' Branch to Line<Number>.

 On Number GoTo Line1, Line2

TraceHandle:

 Trace MyString

 Exit Sub

Line1:

 MyString = "In Line1" : GoTo TraceHandle

Line2:

 MyString = "In Line2" : GoTo TraceHandle

End Sub

See Also
GoSub...Return Statement, GoTo Statement, On...GoSub Statement, Select

Case Statement

Open Statement

Open Statement

Allows Input/Output operations with a file.

Syntax
Open pathname For mode [Access access] [lock] As [#]filenumber [Len=reclength]

The Open statement syntax contains the following Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

242

pathname
Required. String expression indicating the filename. The path can contain

directory and drive name.

mode

Required. Keyword indicating the file open mode: Append, Binary,

Input, Output or Random. By default, a file is opened in the Random

access mode.

access
Optional. Keyword specifying operations allowed with the opened file:

Read, Write or Read Write.

lock

Optional. Keyword specifying operations that other processes can perform

on the opened file: Shared, Lock Read, Lock Write and Lock Read

Write.

filenumber
Required. File number may range from 1 to 511 inclusive. To find next

free file number use the FreeFile function.

reclength

Optional. Number less or equal 32 767 (bytes). For files opened in the

Random mode this value is the lenght of record. For files with serial

access this value is the number of symbols read into the buffer.

Remarks

A file must be open in order to perform input/output operations. The Open statement reserves the

input/output buffer for the file and sets the buffer usage mode.

If the path argument describes a file that doesn't exist, such file will be created when opening in

Append, Binary, Output or Random modes.

If the file is already opened by some other process and the specified access mode is not allowed,

the Open statement will not be executed and an error will be generated.

If the mode argument is set to Binary, the Len parameter is ignored.

Example

This example shows different ways of using the Open statement for file input/output operations.

Opening TESTFILE for reading.
Open "TESTFILE" For Input As #1

' Close file before re-opening in another mode.

Close #1

Opening the file in the Binary mode for writing only.
Open "TESTFILE" For Binary Access Write As #1

' Close file before re-opening in another mode.

Close #1

The following commands open the file for ... output (serial output); any process can read from or

write to the file.
Open "TESTFILE" For Output Shared As #1

' Close file before re-opening in another mode.

Close #1

ConceptDraw DIAGRAM Third Party Developer’s Guide

243

The following commands open the file in the Binary mode for reading; other processes can't read

from this file.
Open "TESTFILE" For Binary Access Read Lock Read As #1

' Close the file.

Close #1

See Also Recording Data in a File, Close Statement , FreeFile Function

Operators

Operators

 This section describes operators in ConceptDraw Basic and their precedence in complex

expressions.

 When several operations occur in an expression, each Element is evaluated and resolved in a

predetermined order. That order is known as operator precedence. Parentheses can be used to

override the order of precedence and force some Elements of an expression to be evaluated before

others. Operations within parentheses are always performed before those outside. Within

parentheses, however, normal operator precedence is maintained.

 The operators, supported in ConceptDraw Basic, can be divided into 3 groups:arithmetic,

comparison, logical. When expressions contain operators from more than one category, arithmetic

operators are evaluated first, comparison operators are evaluated next, and logical operators are

evaluated last. Within individual categories, operators are evaluated in the order of precedence

shown below:

Arithmetic Comparison Logical

Exponentiation (^ or **) Equality (=) NOT

Negation (-) Inequality (<>) AND

Multiplication and division (*, /) Less than (<) OR

Integer division (\) Greater than (>) XOR

Modulo arithmetic (MOD) Less than or Equal to (<=) EQV

Adding and substraction (+, -) Greater than or Equal to (>=) IMP

String concatenation (&) LIKE

Getting address (ADDRESSOF) IS

ConceptDraw DIAGRAM Third Party Developer’s Guide

244

Note: All comparison operators have equal precedence - that is, they are evaluated in the left-to-

right order in which they appear.

 When multiplication and division occur together in an expression, each operation is evaluated

as it occurs from left to right. Likewise, when addition and subtraction occur together in an

expression, each operation is evaluated in order of appearance from left to right.

 The string concatenation operator (&) is not really an arithmetic operator, but in precedence it

does fall after all arithmetic operators and before all comparison operators. Similarly, the Like

operator, while equal in precedence to all comparison operators, is actually a pattern-matching

operator.

OR Operator

OR Operator

Used to perform a logical disjunction on two expressions.

Syntax
result = expression1 Or expression2

The Or operator syntax has these Elements:

Element Description

result Required; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

If either or both expressions evaluate to True, result is True. The following table illustrates how

result is determined:

If expression1 is And expression2 is The result is

True True True

True False True

False True True

False False False

The Or operator also performs a bitwise comparison of identically positioned bits in two numeric

expressions and sets the corresponding bit in result according to the following table:

If expression1 is And expression2 is The result is

ConceptDraw DIAGRAM Third Party Developer’s Guide

245

0 0 0

0 1 1

1 0 1

1 1 1

Example
Dim A, B, C, D, MyCheck

A = 10: B = 8: C = 6: D = Null ' Initialize variables.

MyCheck = A > B Or B > C ' Returns True.

trace MyCheck

MyCheck = B > A Or B > C ' Returns True.

trace MyCheck

MyCheck = A > B Or B > D ' Returns True.

trace MyCheck

MyCheck = B > D Or B > A ' Returns True.

trace MyCheck

MyCheck = A Or B ' Returns 10 (bitwise comparison).

trace MyCheck

See Also Operators

Pause Statement

Pause Statement

Suspends the execution of the script for a specified interval.

Syntax
PauseTimeoutMilliseconds

The TimeoutMilliseconds parameter specifies the time, in milliseconds, for which to suspend

execution.

Remarks

The Pause statement is fully equivalent to the Wait statement. These two statements work

absolutely identically and are supported for compatibility with different versions of BASIC.

ConceptDraw DIAGRAM Third Party Developer’s Guide

246

Example

In the example below Pause is used to suspend execution for 5 seconds.
Pause 5000

See Also Wait Statement, Timer Function

Print Statement

Print # Statement

Writes display-formatted data to a sequential file.

Syntax
Print #filenumber, [outputlist]

The Print # statement syntax has the following Elements:

Element Description

filenumber Required. Any valid file number.

outputlist Optional. Expression or list of expressions to print.

Settings

Below are the valid outputlist argument settings:

[{Spc(n) | Tab[(n)]}] [expression] [charpos]

Setting Description

Spc(n)
Used to insert space characters in the output, where n is the number of

space characters to insert.

Tab(n)

Used to position the insertion point to an absolute column number, where

n is the column number. Use Tab with no argument to position the

insertion point at the beginning of the next print zone.

expression Numeric expressions or string expressions to print.

charpos
Specifies the insertion point for the next character. Use a semicolon to

position the insertion point immediately after the last character displayed.

ConceptDraw DIAGRAM Third Party Developer’s Guide

247

Use Tab(n) to position the insertion point to an absolute column number.

Use Tab with no argument to position the insertion point at the beginning

of the next print zone. If charpos is omitted, the next character is printed

on the next line.

Remarks

Data written with Print # is usually read from a file with Line Input # or Input.

If you omit outputlist and include only a list separator after filenumber, a blank line is printed to

the file. Multiple expressions can be separated with either a space or a semicolon. A space has the

same effect as a semicolon.

For Boolean data, either True or False is printed. The True and False keywords are not

translated, regardless of the locale settings.

Date data is written to the file using the standard short date format recognized by your system.

When either the date or time component is missing or zero, only the Element provided gets

written to the file.

Nothing is written to the file if outputlist data is Empty. However, if outputlist data is Null, the

Null keyword is written to file.

All data written to the file using Print # is internationally aware; that is, the data is properly

formatted using the appropriate decimal separator.

Because Print # writes an image of the data to the file, you must delimit the data so it prints

correctly. If you use Tab with no arguments to move the print position to the next print zone,

Print # also writes spaces between print fields to the file.

Note: If, at some future time, you want to read the data from a file using the Input # statement,

use the Write # statement instead of the Print # statement to write the data to the file. Using

Write # ensures the integrity of each separate data field by properly delimiting it, so it can be read

back in using the Input # statement. Using Write # also ensures it can be correctly read in any

locale.

Example

In this example the Print # statement is used to write data to a file.
Open "TESTFILE" For Output As #1 ' Opens file for writing.

Print #1, "Example" ' Prints text to file.

Print #1, ' Prints a blank line to file.

Print #1, "Zone 1"; Tab; "Zone 2" ' Prints in two print zones.

Print #1, "Example"; " "; "for all" ' Lines are separated with a space.

Print #1, Spc(5); "5 Space" ' Prints five spaces.

Print #1, Tab(10); "Hello" ' Prints a word in column 10.

' Assigns Boolean, Date values.

Dim MyBool, MyDate, MyNull

MyBool = False

MyDate = #02/12/1969#

MyNull = NULL

' Instead of the True and False their corresponding translations in

ConceptDraw DIAGRAM Third Party Developer’s Guide

248

' the current language are written. Date is written

' it the short system format.

Print #1, MyBool ; " - Boolean"

Print #1, MyDate ; " - Date"

Print #1, MyNull ; " - NULL"

Close #1

See Also
Writing Data in a File, Open Statement , Write # Statement, Spc

Function , Tab Function

Put Statement

Put Statement

Writes data from a variable to a disk file.

Syntax
Put [#]filenumber, [recnumber], varname

The Put statement syntax has the following Elements:

Element Description

filenumber Required. Any valid file number.

recnumber
Optional. Record number (Random mode files) or byte number (Binary

mode files) at which writing begins.

varname Required. Name of variable containing data to be written to disk.

Remarks

Data written with Put is usually read from a file with Get.

The first record or byte in a file is at position 1, the second record or file is at position 2 and so on.

If you omit recnumber, the next record or byte after the last Get or Put statement or pointed to by

the Seek function is written. You must include delimiting commas, for example:

Put #4,,FileBuffer

For files opened in Random mode, the following rules apply:

• If the length of the data being written is less than the lenght specified in the Len clause of

the Open statement, Put writes subsequent records on record-length boundaries. The space

between the end of one record and the beginning of the next record is padded with the

existing contents of the file buffer. Because the amount of padded data can't be determined

ConceptDraw DIAGRAM Third Party Developer’s Guide

249

with any certainty, it is generally a good idea to have the record lenght match the length of

the data being written. If the length of the data being written is greater than the lenght

specified in the Len clause in the Open statement, an error occurs.

• If the variable being written is a variable-lenght string, Put writes a 2-byte descriptor

containing the string lenght, and then the variable. The record lenght specified in the Len

clause in the Open statement must be at least 2 bytes greater than the actual lenght of the

string.

• If the variable being written is a Variant of a numeric type, Put writes 2 bytes identifuing

the VarType of the Variant, and then writes the variable. For example, when writing a

Variant VarType 3, Put writes 6 bytes: 2 bytes identyfying the Variant as VarType 3

(Long), and 4 bytes containing the Long data. The record lenght specified in the Len clause

in the Open statement must be at least 2 bytes greater than the actual number of bytes

required to store the variable.

Example

In this example the Put statement is used to write data to a file.
Dim sName as String*20, nRecordNumber ' Declares variable.

' Opens file for Random access.

Open "TESTFILE" For Random As #1 Len = 21

For nRecordNumber = 1 To 5 ' Repeats the loop 5 times.

 sName = "My Name " & nRecordNumber ' Creates a string.

 Put #1, nRecordNumber, sName ' Writes record to file.

Next nRecordNumber

Close #1 ' Closes file.

See Also
Writing Data to a File, Get Statement, Open Statement, Seek Statement,

VarType Function

Randomize Statement

Randomize Statement

Initializes the random-number generator.

Syntax
Randomize [number]

The optional number argument is a Variant or any valid numeric expression.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

250

Randomize uses number to initialize the Rnd function's random-number generator, giving it a

new seed value. If you omit number, the value returned by the system timer is used as the new

seed value.

If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed

the first time it is called, and thereafter uses the last generated number as a seed value.

Example

This example uses the Randomize statement to initialize the random-number generator. Because

the number argument has been omitted, Randomize uses the return value returned by the system

timer as the new seed value.
Dim MyValue

Randomize ' Initialize random-number generator.

MyValue = CInt((6 * Rnd()) + 1) ' Generate random value between 1 and 6.

Trace MyValue

See Also Rnd Function , Timer Function

Recording data in a file

Recording data in a file

At work to a large number of data often happens conveniently to write down data in the file or to

read out from the file. The instruction of Open allows to create directly the file and to get to it

access. The instruction of Open provides three types of access to files:

• Consecutive access (the Input, Output and Append modes modes), usually used for record of

text files, for example protocols of mistakes or reports.

• The direct access (Random mode) used if necessary to consider and write down data in the

file without its closing. Files of direct access contain data in the form of records which

simplify and accelerate search of the necessary data.

• Binary access (Binary mode), is used, when it is required to consider or write down byte in

any position in the file, for example at preservation or display of dot images.

Note. The instruction of Open shouldn't be used for access to own types of files of appendices.

For example, it is not necessary to use Open for access to the Word document, to a spreadsheet of

Microsoft Excel or to the Microsoft Access database as it will cause loss of integrity and file

damage. In the following table the instructions which are usually used for data recording in files

and for data reading from files are shown.

ConceptDraw DIAGRAM Third Party Developer’s Guide

251

Access type Data recording Data reading

Consecutive Print #, Write # Input # , Line Input #

Any Put Get

Binary Put Get

See Also
Get Statement, Input # Statement, Line Input #, Open Statement, Print #

Statement, Put Statement, Write # Statement, Data type summary

ReDim Statement

ReDim Statement

Redeclares variables and reallocate storage space.

Syntax
ReDim [Preserve] varname[(subscripts)] [As type] [, varname[(subscripts)] [As type]] ...

The ReDim statement syntax has these Elements:

Element Description

Preserve
Optional. Keyword used to preserve the data in an existing array when you

change the size of the last dimension.

varname
Required. Name of the variable; follows standard variable naming

conventions.

subscripts

Optional. Dimensions of an array variable; up to 10 multiple dimensions

may be declared. The subscripts argument uses the following syntax:

count1[, count2] . . .

where count1, count2 are constants, indicating the upper limit of allowable

indices for the defined array. The lower limit of allowable indices always

equals 0. So, for a one-dimensional array the number of elements can be

calculated as count1+1 .

type

Optional. Data type of the variable; may be Byte, Boolean, Integer, Long,

Single, Double, Date, String (for variable-length strings), String * length

(for fixed-length strings), Object, Variant, or an object type. Use a separate

As type clause for each variable you declare.

ConceptDraw DIAGRAM Third Party Developer’s Guide

252

Remarks

The ReDim statement is used to declare or resize a dynamic array, which was already described

with the Dim statement. Also the ReDim statement allows to completely redeclare a variable,

declared earlier.

It possible to use the ReDim statement again to change the number of elements and dimensions of

the array.

The Preserve keyword can only be used with arrays. It's only possible to modify the last

dimension of the array, however it's not possible to change the number of dimensions. For

instance, if an array has only one dimension, it's possible to change this dimension as it's the last

and only in the array. However, if an array has two or more dimensions, it's only possible to

change the value of the last dumension; the contents of the arrays will be preserved. The

following example demonstrates how to increase the value of the last dimension of a dynamic

array without destroying data it contains.

ReDim A(10, 10, 10)

. . .

ReDim Preserve A(10, 10, 15)

If the size of the array is decreased, the data in deleted elements will be lost.

For other variables (not arrays) redeclaring means modyfing the type of the variable, while the

original value is preserved or rounded.

When redeclaring variables-objects not equal to Nothing, the object is destroyed if it was created

using the New statement, and the variable was the last link to it. The variable is also reset to

Nothing.

Example

This example uses the ReDim statement to allocate and reallocate storage space for dynamic-

array variables. It also shows how a variable can be redeclared to a new type.
Dim MyArray() As Integer ' Declare dynamic array.

Redim MyArray(5) ' Allocate 5 elements.

For I = 1 To 5 ' Loop 5 times.

 MyArray(I) = I ' Initialize array.

Next I

'The next statement resizes the array and erases the elements.

Redim MyArray(10) ' Resize to 10 elements.

For I = 1 To 10 ' Loop 10 times.

 MyArray(I) = I ' Initialize array.

Next I

'The following statement resizes the array but does not erase elements.

Redim Preserve MyArray(15) ' Resize to 15 elements.

'The next statement declares variable A as Integer

Dim A As Integer

A = 10 'Initialize A

Trace "A= " & A ' trace A

ConceptDraw DIAGRAM Third Party Developer’s Guide

253

ReDim A As Double 'Redeclare A as Double

Trace "A= " & A ' trace A

See Also
Data Type Summary, Dim Statement, Set Statement, Static Statement, Const

Statement

Reset Statement

Reset Statement

Closes all files opened with the Open statement.

Syntax
Reset

Remarks

The Reset statement closes all active files that have been opened with Open, and writes all file

buffers on the disk.

Example

In this example the Reset statement is used to close all open files and write their buffers on the

disk. Note that the FileNumber variable of the Variant type is used as string and number at the

same time.
Dim FileNumber

For FileNumber = 1 To 5 ' Repeat loop 5 times.

 ' Open file for writing. FileNumber is added

 ' to the filename as string and at the same time

 ' serves as the loop counter.

 Open "TEST" & FileNumber For Output As #FileNumber

 Write #FileNumber, "Hello All" ' Writing data into the file.

Next FileNumber

Reset ' Close all files and write the contents of the

buffers

 'on the disk.

See Also Close Statement, End Statement , Open Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

254

Resume Statement

Resume Statement

Resumes execution after an error-handling routine is finished.

Syntax
Resume

Resume Next

Resume line

The Resume statement syntax can have any of the following forms:

Statement Description

Resume

If the error occurred in the same procedure as the error

handler, execution resumes with the statement that

caused the error. If the error occurred in a called

procedure, execution resumes at the statement that last

called out of the procedure containing the error-handling

routine.

Resume Next

If the error occurred in the same procedure as the error

handler, execution resumes with the statement

immediately following the statement that caused the

error. If the error occurred in a called procedure,

execution resumes with the statement immediately

following the statement that last called out of the

procedure containing the error-handling routine (or On

Error Resume Next statement).

Resume line

Execution resumes at line specified in the required line

argument. The line argument is a line label or line

number and must be in the same procedure as the error

handler.

Remarks

If you use a Resume statement anywhere except in an error-handling routine, an error occurs.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

255

This example uses the Resume statement to end error handling in a procedure, and then resume

execution with the statement that caused the error. Error number 75 is generated to illustrate using

the Resume statement.
Sub ResumeStatementDemo()

 On Error GoTo ErrorHandler ' Enable error-handling routine.

 Open "TESTFILE" For Output As #1 ' Open file for output.

 Kill "TESTFILE" ' Attempt to delete open file.

 Exit Sub ' Exit Sub to avoid error handler.

ErrorHandler: ' Error-handling routine.

 Select Case Err() ' Evaluate error number.

 Case 55,75 ' "File already open" or "Path/File access error" error.

 Trace """File already open"" or ""Path/File access error"" error"

 Close #1 ' Close open file.

 Case Else

 ' Handle other situations here....

 End Select

 Resume ' Resume execution at same line that caused the error.

End Sub

See Also Erl Function , Err Function , Error$ Function , On Error Statement

Right Function

Right Function

Returns a FixStr (String) containing a specified number of characters from the right side of a

string.

Syntax
Right(string, length)

The Right function syntax has these named arguments:

Element Description

string
Required. String expression from which the rightmost characters are

returned. If string contains Null, Null is returned.

length

Required; Long. Numeric expression indicating how many characters to

return. If 0, a zero-length string ("") is returned. If greater than or equal to

the number of characters in string, the entire string is returned.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

256

To determine the number of characters in string, use the Len function.

The Right$ form returns String values. The Right form returns FixStr values.

Example

This example uses the Right function to return a specified number of characters from the right

side of a string.
Dim AnyString, MyStr

AnyString = "Hello World" ' Define string.

MyStr = Right(AnyString, 1) ' Returns "d"

MyStr = Right(AnyString, 6) ' Returns "World".

MyStr = Right(AnyString, 20) ' Returns "Hello World".

See Also Len Function, Mid Function , Left Function

RmDir Statement

RmDir Statement

Removes an existing directory or folder.

Syntax
RmDir path

Remarks

The required argument path is a string, defining the directory or folder to be removed. It may

contain a drive name. If the drive is not specified, the RmDir statement removes the directory or

folder on the current drive.

An attempt to remove with RmDir a directory or folder which contain files will generate an error.

To delete all files from directory or folder you should use the Kill statement.

Example

In this example the RmDir statement is used to remove an existing directory or folder.
' Assume that MYDIR is an empty directory or folder.

RmDir "MYDIR" ' Removes MYDIR.

ConceptDraw DIAGRAM Third Party Developer’s Guide

257

See Also ChDir Statement, MkDir Statement , Kill Statement, CurDir Function

Rnd Function

Rnd Function

Returns a Single containing a random number.

Syntax
Rnd[(num)]

The optional num argument is a Single or any valid numeric expression.

Retun Values

If num is Rnd() returns

Less than zero The same number every time, using num as the seed.

Greater than zero The next random number in the sequence.

Equal to zero The most recently generated number.

Not supplied The next random number in the sequence.

Remarks

The Rnd() function returns a value less than 1 but greater than or equal to zero.

The value of num determines how Rnd generates a random number:

For any given initial seed, the same number sequence is generated because each successive call to

the Rnd function uses the previous number as a seed for the next number in the sequence.

Before calling Rnd, use the Randomize statement without an argument to initialize the random-

number generator with a seed based on the system timer.

To produce random integers in a given range, use this formula:

Int((upperbound - lowerbound + 1) * Rnd() + lowerbound)

Here, upperbound is the highest number in the range, and lowerbound is the lowest number in the

range.

ConceptDraw DIAGRAM Third Party Developer’s Guide

258

Note To repeat sequences of random numbers, call Rnd with a negative argument

immediately before using Randomize with a numeric argument. Using Randomize with the

same value for number does not repeat the previous sequence.

Example

This example uses the Rnd function to generate a random integer value from 1 to 6.
Dim MyValue

MyValue = Int((6 * Rnd()) + 1) ' Generate random value between 1 and 6.

See Also Randomize Statement, Timer Function

Round Function

Round Function

Returns a value of the same type that is passed to it, rounded to a specified number of decimal

places.

Syntax
Round([num,[NumAfterDecimal]])

The optional num argument is a Double or any valid numeric expression. If this argument is

omitted, is a non-initialized variable, or Null, the function returns 0.

The optional NumAfterDecimal argument is an Int indicating how many places to the right of the

decimal are included in the rounding. The default value is 0, that is integers are returned Round

function (the decimal separator is not displayed then).

Remarks

Use this function to get numbers of needed accuracy. If the number of places to the right of the

decimal is greater than NumAfterDecimal, the last non-zero digit is rounded by standard

mathematical rules. If the number of places to the right of the decimal in num is less than

NumAfterDecimal, extra zeros are not displayed.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

259

This example shows how Round is used in 3 cases: when the second argument is omitted, when

the number of places to the right of the decimal is greater than the second argument, and vice

versa.
Dim MyNumber

MyNumber = Round(99.8) ' Returns 100

MyNumber = Round(25.125, 2) ' Returns 25.13

MyNumber = Round(-45.753, 5) ' Returns -45.753

See Also Fix Function, Int Function , Type Conversion Functions

RSet Statement

RSet Statement

Justifies the string by the right edge of the string variable.

Syntax
RSet stringvar = string

The RSet statement syntax has these Elements:

Element Description

stringvar Required. The name of the string variable.

string
Required. The string expression to be justified by the right edge of the

string variable.

Example

In this example the RSet statement is used to justify the string by the right edge of the string

variable.
Dim MyString

MyString = "0123456789" ' Initializes the string.

Rset MyString = "Right->" ' MyString contains " Right->".

Trace "|"&MyString&"|"

See Also LSet Statement, Data Types

ConceptDraw DIAGRAM Third Party Developer’s Guide

260

RTrim Function

Rtrim Function

Returns a FixStr (String) containing a copy of a specified string without trailing spaces.

Syntax

RTrim(string)

Remarks

The required string argument is any valid string expression. If string contains Null, Null is

returned.

The RTrim$ form returns String values. The RTrim form returns FixStr values.

Example

This example uses the LTrim function to strip leading spaces and the RTrim function to strip

trailing spaces from a string variable. It uses the Trim function alone to strip both types of spaces.
Dim MyString, TrimString

MyString = " <-Trim-> " ' Initialize string.

TrimString = LTrim(MyString) ' TrimString = "<-Trim-> ".

TrimString = RTrim(MyString) ' TrimString = " <-Trim->".

TrimString = LTrim(RTrim(MyString)) ' TrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

TrimString = Trim(MyString) ' TrimString = "<-Trim->".

See Also Left Function , Right Function

Seek Function

Seek Function

Returns a Long specifying the current read/write position within a file opened using the Open

statement.

Syntax
Seek(filenumber)

ConceptDraw DIAGRAM Third Party Developer’s Guide

261

The required filenumber argument is an Integer containing a validfile number.

Remarks

Seek returns a value between 1 and 2,147,483,647 (equivalent to 2^31 – 1), inclusive.

The following describes the return values for each file access mode.

Mode Returned Value

Random Number of the next record read or written

Binary,

Output,

Append,

Input

Byte position at which the next operation takes place. The first byte in a file

is at position 1, the second byte is at position 2, and so on.

Example

For files opened in other modes, Seek returns the byte position at which the next operation takes

place. Assume TESTFILE is a file containing a few lines of text.
Dim MyChar

Open "TESTFILE" For Input As #1 ' Open file for reading.

Do While Not EOF(1) ' Loop until end of file.

 Get(#1,MyChar) ' Read next character of data.

 Trace Seek(1)

Loop

Close #1 ' Close file.

See Also
Get Statement, Open Statement , Put Statment, Seek Statement, Loc

Function

Seek Statement

Seek Statement

Sets the position for the next read/write operation within a file opened using the Open statement.

Syntax
Seek [#]filenumber, position

The Seek statement syntax has the following Elements:

Element Description

filenumber Required. Any valid file number.

ConceptDraw DIAGRAM Third Party Developer’s Guide

262

position
Required. Number in the range 1 – 2,147,483,647, that indicates where the

next read/write operation should occur.

Remarks

Record numbers specified in Get and Put statements override file positioning performed by Seek.

Performing a file-write operation after a Seek operation beyond the end of a file extends the file.

If you attempt a Seek operation to a negative or zero position, an error occurs.

Example

In this example the Seek statement sets a new position in the file for the next read/write operation.
Dim MaxSize, NextChar, MyChar

Open "TESTFILE" For Input As #1 ' Opens file for reading.

MaxSize = LOF(1) ' Determines file size in bytes.

' Subsequently reads all records starting from the last one.

For NextChar = MaxSize To 1 Step -1

 Seek #1, NextChar ' Specifies the byte number.

 MyChar = Input(1, #1) 'Reads symbol.

Next NextChar

Close #1 ' Closes file.

See Also
Recording Data in a File, Get Statement, Open Statement, Put

Statement, Loc Function, Seek Function

Select Case Statement

Select Case Statement

Executes one of several groups of statements, depending on the value of an expression.

Syntax
Select Case testexpression

[Case expressionlist-n

[statements-n]] ...

[Case Else

[elsestatements]]

End Select

The Select Case statement syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

263

testexpression Required. Any expression.

expressionlist-n

Required if a Case appears. Delimited list of one or more of the

following forms: expression, expression To expression, Is

comparisonoperator expression. The To keyword specifies a range

of values. If you use the To keyword, the smaller value must

appear before To. Use the Is keyword with comparison operators

(except Is and Like) to specify a range of values.

statements-n
Optional. One or more statements executed if testexpression

matches any Element of expressionlist-n.

elsestatements
Optional. One or more statements executed if testexpression

doesn't match any of the Case clause.

Remarks

If testexpression matches any Case expressionlist expression, the statements following that Case

clause are executed up to the next Case clause, or, for the last clause, up to End Select. Control

then passes to the statement following End Select. If testexpression matches an expressionlist

expression in more than one Case clause, only the statements following the first match are

executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is found

between the testexpression and an expressionlist in any of the other Case selections. Although not

required, it is a good idea to have a Case Else statement in your Select Case block to handle

unforeseen testexpression values. If no Case expressionlist matches testexpression and there is no

Case Else statement, execution continues at the statement following End Select.

You can use multiple expressions or ranges in each Case clause. For example, the following line

is valid:

Case 1 To 4, 7 To 9, 11, 13, Is > MaxNumber

 Note: The Is comparison operator is not the same as the Is keyword used in the Select Case

statement.

You also can specify ranges and multiple expressions for character strings. In the following

example, Case matches strings that are exactly equal to "everything", strings that fall between

"nuts" and "soup" in alphabetic order, and the current value of TestItem:

Case "everything", "nuts" To "soup", TestItem

Select Case statements can be nested. Each nested Select Case statement must have a matching

End Select statement.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

264

This example uses the Select Case statement to evaluate the value of a variable. The second Case

clause contains the value of the variable being evaluated, and therefore only the statement

associated with it is executed.
Dim Number

Number = 8 ' Initialize variable.

Select Case Number ' Evaluate Number.

Case 1 To 5 ' Number between 1 and 5, inclusive.

 Trace "Between 1 and 5"

' The following is the only Case clause that evaluates to True.

Case 6, 7, 8 ' Number between 6 and 8.

 Trace "Between 6 and 8"

Case 9 To 10 ' Number is 9 or 10.

 Trace "Greater than 8"

Case Else ' Other values.

 Trace "Not between 1 and 10"

End Select

See Also If...Then...Else Statement , On...GoTo Statement

SetAttr Statement

SetAttr Statement

Sets attribute information for a file.

Syntax
SetAttr pathname, attributes

The SetAttr statement syntax has these named arguments:

Element Description

pathname
Required. String expression that specifies a file name - may include

directory or folder, and drive.

attributes Required. Constant or numeric expression, setting file attributes.

Values

Below are possible values of the attributes argument:

Constant Value Description

cdbNormal 0 Normal.

ConceptDraw DIAGRAM Third Party Developer’s Guide

265

cdbReadOnly 1 Read Only.

cdbHidden 2 Hidden.

cdbSystem 4 System (only in Microsoft Windows)

cdbArchive 32
File was changed since last backup (only in Microsoft

Windows)

cdbAlias 64 The filename is an alias (only on the Macintosh).

Notice: These constants are defined in the application. This means that their names can be used

anywhere in your code in place of the actual values.

Example

In this example the SetAttr statement is used to set attribute information for a file.
' Sets the Hidden attribute.

SetAttr "TESTFILE", cdbHidden

' Sets Hidden and Read Only attributes.

SetAttr "TESTFILE", cdbHidden + cdbReadOnly

See Also FileAttr Function, GetAttr Function

Set Statement

Set Statement

Assigns an object reference to a variable or property.

Syntax
Set objectvar = {[New] objectexpression | Nothing}

The Set statement syntax has these Elements:

Element Description

objectvar
Required. Name of the variable or property; follows standard variable

naming conventions.

New

Optional. New is usually used during declaration to enable implicit object

creation. When New is used with Set, it creates a new instance of the

object. If objectvar contained a reference to an object, that reference is

released when the new one is assigned. The New keyword can't be used to

create new instances of any intrinsic data type and can't be used to create

dependent objects.

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d1%87%d0%b0%d0%bd%d0%b8%d0%b5&translation=notice&srcLang=ru&destLang=en

ConceptDraw DIAGRAM Third Party Developer’s Guide

266

objectexpressio

n

Required. Expression consisting of the name of an object, another declared

variable of the same object type, or a function or method that returns an

object of the same object type.

Nothing

Optional. Discontinues association of objectvar with any specific object.

Assigning Nothing to objectvar releases all the system and memory

resources associated with the previously referenced object when no other

variable refers to it.

Remarks

To be valid, objectvar must be an object type consistent with the object being assigned to it.

The Dim, ReDim, and Static statements only declare a variable that refers to an object. No actual

object is referred to until you use the Set statement to assign a specific object.

The following example illustrates how Dim is used to declare an array with the type DRect. No

instance of DRect actually exists. Set then assigns references to new instances of DRect to the

myRects variable.

Dim myRects(4) As DRect

Set myRects(1) = New DRect

Set myRects(2) = New DRect

Set myRects(3) = New DRect

Set myRects(4) = New DRect

Generally, when you use Set to assign an object reference to a variable, no copy of the object is

created for that variable. Instead, a reference to the object is created. More than one object

variable can refer to the same object. Because such variables are references to the object rather

than copies of the object, any change in the object is reflected in all variables that refer to it.

However, when you use the New keyword in the Set statement, you are actually creating an

instance of the object.

Example

This example uses the Set statement to assign object references to variables.
Dim YourShape As Shape, MyObject, MyStr

Set YourShape = thisDoc.ActivePage.DrawRect(100,100,600,400)

Set MyObject = YourObject ' Assign object reference.

' MyObject and YourShape refer to the same object.

YourShape.Text = "Hello World" ' Initialize property.

MyStr = MyObject.Text ' Returns "Hello World".

' Discontinue association. MyObject no longer refers to YourShape.

Set MyObject = Nothing ' Release the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

267

See Also Dim Statement, ReDim Statement, Let Statement, Static Statement

Sgn Function

Sgn Function

Returns a Variant (Integer) indicating the sign of a number.

Syntax
Sgn([num])

The optional num argument is a Double or any valid numeric expression. If this argument is

omitted, is a non-initialized variable, or Null, the function returns 0.

Return Values

If num is Sgn() returns

Greater than zero 1

Equal to zero 0

Less than zero -1

Remarks

The sign of the num argument determines the return value of the Sgn function.

Example
Dim MyVar1, MyVar2, MyVar3, MySign

MyVar1 = 12: MyVar2 = -2.4: MyVar3 = 0

MySign = Sgn(MyVar1) ' Returns 1.

MySign = Sgn(MyVar2) ' Returns -1.

MySign = Sgn(MyVar3) ' Returns 0.

See Also Abs Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

268

Shell Function

Shell Function

Runs an executable program and returns a Variant (Boolean) if successful, representing the

result.

Syntax
Shell([pathname[,windowstyle]])

The Shell function syntax has these named arguments:

Element Description

pathname
Optional; Variant (String). Name of the program to execute and any required

arguments or command-line switches; may include directory or folder and drive.

windowstyle

Optional. Variant (Integer) corresponding to the style of the window in which

the program is to be run. If windowstyle is omitted, the program is started

minimized with focus.

The windowstyle named argument has these values:

Constant Value Description

cdbHide 0
Window is hidden and focus is passed to the

hidden window.

cdbNormalFocus 1
Window has focus and is restored to its original

size and position.

cdbMinimizedFocus 2 Window is displayed as an icon with focus.

cdbMaximizedFocus 3 Window is maximized with focus.

cdbNormalNoFocus 4

Window is restored to its most recent size and

position. The currently active window remains

active.

cdbMinimizedNoFocus 6
Window is displayed as an icon. The currently

active window remains active.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

269

If the Shell function successfully executes the named file, it returns True. If the Shell function

can't start the named program, it returns False.

Note The Shell function runs other programs asynchronously. This means that a program

started with Shell might not finish executing before the statements following the Shell

function are executed.

The windowstyle argument is only considered on Windows system.

Example
' Specifying 1 as the second argument opens the application in

' normal size and gives it the focus.

Dim RetVal

RetVal = Shell("C:\WINDOWS\CALC.EXE", 1) ' Run Calculator.

See Also GetOpenFileName Function

Sin Function

Sin Function

Returns a Double specifying the sine of an angle.

Syntax
Sin([num])

The optional num argument is a Double or any valid numeric expression, specifying the angle in

radians. If this argument is omitted, is a non-initialized variable, or Null, the function returns 0.

Remarks

The Sin function takes an angle in radians and returns the ratio of two sides of a right triangle.

The ratio is the length of the side opposite the angle divided by the length of the hypotenuse.

The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply

radians by 180/pi.

Example
Dim MyAngle, MyCosecant

MyAngle = 1.3 ' Define angle in radians.

MyCosecant = 1 / Sin(MyAngle) ' Calculate cosecant.

ConceptDraw DIAGRAM Third Party Developer’s Guide

270

See Also Atn Function, Cos Function, Tan Function

Space Function

Space Function

Returns a FixStr (String) consisting of the specified number of spaces.

Syntax

Space[$]([number])

The required number argument is the number of spaces you want in the string.

Remarks

The Space function is useful for formatting output and clearing data in fixed-length strings.

The Space$ form String values. The Space form returns FixStr values.

Example

This example uses the Space function to return a string consisting of a specified number of

spaces.
Dim MyString

' Returns a string with 10 spaces.

MyString = Space(10)

' Insert 10 spaces between two strings.

MyString = "Hi" & Space(10) & "all"

See Also Spc Function, String Function

Spc Function

Spc Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

271

Used with the Print # statement to position output.

Syntax
Spc(n)

The required n argument is the number of spaces to insert before displaying or printing the next

expression in a list.

Remarks

If n is less than the output line width, the next print position immediately follows the number of

spaces printed. If n is greater than the output line width, Spc calculates the next print position

using the formula:

currentWritePosition + (n Mod width)

For example, if the current print position is 24, the output line width is 80, and you specify

Spc(90), the next print will start at position 34 (current print position + the remainder of 90/80). If

the difference between the current print position and the output line width is less than n (or n Mod

width), the Spc function skips to the beginning of the next line and generates spaces equal to n –

(width – currentWritePosition).

Note. Make sure your tabular columns are wide enough to accommodate wide letters.

Example

In the example below the Spc function is used to position output in a file.
' The Spc function can be used with the Print # statement.

' Open file for output.

Open "TESTFILE" For Output As #1

Print #1, "10 space between this string"; Spc(10); "and this string."

Close #1 ' Close file.

See Also
Print # Statement, Width # Statement, Mod Operator, Space Function ,

Tab Function

Sqr Function

Sqr Function

Returns a Double specifying the square root of a number.

Syntax
Sqr([num])

ConceptDraw DIAGRAM Third Party Developer’s Guide

272

The required num argument is a Double or any valid numeric expression greater than or equal to

zero. If this argument is omitted, is a non-initialized variable, or Null, the function returns Null.

Example
Dim MySqr

MySqr = Sqr(4) ' Returns 2.

MySqr = Sqr(23) ' Returns 4.79583152331272.

MySqr = Sqr(0) ' Returns 0.

MySqr = Sqr(-4) ' Generates a run-time error.

Static Statement

Static Statement

Declare static variables and allocate storage space. Variables declared with the Static statement

retain their values as long as the code is running.

Syntax
Static varname[([subscripts])] [As [New] type] [, varname[([subscripts])] [As [New] type]] . . .

The Static statement syntax has these Elements:

Element Description

varname
Required. Name of the variable; follows standard variable naming

conventions.

subscripts

Optional. Dimensions of an array variable; up to 10 multiple dimensions

may be declared. The subscripts argument uses the following syntax:

count1[, count2] . . .

where count1, count2 are constants, indicating the upper limit of allowable

indices for the defined array. The lower limit of allowable indices always

equals 0. So, for a one-dimensional array the number of elements can be

calculated as count1+1 .

New

Optional. Keyword that enables implicit creation of an object. If you use

New when declaring the object variable, a new instance of the object is

created during declaration, so you don't have to use the Set statement to

assign the object reference. The New keyword can't be used to declare

variables of any intrinsic data type, can't be used to declare instances of

dependent objects or objects that don't have built-in constructor.

type

Optional. Data type of the variable; may be Byte, Boolean, Integer, Long,

Single, Double, Date, String (for variable-length strings), String * length

(for fixed-length strings), Object, Variant, or an object type. Use a separate

As type clause for each variable you declare.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

273

Once module code is running, variables declared with the Static statement retain their value until

the module is reset or restarted. Use the Static statement in procedures to explicitly declare

variables that are visible only within the procedure, but whose lifetime is the same as the module

in which the procedure is defined.

Use a Static statement within a procedure to declare the data type of a variable that retains its

value between procedure calls. For example, the following statement declares a fixed-size array of

integers:

Static EmployeeNumber(200) As Integer

The following statement declares a variable for a new instance of a database engine:

Static Eng As New dbEngine

If the New keyword isn't used when declaring an object variable, the variable that refers to the

object must be assigned an existing object using the Set statement before it can be used. Until it is

assigned an object, the declared object variable has the special value Nothing, which indicates

that it doesn't refer to any Elementicular instance of an object. When you use the New keyword in

the declaration, an instance of the object will be created.

If you don't specify a data type or object type, the variable is Variant by default.

All declared variables except objects declared with New, take the Empty value, which indicates

that they are not initialized.

 Tip: It's recommended to place all delcarations in the beginning of a module or a procedure.

This shortens the time of compilation.

Example

This example uses the Static statement to retain the value of a variable for as long as module code

is running.
' Function definition.

Function KeepTotal(Number As Long) As Long

 ' Variable Accumulate preserves its value between calls.

 Static Accumulate As Long

 Accumulate = Accumulate + Number

 KeepTotal = Accumulate

End Function

See Also
Data Type Summary, Dim Statement, ReDim Statement, Set Statement,

Const Statement, Function Statement, Sub Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

274

Statements Index

Statements Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

•
Beep

• Call

• ChDir

• ChDrive

• Close

• Const

• Date=

• Declare

• Dim

• Do...Loop

• End

• Enum

• Erase

• Error

• Exit Do

• Exit For

• Exit Function

• Exit Sub

• FileCopy

• For...Next

• Function...End Function

• Get

• GoSub...Return

• GoTo

•
If...Then...Else

• Input

•
Kill

ConceptDraw DIAGRAM Third Party Developer’s Guide

275

• Let

• Line Input

• LSet

• Mid

• MkDir

• Name

• On...GoSub

• On...GoTo

• On Error

• Open

• Pause

• Print #

• Put

•
Randomize

• ReDim

• Reset

• Resume

• RmDir

• RSet

• Seek

• Select Case

• Set

• SetAttr

• Static

• Stop

• Sub...End Sub

• Time=

• Trace

•
Wait

• While...Wend

• Width #

•
Write #

ConceptDraw DIAGRAM Third Party Developer’s Guide

276

Statements

Statements

Category Actions Statements

Arrays Declare and initialize Dim, ReDim, Static

 Reinitialize Erase, ReDim

Controlling program

flow

Branch GoSub...Return, GoTo, On Error,

On...GoSub, On...GoTo

 Exit or pause the program End, Stop, Wait, Pause

 Loop Do...Loop, For...Next, While...Wend

 Make decision If...Then...Else, Select Case

 Preprocessor directives #If...#Else...#Endif

Date/time Set date or time Date=, Time=

Error trapping Simulate run-time errors Error

 Trap errors while a program is

running

On Error, Resume

File I/O Access or create a file Open

 Close files Close, Reset

 Control output appearance Width #

 Copy one file to another FileCopy

 Manage disk drives or

directories

ChDir, ChDrive, MkDir, RmDir

 Manage files Kill, Name

 Read from file Get, Input, Line Input

 Set file attributes SetAttr

 Set read-write position in a file Seek

 Write to a file Print, Put, Write #

Math Generate random numbers Randomize

Procedures Call a procedure Call

 Declare a reference to an

external procedure

Declare

 Define a procedure Function...End Function, Sub...End

Sub

 Exit from a procedure Exit Function, Exit Sub

Strings Justify a string LSet, RSet

 Manipulate strings Mid

ConceptDraw DIAGRAM Third Party Developer’s Guide

277

Variables and

constants

Declare variables or constants Const, Enum, Dim, Static

 Assign value Let, Set

Miscellaneous Sound a beep Beep

 Tracing Trace

Index Alphabetical list of statements

Stop Statement

Stop Statement

Suspends execution.

Syntax
Stop

Remarks

You can place Stop statements anywhere in the code to suspend execution.

The Stop statement suspends execution, but unlike End, it doesn't close any files or clear

variables. Also unlike End, it doesn't stop execution of lower-level scripts.

If it's necessary to suspend execution of the script, but leave its procedures waiting for subsequent

calls, you should use the Stop statement.

 Note: The Stop statement operates within one execution level of ConceptDraw Basic script.

For example, you can define at the document level your procedures for common use from

different execution levels, and suspend execution of the code at the document level with Stop.

Then you can use procedures of the document level in code at the page or shape level.

The code at the execution level where Stop was performed is suspended and remains resident

waiting until procedures defined in it are called.

 Note: If neither Stop nor End was met during execition of code, code of this execution level is

considered resident by default.

Example

The following example demonstrates how to leave resident procedures of any execution level in

ConceptDraw Basic. Here the gData array is defined in the global area, and three procedures are

ConceptDraw DIAGRAM Third Party Developer’s Guide

278

defined in the code. However initially only one procedure - InitGlobalData() is called from the

global area. The execution is suspened by the Stop statement, leaving all procedures resident

waiting for subsequent calls.
Dim gData(256) As Double

' Definition of InitGlobalData() procedure

Sub InitGlobalData()

 ' Make global data initialization

 For i = 0 To 256

 gData(i)=i

 Next

End Sub

' Definition of TraceGlobalData() procedure

Sub TraceGlobalData ()

 For i = 0 To 256

 Trace gData(i)

 Next

End Sub

' Definition of RecalcGlobalData() procedure

Sub RecalcGlobalData ()

 For i = 0 To 256

 ' Do some calculation here

 gData(i)=gData(i)+Rnd()

 Next

End Sub

InitGlobalData() ' Call procedure for global data initialization

Stop

See Also End Statement

StrComp Function

StrComp Function

Returns an Integer indicating the result of a string comparison.

Syntax
StrComp(string1, string2[, compare])

Remarks

The StrComp function syntax has these named arguments:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

279

string1 Required. Any valid string expression.

string2 Required. Any valid string expression.

compare

Optional. Specifies the type of string comparison. The compare argument

may be omitted or have 0 or 1 value. To perform binary comparison,

specify 0 (default). To perform not case-sensitive textual comparison,

specify 1.

Return Values

If StrComp returns

string1 is less than string2 -1

string1 is equal to string2 0

string1 is greater than string2 1

string1 or string2 is Null Null

Example

This example uses the StrComp function to return the results of a string comparison. If the third

argument is 1, a textual comparison is performed; if the third argument is 0 or omitted, a binary

comparison is performed.
Dim MyStr1, MyStr2, MyComp

MyStr1 = "ABCD": MyStr2 = "abcd" ' Define variables.

MyComp = StrComp(MyStr1, MyStr2, 1) ' Returns 0.

MyComp = StrComp(MyStr1, MyStr2, 0) ' Returns -1.

MyComp = StrComp(MyStr2, MyStr1) ' Returns 1.

See Also InStr Function

String Function

String Function

Returns a FixStr (String) containing a repeating character string of the length specified.

Syntax
String(number, character)

The String function syntax has these named arguments:

ConceptDraw DIAGRAM Third Party Developer’s Guide

280

Element Description

number
Required; Long. Length of the returned string. If number contains Null,

Null is returned.

character

Required; Variant. Character code specifying the character or string

expression whose first character is used to build the return string. If

character contains Null, Null is returned.

Remarks

If you specify a number for character greater than 255, String converts the number to a valid

character code using the formula:

character Mod 256

The String$ form returns String values. The String form returns FixStr values.

Example

This example uses the String function to return repeating character strings of the length specified.
Dim MyString

MyString = String(5, "*") ' Returns "*****"

MyString = String(5, 42) ' Returns "*****"

MyString = String(10, "ABC") ' Returns "AAAAAAAAAA"

See Also Mod Operator, Space Function

Str Function

Str Function

Return an FixStr value.

Syntax
Str[$]([number])

Example
Dim MyString

ConceptDraw DIAGRAM Third Party Developer’s Guide

281

MyString = Str(459) ' Returns " 459".

MyString = Str(-459.65) ' Returns "-459.65".

MyString = Str(459.001) ' Returns " 459.001".

See Also Format Function, Type Conversion Functions, Val Function

Sub...End Sub Statement

Sub...End Sub Statement

Declares the name, arguments, and code that form the body of a Sub procedure.

Syntax
Sub name ([arglist])

[statements]

[Exit Sub]

[statements]

End Sub

The Sub statement syntax has these Elements:

Element Description

name
Required. Name of the Sub; follows standard variable naming

conventions.

arglist

Optional. List of variables representing arguments that are passed

to the Sub procedure when it is called. Multiple variables are

separated by commas.

statements
Optional. Any group of statements to be executed within the Sub

procedure.

The arglist argument has the following syntax and Elements:

[ByVal | ByRef] varname [As type] [=defval]

Element Description

ByVal
Optional. Indicates that the argument is passed by value. ByVal is

the default in ConceptDraw Basic.

ByRef Optional. Indicates that the argument is passed by reference.

ConceptDraw DIAGRAM Third Party Developer’s Guide

282

varname

Required. Name of the variable representing the argument being

passed to the procedure; follows standard variable naming

conventions.

type

Optional. Data type of the valuepassed to the procedure; may be

Byte, Boolean, Integer, Long, Single, Double, Date, String (except

fixed length), Object , Variant or an object type.

defval
Optional. Constant that determine the value that will be passed to

the procedure by default if this argument is omitted.

Remarks

 Sub procedures can be recursive; that is, they can call themselves to perform a given task.

However, recursion can lead to stack overflow.

 The Exit Sub keywords cause an immediate exit from a Sub procedure. Program execution

continues with the statement following the statement that called the Sub procedure. Any number

of Exit Sub statements can appear anywhere in a Sub procedure.

 Like a Function procedure, a Sub procedure is a separate procedure that can take arguments,

perform a series of statements, and change the value of its arguments. However, unlike a

Function procedure, which returns a value, a Sub procedure can't be used in an expression.

 You call a Sub procedure using the procedure name followed by the argument list. See the Call

statement for specific information on how to call Sub procedures.

 Variables used in Sub procedures fall into two categories: those that are explicitly declared

within the procedure and those that are not. Variables that are explicitly declared in a procedure

(using Dim or the equivalent) are always local to the procedure. Variables that are used but not

explicitly declared in a procedure are also local unless they are explicitly declared at some higher

level outside the procedure.

 Note: You can't use GoSub, GoTo, or Return to enter or exit a Sub procedure.

Example

 This example uses the Sub statement to define the name, arguments, and code that form the

body of a Sub procedure.
' Sub procedure definition.

' Sub procedure with two arguments.

Sub SubTraceXY(x As Double, y As Double)

 Trace "X = " & x & " Y= " & y ' Print x,y to Output window.

End Sub

See Also Call Statement , Dim Statement , Exit Statement , Function Statement

ConceptDraw DIAGRAM Third Party Developer’s Guide

283

Tab Function

Tab Function

Used with the Print # statement to position output.

Syntax
Tab[(n)]

The optional n argument is the column number moved to before displaying or printing the next

expression in a list. If omitted, Tab moves the insertion point to the beginning of the next print

zone. This allows Tab to be used instead of a comma in locales where the comma is used as a

decimal separator.

Remarks

If the current print position on the current line is greater than n, Tab skips to the nth column on

the next output line. If n is less than 1, Tab moves the print position to column 1. If n is greater

than the output line width, Tab calculates the next print position using the formula:

n Mod width

For example, if width is 80 and you specify Tab(90), the next print will start at column 10 (the

remainder of 90/80). If n is less than the current print position, printing begins on the next line at

the calculated print position. If the calculated print position is greater than the current print

position, printing begins at the calculated print position on the same line.

The leftmost print position on an output line is always 1. When you use the Print # statement to

print to files, the rightmost print position is the current width of the output file, which you can set

using the Width # statement.

Note. Make sure your tabular columns are wide enough to accommodate wide letters.

Example

This example uses the Tab function to position output in a file.
' The Tab function can be used with the Print # statement.

Open "TESTFILE" For Output As #1 ' Open file for output.

' The second word prints at column 20.

Print #1, "Hello"; Tab(20); "World!"

' If the argument is omitted, cursor is moved to the next print zone.

Print #1, "Hello"; Tab(1); "World!"

Close #1 ' Close file.

ConceptDraw DIAGRAM Third Party Developer’s Guide

284

See Also
Print # Statement, Width # Statement, Mod Operator, Space Function ,

Spc Function

Tan Function

Tan Function

Returns a Double specifying the tangent of an angle.

Syntax
Tan([num])

The optional num argument is a Double or any valid numeric expression, specifying the angle in

radians. If this argument is omitted, is a non-initialized variable, or Null, the function returns 0.

Remarks

Tan takes an angle in radians and returns the ratio of two sides of a right triangle. The ratio is the

length of the side opposite the angle divided by the length of the side adjacent to the angle.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply

radians by 180/pi.

Example
Dim MyAngle, MyCotangent

MyAngle = 1.3 ' Define angle in radians.

MyCotangent = 1 / Tan(MyAngle) ' Calculate cotangent.

See Also Atn Function, Cos Function, Sin Function

Timer Function

Timer Function

Returns a Double representing the number of seconds elapsed since system was started.

ConceptDraw DIAGRAM Third Party Developer’s Guide

285

Syntax
Timer()

Example
Dim Start, Finish, Res

Start = Timer()

For a = 1 to 1000000

Res = sqr(a)

Next a

Finish = Timer()

MsgBox(Finish-Start) ' Loop run time in seconds

See Also Randomize Statement, Time Function

Time Function

Time Function

Returns a Date (String) indicating the current system time.

Syntax
Time[$]()

Remarks

The Time$ form returns String values. The Time form returns Date values. Use the Time

statement to set system date.

Example
Dim MyTime

MyTime = Time() ' Assign current system time

See Also Date Function, Date Statement, Time Statement, Timer Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

286

Time= Statement

Time= Statement

Sets the system time.

Syntax
Time = time

Remarks

If time is a string, Time attempts to convert it to a time using the time separators you specified for

your system. If it can't be converted to a valid time, an error occurs.

Note: Changing time is only possible if you have enough rights, required by the system.

Example
Dim MyTime

MyTime = #4:35:17 PM# ' Assign a time.

Time = MyTime ' Set system time to MyTime.

See Also Date Function, Date Statement, Time Function

Trace Statement

Trace Statement

Outputs information in the Output Window

Syntax
Trace expression

Remarks

Outputs the value of expression to "CDBasic Output" window. Trace statement is used to trace

the values of expressions and variables during debugging.

Example
Dim str as string

ConceptDraw DIAGRAM Third Party Developer’s Guide

287

str = "test message"

TRACE str

See Also MsgBox Function

Trim Function

Trim Function

Returns a FixStr (String) containing a copy of a specified string without leading and trailing

spaces.

Syntax

Trim(string)

Remarks

The required string argument is any valid string expression. If string contains Null, Null is

returned.

The Trim$ form returns String values. The Trim form returns FixStr values.

Example

This example uses the LTrim function to strip leading spaces and the RTrim function to strip

trailing spaces from a string variable. It uses the Trim function to strip both types of spaces.
Dim MyString, TrimString

MyString = " <-Trim-> " ' Initialize string.

TrimString = LTrim(MyString) ' TrimString = "<-Trim-> ".

TrimString = RTrim(MyString) ' TrimString = " <-Trim->".

TrimString = LTrim(RTrim(MyString)) ' TrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

TrimString = Trim(MyString) ' TrimString = "<-Trim->".

See Also Left Function, Right Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

288

UCase Function

UCase Function

Returns a FixStr (String) that has been converted to uppercase.

Syntax

UCase[$](string)

The required string argument is any valid string expression. If string contains Null, Null is

returned.

Remarks

Only lowercase letters are converted to uppercase; all uppercase letters and nonletter characters

remain unchanged.

The UCase$ form returns String values. The UCase form returns FixStr values.

Example

This example uses the UCase function to return an uppercase version of a string.
Dim LowerCase, UpperCase

LowerCase = "Hi all 1234" ' String to convert.

UpperCase = UCase(LowerCase) ' Returns "HI ALL 1234".

See Also LCase Function

Val Function

Val Function

Returns the numbers contained in a string as a numeric value of appropriate type.

Syntax
Val([string])

ConceptDraw DIAGRAM Third Party Developer’s Guide

289

The optional string argument is any valid string expression. If this argument is omitted, is a non-

initialized variable, or Null, the function returns 0.

Remarks

The Val function stops reading the string at the first character it can't recognize as Element of a

number. Symbols and characters that are often considered Elements of numeric values, such as

dollar signs and commas, are not recognized. However, the function recognizes the radix prefixes

&O (for octal) and &H (for hexadecimal). Blanks, tabs, and linefeed characters are stripped from

the argument.

The following returns the value 1835:

Val(" 1 835 dollars 28 cents")

In the code below, Val returns the decimal value -1 for the hexadecimal value shown:

Val("&HFFFF")

Use the IsDate function to determine if date can be converted to a date or time. CVDate

recognizes date literals and time literals as well as some numbers that fall within the range of

acceptable dates. When converting a number to a date, the whole number portion is converted to a

date. Any fractional Element of the number is converted to a time of day, starting at midnight.

Note The Val function recognizes only the period (.) as a valid decimal separator. When

different decimal separators are used, as in international applications, use CDbl instead to

convert a string to a number.

Example
Dim MyValue

MyValue = Val("2457") ' Returns 2457.

MyValue = Val(" 2 45 7") ' Returns 2457.

MyValue = Val("24 and 57") ' Returns 24.

See Also Str Function, Type Conversion Functions

VarType Function

VarType Function

Returns an Integer indicating the type or subtype of a variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

290

Syntax
VarType(varname)

The required varname argument is any variable.

Return Values

Constant Value Description

cdbEmpty 0 Empty (uninitialized). Returns for Variant only.

cdbNull 1 Null

cdbInteger 2 Integer

cdbLong 3 Long integer

cdbSingle 4 Single-precision floating-point number

cdbDouble 5 Double-precision floating-point number

cdbDate 7 Date value

cdbString 8 String

cdbObject 9 Object

cdbBoolean 11 Boolean value

cdbByte 17 Byte value

 Note: These constants are specified by ConceptDraw Basic. The names can be used anywhere

in your code in place of the actual values.

Example
Dim IntVar, StrVar, DateVar, MyCheck

' Initialize variables.

IntVar = CInt(459)

StrVar = "Hello World"

DateVar = #2/12/69#

MyCheck = VarType(IntVar) ' Returns 2.

Trace MyCheck

MyCheck = VarType(DateVar) ' Returns 7.

Trace MyCheck

MyCheck = VarType(StrVar) ' Returns 8.

Trace MyCheck

See Also
Data Type Summary , IsDate Function , IsEmpty Function , IsNull Function ,

IsNumeric Function

ConceptDraw DIAGRAM Third Party Developer’s Guide

291

Wait Statement

Wait Statement

Suspends the execution of the script for a specified interval.

Syntax
Wait TimeoutMilliseconds

The TimeoutMilliseconds parameter specifies the time, in milliseconds, for which to suspend

execution.

Remarks

The Wait statement is fully equivalent to the Pause statement. These two statements work

absolutely identically and are supported for compatibility with different versions of BASIC.

Example

In the example below Wait is used to create a 5 second pause.
Wait 5000

See Also Pause Statement, Timer Function

While...Wend Statement

While...Wend Statement

Executes a series of statements as long as a given condition is True.

Syntax
While condition

[statements]

Wend

The While...Wend statement syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

292

Element Description

condition Required. Expression that is True or False.

statements
One or more statements that are repeated while, or until, condition is

True.

Remarks

If condition is True, all statements are executed until the Wend statement is encountered. Control

then returns to the While statement and condition is again checked. If condition is still True, the

process is repeated. If it is not True, execution resumes with the statement following the Wend

statement.

While...Wend loops can be nested to any level. Each Wend matches the most recent While.

Example

This example uses the While...Wend statement to increment a counter variable. The statements in

the loop are executed as long as the condition evaluates to True.
Dim Counter

Counter = 0 ' Initialize variable.

While Counter < 20 ' Test value of Counter.

 Counter = Counter + 1 ' Increment Counter.

Wend ' End While loop when Counter > 19.

Trace Counter ' Prints 20 in the Output window.

See Also Do..Loop Statement, For...Next Statement

Width # Statement

Width # Statement

Set the string width for the files opened with the Open statement.

Syntax
Width #filenumber, width

The Width # sintax contains these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

293

filenumber Required. Any valid file number.

width

Required. Numeric expression with the 0–255 range inclusive. Sets how

many symbols to write to a line before going over to a new line. If width

equals 0 (default value), line width is not limited. The default value of the

width argument is 0.

Example

In the example below the Width # statement is used to set the line width for writing to the file.
Dim I

Open "TESTFILE" For Output As #1 ' Open file for writing.

Width #1, 5 ' Set width to 5.

For I = 0 To 9 ' The loop repeats 10 times.

 Print #1, Chr(48 + I); ' Print 5 characters per line.

Next I

Close #1 ' Close the file.

See Also Open Statement, Print # Statement

Write # Statement

Write # Statement

Writes non-formatted data to a sequential file.

Syntax
Write #filenumber, [outputlist]

The Write # statement syntax has the following Elements:

Element Description

filenumber Required. Any valid file number.

outputlist
Optional. One or more comma-delimited numeric expressions or string

expressions to write to a file.

Remarks

Data written with Write # is usually read from a file with Input #.

ConceptDraw DIAGRAM Third Party Developer’s Guide

294

If you omit outputlist and include a comma after filenumber, a blank line is printed to the file.

Multiple expressions can be separated with a space, a semicolon, or a comma. A space has the

same effect as a semicolon.

When Write # is used to write data to a file, several universal assumptions are followed so the

data can always be read and correctly interpreted using Input #, regardless of local settings:

• Numeric data is always written using the period as the decimal separator.

• For Boolean data, either #TRUE# or #FALSE# is printed. The True and False keywords

are not translated.

• Date data is written to the file using the universal date format. When either the date or the

time component is missing or zero, only the Element provided gets written to the file.

• If outputlist is Null or Empty, #NULL# is written to the file.

Unlike the Print # statement, the Write # statement inserts commas between items and quotation

marks around strings as they are written to the file. You don't have to put explicit delimiters in the

list. Write # inserts a newline character, that is, a carriage return–linefeed (Chr(13) + Chr(10)),

after it has written the final character in outputlist to the file.

Example

In this example the the Write # statement is used to write non-formatted data to a sequential file.
Open "TESTFILE" For Output As #1 ' Opens file for writing.

Write #1, "Hello World", 234 ' Writes comma-delimited data.

Write #1, ' Writes a blank line.

Dim MyBool, MyDate, MyNull

' Assigns values of Boolean, Date, Null types.

MyBool = False

MyDate = #February 12, 1969#

MyNull = Null

' Boolean data gets written as #TRUE# or #FALSE#. Date data is written

' using the universal date format, for instance, #1994-07-13#

' for July 13, 1994. Null values are written as #NULL#.

Write #1, MyBool ; " - logical"

Write #1, MyDate ; " - Date"

Write #1, MyNull ; " - Null"

Close #1 ' Closes file.

See Also
Writing Data to a File, Input # Statement, Open Statement, Print #

Statement

XOR Operator

XOR Operator

Used to perform a logical exclusion on two expressions.

ConceptDraw DIAGRAM Third Party Developer’s Guide

295

Syntax
[result =] expression1 Xor expression2

The Xor operator syntax has these Elements:

Element Description

result Optional; any numeric variable.

expression1 Required; any expression.

expression2 Required; any expression.

Remarks

If one, and only one, of the expressions evaluates to True, result is True. The following table

illustrates how result is determined:

If expression1 is And expression2 is The result is

True True False

True False True

False True True

False False False

The Xor operator performs as both a logical and bitwise operator. A bit-wise comparison of two

expressions using exclusive-or logic to form the result, as shown in the following table:

If expression1 is And expression2 is The result is

0 0 0

0 1 1

1 0 1

1 1 0

Example
Dim A, B, C, D, MyCheck

A = 10: B = 8: C = 6: D = Null ' Initialize variables.

MyCheck = A > B Xor B > C ' Returns False.

trace MyCheck

MyCheck = B > A Xor B > C ' Returns True.

trace MyCheck

MyCheck = B > A Xor C > B ' Returns False.

trace MyCheck

MyCheck = B > D Xor A > B ' Returns False.

trace MyCheck

MyCheck = A Xor B ' Returns 2 (bitwise comparison).

trace MyCheck

ConceptDraw DIAGRAM Third Party Developer’s Guide

296

See Also Operators

ConceptDraw DIAGRAM Third Party Developer’s Guide

297

Objects Reference

Objects Reference

• ConceptDraw access Objects

• Database access Objects

ConceptDraw access Objects

Action Object

Action Object

The Action object is used to control the properties of a ConceptDraw shape's user-defined menu

item and the action, associated with it. The user-defined menu appears when you right-click on

the shape. You can add items to the menu and assign to an item a formula which will be executed

when this menu item is clicked. To assign a formula to a menu item, use the

SetPropertyFormula method of the Shape object. The following methods of the Shape object

are defined for working with the menu item collection of a shape's user-defined menu:

Properties

Action The result of executing the formula, associated with this menu item.

Menu The name of the menu item.

Prompt The prompt that appears in the status bar when the menu item is selected.

Checked The state of a check mark beside the command name on the menu

Disabled The state of a menu item

Remarks

To retrieve an instance of the Action object, corresponding to an item of the user-defined menu

item collection of the shape, use the Action method of the Shape object. Use the ActionsNum

method to find out the number of the user-defined menu items. The AddAction method can be

used to add an item to the user-defined menu, and RemoveAction - to remove one.

See Also
Action method, ActionsNum method, AddAction method, RemoveAction

method, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

298

Application Object

Application Object

The Application object is used to control and get information about the ConceptDraw

application. By using the methods and properties of this object you can create new documents and

libraries, open, close and save the existing ones, control the user-defined menu at the application

level, library windows of the application and many more.

Properties

ActiveDoc Read-only. Returns the active document of the application.

ActiveLib Read-only. Returns the active library.

ActiveLibWnd Read-only. Returns the active library window.

CustomMenu Read-only. Returns the user-defined menu of the application.

DocumentsPath Read-only. Returns the full path to the files that are on the way, in a dialogue

nastraevaemom Preferences application in the Paths tab in the Documents.

HelpPath Read-only. Returns the full path to the files that are on the way, in a dialogue

nastraevaemom Preferences application in the Paths tab in the Help.

LibrariesPath Read-only. Returns the full path to the files that are on the way, in a dialogue

nastraevaemom Preferences application in the Paths tab in the Libraries.

TemplatesPath Read-only. Returns the full path to the files that are on the way, in a dialogue

nastraevaemom Preferences application in the Paths tab in the Templates.

Methods

CloseDoc Closes a document.

CloseLib Closes a library.

CreateNewDoc Creates a new document.

CreateNewLib Creates a new library.

Doc
Returns a document by its index in the document collection of the

application.

DocByName
Searches a document by its name (the Name property) in the document

collection of the application.

DocsNum Returns the number of open documents.

FindLib
Returns the index of the library in the library collection of the

document.

FirstDoc
Returns the first document in the document collection of the

application.

FirstLibWindow
Returns the first library window in the library window collection of the

application.

Import Imports a file of any format supported in ConceptDraw

ConceptDraw DIAGRAM Third Party Developer’s Guide

299

Lib
Returns a library by its index in the library collection of the

application.

LibByName
Searches a library by the specified name (the Name property) in the

library collection of the application.

LibsNum Returns the number of open libraries.

LibWindowByID Returns the library window by its ID.

LibWindowsNum Returns the number of library windows in the application.

NextDoc
Returns the next document in the document collection of the

application.

NextLibWindow
Returns the next library window in the library window collection of

the application.

OpenDoc Opens an existing ConceptDraw document file.

OpenLib Opens an existing ConceptDraw library file.

OpenWorkspace Opens an existing ConceptDraw workspace file.

SaveWorkspace Saves the current workspace in a file.

SetActiveLib Makes the specified library the active library.

Remarks

An instance of the Application object can be retrieved by using the thisApp global variable,

which returns an instance of the application in which the script is being executed. This variable is

accessible at all ConceptDraw Basic script levels.

See Also Document object, Library object, Menu object, Window object

ConceptDraw access Objects Methods Index

ConceptDraw access Objects

Methods Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ConceptDraw DIAGRAM Third Party Developer’s Guide

300

• Action

• ActionsNum

• AddAction

• AddConnectDot

• AddControlDot

• AddCustomProp

• AddDataSource

• AddDSValue

• AddGeometry

• AddHyperlinkToDocument

• AddHyperlinkToFile

• AddHyperlinkToPageShape

• AddHyperlinkToURL

• AddLayer

• AddMaster

• AddMenuItem

• AddPage

• AddStyle

• AddTabStop

• AddVariable

• ArcTo

• BeginShape

• Character

• CharactersNum

• CloseDoc

• CloseLib

• ColCount

• ColorEntry

• ColorProperty

• ColorsNum

• ConnectDot

• ConnectDotsNum

• ControlDot

• ControlDotsNum

• ConvertToGroup

• ConvertToVFPicture

• CreateNewDoc

• CreateNewLib

• CSVColorValue

• CSVGetColumnForKey

• CSVMinRowLength

• CSVRowLength

ConceptDraw DIAGRAM Third Party Developer’s Guide

301

• CSVRowMaxElement

• CSVRowMinElement

• CSVRowNum

• CSVText

• CSVTextForKey

• CSVValue

• CSVValueD

• CSVValueDForKey

• CSVValueForKey

• CSVValueType

• CustomProp

• CustomPropByLabel

• CustomPropsNum

• DataSource

• DataSourcesNum

• DeflateRect

• Deselect

• DeselectAll

• Doc

• DocByName

• DocsNum

• DoForConnected

• DrawConnector

• DrawGroup

• DrawGuide

• DrawLine

• DrawOval

• DrawRect

• DrawSector

• DrawSmartConnector

• DrawStamp

• DrawStampSelection

• DropStamp

• DropStampSelection

• DSValue

• DSValueEl

• DSValuesNum

• EndRebuild

• EndShape

• Equal

• ExcelColorValue

• ExcelGetColumnForKey

ConceptDraw DIAGRAM Third Party Developer’s Guide

302

• ExcelMinRowLength

• ExcelRowLength

• ExcelRowMaxElement

• ExcelRowMinElement

• ExcelRowNum

• ExcelText

• ExcelTextForKey

• ExcelValue

• ExcelValueD

• ExcelValueDForKey

• ExcelValueForKey

• ExcelValueType

• Export

• FileText

• FindFontByName

• FindLib (Application object)

• FindLib (Window object)

• FindMaster

• FindMenuItem

• FindPage

• FindStyle

• FirstDoc

• FirstLibWindow

• FirstView

• FontName

• FontsNum

• GeometriesNum

• Geometry

• GetBlack

• GetBlue

• GetBooleanProperty

• GetByteProperty

• GetCharacterIndex

• GetCyan

• GetDoubleProperty

• GetGreen

• GetHeight

• GetHyperlinkID

• GetIndex

• GetIntegerProperty

• GetLongProperty

• GetMagenta

ConceptDraw DIAGRAM Third Party Developer’s Guide

303

• GetParagraphIndex

• GetPropertyFormula

• GetRed

• GetSelectedService

• GetSelectedShape

• GetShapeByName

• GetSingleProperty

• GetStringProperty

• GetWidth

• GetYellow

• GPtoLp

• Hyperlink

• HyperlinkByID

• HyperlinksNum

• Import

• InflateRect

• InsertPicture

• IntersectRect

• IsDefaultFormula

• IsEmpty

• IsNullFormula

•
LAtoWA

• Layer

• LayerByName

• LayersNum

• Lib (Application object)

• Lib (Window object)

• LibByName (Application object)

• LibByName (Window object)

• LibsNum (Application object)

• LibsNum (Window object)

• LibWindowByID

• LibWindowsNum

• LineTo

• LPtoGP

• LPtoWP

• Master

• MasterByName

• MastersNum

ConceptDraw DIAGRAM Third Party Developer’s Guide

304

• Maximize

• MenuItem

• MenuItemByCmdID

• MenuItemsNum

• Minimize

• MoveShapeToPage

• MoveTo

• NextDoc

• NextLibWindow

• NextView

• NormalizeRect

• OffsetRect

• OpenDoc

• OpenLib

• OpenWorkspace

• Page

• PageByID

• PagesNum

• Paragraph

• ParagraphsNum

• PropertyChanged

• PtInRect

•
RecalcProperty

• RemoveAction

• RemoveAll

• RemoveAllServObjs

• RemoveAllShapes

• RemoveCharacter

• RemoveConnectDot

• RemoveControlDot

• RemoveCustomProp

• RemoveDataSource

• RemoveDSValue

• RemoveGeometry

• RemoveLayer

• RemoveLayerByID

• RemoveMaster

• RemoveMasterByName

• RemoveMenuItem

• RemoveMenuItemByCmdID

ConceptDraw DIAGRAM Third Party Developer’s Guide

305

• RemovePage

• RemovePageByID

• RemoveParagraph

• RemoveServObj

• RemoveServObjByID

• RemoveShape

• RemoveShapeByID

• RemoveStyle

• RemoveStyleByName

• RemoveTabStop

• RemoveUnusedHyperlink

• RemoveVariable

• RenameStyle

• ReorderPage

• ReorderPageByID

• ReorderServObj

• ReorderServObjByID

• ReorderShape

• ReorderShapeByID

• Restore

• RowCount

• Save (Document object)

• Save (Library object)

• SaveAs (Document object)

• SaveAs (Library object)

• ScrollViewTo

• SegmentsNum

• Select

• SelectAll

• SelectedNum

• SendBack

• SendFront

• ServObj

• ServObjByID

• ServObjsNum

• SetActiveLib

• SetActivePage

• SetActivePageByID

• SetActiveView

• SetBooleanProperty

• SetByteProperty

• SetCharColor

• SetCharFont

ConceptDraw DIAGRAM Third Party Developer’s Guide

306

• SetCharHyperlink

• SetCharLanguage

• SetCharPos

• SetCharSize

• SetCharSpacing

• SetCharStyle

• SetCmdProcessing

• SetCMYK

• SetDefaultFormula

• SetDoubleProperty

• SetFillColor

• SetFillPatColor

• SetIntegerProperty

• SetLongProperty

• SetNullFormula

• SetParaAfterSpacing

• SetParaBeforeSpacing

• SetParaFirstInd

• SetParaHAlign

• SetParaLeftInd

• SetParaLineSpacing

• SetParaRightInd

• SetPenColor

• SetPropertyFormula

• SetRect

• SetRectEmpty

• SetRGB

• SetShadowColor

• SetShadowPatColor

• SetShape

• SetSingleProperty

• SetStringProperty

• SetStyle

• SetWindowRect

• Shape

• ShapeByID

• ShapeBySubID

• ShapesNum

• SplineStart

• SplineTo

• StartRebuild

• StepBack

• StepFront

• Style

ConceptDraw DIAGRAM Third Party Developer’s Guide

307

• StyleByName

• StylesNum

• TabStop

• TabStopsNum

• UnionRect

• UpdateAllViews

• Variable

• VariablesNum

• ViewByID

• ViewsNum

• WPtoLP

• XPathText

• XPathValue

•
XPathValueD

ConceptDraw access Objects Properties Index

ConceptDraw access Objects

Properties Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• Action (Action object)

• Action (DataSource object)

• Active

• ActiveDoc

• ActiveLayer

• ActiveLib

• ActiveLibWnd

• ActivePage

• ActiveView

• Address

• AfterSpacing

• Align

• Angle

• Author

ConceptDraw DIAGRAM Third Party Developer’s Guide

308

• BackPageID

• BeforeSpacing

• BeginX

• BeginY

• Black

• Blue

• Bottom

• BottomMargin

• Caption

• Character

• Checked

• CmdID

• Color

• Colored

• Comment

• Company

• ConnectObjBegin

• ConnectObjEnd

• ConnectTypeBegin

• ConnectTypeEnd

• Count

• CustomMenu

• Cyan

• DataSource

• DblClick

• DblClickAction

• DefCharacter

• DefFillColor

• DefFillPatColor

• DefFillPattern

• DefParagraph

• DefPenColor

• DefPenPattern

• DefPenWeight

• DefShadowColor

• DefShadowPatColor

• DefShadowPattern

• DefStyle

• DefTabStop

• DefTextBlock

• Desc

ConceptDraw DIAGRAM Third Party Developer’s Guide

309

• Disabled

• Document (Page, ServObj, Shape objects)

• Document (Window object)

• DocumentsPath

• Enabled

• EndsSize

• EndX

• EndY

• FillColor

• Filled

• FillPatColor

• FillPattern

• FirstInd

• FlipX

• FlipY

• FlowAroundObjects

• Font

• Format

• FullName

• GPinX

• GPinY

• Green

• HAlign

• HasCharAttr

• HasEndsAttr

• HasFillAttr

• HasParaAttr

• HasPenAttr

• HasShadowAttr

• HasTxtblockAttr

• Height (Window object)

• Height (Shape object)

• HelpPath

• Hyperlink

• ID

• Index

• Invisible

• Is1D

• IsBackground

• IsCMYK

ConceptDraw DIAGRAM Third Party Developer’s Guide

310

• IsIndex

• IsRGB

• IsTransparent

•
Label

• Language

• Layer

• Left

• LeftInd

• LeftMargin

• LibrariesPath

• Library

• LineBegin

• LineEnd

• LineEndSize

• LineJumpOrient

• LineJumpSize

• LineJumpType

• LineSpacing

• LinkType

• LocalPath

• LockAspect

• LockBegin

• LockCalcWH

• LockDelete

• Locked

• LockEnd

• LockFlipX

• LockFlipY

• LockHeight

• LockMoveX

• LockMoveY

• LockRotate

• LockTextBound

• LockVertex

• LockWidth

• LPinX

• LPinY

• Magenta

• MaxNumberOfLegs

• Menu

ConceptDraw DIAGRAM Third Party Developer’s Guide

311

• MinDistToShapes

• Name

• NonPrinting

• ObjType

• OnCmdArgs

• OnCmdModule

• OnCmdSub

• Page (Shape object)

• Page (Window object)

• PageID

• PageSizeX

• PageSizeY

• Paragraph

• Parent (Menu, MenuItem objects)

• Parent (ServObj, Shape objects)

• PassThroughGroups

• Path

• PenColor

• PenPattern

• PenWeight

• Pos (Character object)

• Pos (TabStop object)

• Printable

• Prompt

•
Red

• Refresh

• Right

• RightInd

• RightMargin

• RoundCorners

• Scale

• ShadowColor

• ShadowOffsetX

• ShadowOffsetY

• ShadowPatColor

• ShadowPattern

• Shape

• ShapeID

• ShowAlignBox

ConceptDraw DIAGRAM Third Party Developer’s Guide

312

• ShowControlHandles

• ShowErrors

• ShowShapeHandles

• ShowText

• ShowWarnings

• Size

• SnapSensitive

• Spacing

• SplineSmooth

• State

• Style

• SubID

• Subj

• SubMenu

• TemplatesPath

• Text

• TextAngle

• TextBkgnd

• TextBlock

• TextFlipX

• TextFlipY

• TextGPinX

• TextGPinY

• TextHeight

• TextLPinX

• TextLPinY

• TextWidth

• Timeout

• Title

• Top

• TopMargin

• Type (CustomProp object)

• Type
(DataSource value object)

• Type (MenuItem object)

• Type (Window object)

• UnitIndex

• VAlign

• Value

• Verify

• ViewCenterX

ConceptDraw DIAGRAM Third Party Developer’s Guide

313

• ViewCenterY

• ViewZoom

• Visible

• Width (Window object)

• Width (Shape object)

• X

• XBehaviour

• XDyn

• Y

• YBehaviour

• YDyn

• Yellow

ConceptDraw access Objects

ConceptDraw access Objects

• Properties

• Methods

• Constants

Object Name Description

Action
Provides access to the user-defined menu items. An instance of the Action

object can be retrieved by using the methods of the Shape object.

Application

Provides access to the ConceptDraw application. Allows to open and close

documents, create new documents, libraries and workspace files, import files

of various formats and more. An instance of the Application object can be

retrieved from the thisApp global variable.

Character

Provides access to various text properties, such as font, font size, color, style,

etc. An instance of the Character object can be retrieved from the

Document, Style, Shape objects.

Color

An object for working with color. An instance of the Color object can be

retrieved from the Character, Document, Layer, Shape, Style, TextBlock

objects.

ColorEntry
An object for working with the color palette of the document. An instance of

the ColorEntry object can be retrieved from the Document object.

ConnectDot
This object stores the coordinates of a connection point. An instance of the

ConnectDot object can be retrieved from the Shape object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

314

ControlDot
Provides access to the properties of a shape's control handle. An instance of

the ControlDot object can be retrieved from the Shape object.

CustomProp
Stores additional information about the shape. An instance of the

CustomProp object can be retrieved from the Shape object.

DataSource The facility is designed to link the specified object's properties ConceptDraw

data at the source. An instance of the DataSource object can be obtained

using methods of theShape.

DataSourceValue The facility is designed to provide access to the fields of Data table object

parameters (shape). The object instance DataSourceValue can be obtained

using methods of theShape.

Document

Provides access to the contents and properties of the document, opened in

ConceptDraw. An instance of the Document object can be retrieved by using

methods and properties of the Application object.

DPoint
A service object which stores point's coordinates, used in coordinate

transformations.

DRect
Service object used to store coordinates of a rectangle and containing

methods for working with it.

Geometry

The Geometry object is used to control the properties of a shape's geometry.

It allows to modify the geometry properties, which affect the way the

geometry looks. An instance of the Geometry object can be retrieved by

using the methods of the Shape object.

HyperLink

Provides access to the hyperlink properties of the document. Hyperlinks are

stored in the document and allow to link shapes of the document to other

shapes, pages of the document, other files or URLs. An instance of the

Hyperlink object can be retrieved by using the methods of the Document

object.

Layer

Controls properties of a document's layers. You can use layers to organize

related objects in the document. An instance of the Layer object can be

retrieved from the Document object.

Library

Provides access to the contents and properties of a library, open in

ConceptDraw. Allows to view and edit the contents of the library. An

instance of the Library object can be retrieved by using the properties and

methods of the Application object.

Master

Provides access to the properties and contents of a library object (master

object). An instance of the Master object can be retrieved by using the

methods of the Library object.

Menu

Provides access to the user-defined menu of the application or document. Is

used together with the MenuItem object to organize multi-level structure of

the user-defined menu in ConceptDraw. An instance of the Menu object can

be retrieved from the following objects: Application, Document, Menu,

MenuItem.

http://translate.googleusercontent.com/l

ConceptDraw DIAGRAM Third Party Developer’s Guide

315

MenuItem

Provides access to the contents and properties of a user-defined menu item of

ConceptDraw. A menu-item can be associated with a procedure or contain a

submenu. An instance of the MenuItem object can be retrieved by using the

methods of the Menu object.

Page

Is used for controlling and accessing the contents of a document page. By

using the methods of the Page object, you can get access to the existing

shapes on the page or create new shapes. An instance of the Page object can

be retrieved by using the methods and properties of the Document object.

Paragraph
Provides access to various paragraph properties of text. An instance of this

object can be retrieved from the Document, Style, Shape objects.

ServObj

Used to control various properties of service objects, such as guides. Service

objects can be located as on a page, as in a separate group. Service objects

carry out auxiliary functions. In Elementicular, a guide line can be used for

aligning shapes. An instance of the ServObj object can be retrieved from the

Page and Shape objects.

Shape

The Shape is used for controlling and obtaining information about a shape in

a ConceptDraw document. Provides access to virtually all elements and

characteristics of a shape. Shape objects can exist on the pages of the

document, in libraries, inside groups. An instance of the Shape object can be

retrieved by using the methods and properties of the following objects: Page,

Shape, ServObj, Master, Window.

Style

Provides access to various style properties of a ConceptDraw document. An

instance of the Style object can be retrieved by using methods of the

Document object.

TabStop
Provides access to tabulation properties. An instance of the TabStop object

can be retrieved from the TextBlock object.

TextBlock

Provides access to various text block properties, such as vertical and

horizontal alignment and other. An instance of the TextBlock object can be

retrieved from the Document, Style, Shape objects.

Variable

A service object. You may need variables when several different fields use

result of the same calculations. So, the additional variables can be used to

store the results. You may also use the additional variables to store various

object parameters, which you're working with, so that you don't have to refer

to them. An instance of this object can be retrieved from the Shape object.

Window

Is used for controlling and obtaining information about the state of the library

window of ConceptDraw. An instance of the Window object can be retrieved

from the following objects: Application, Document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

316

Character Object

Character Object

Text in ConceptDraw shapes can consist of blocks (blocks of characters, sequence of characters)

with uniform formatting attributes: font, font size, color, style, etc. The Character object

provides access to various properties of such a text block.

Properties

Color Read-only. The color of the characters.

Count Read-only. The number of characters in this character block.

Font The font of character block.

Hyperlink The ID of the hyperlink associated with this character block.

Language Text encoding.

Pos Position relative to text baseline (subscript, superscript).

Size Font size.

Spacing Spacing between characters.

Style The font style (bold, italic, underline, etc).

Remarks

Character blocks are stored in the ConceptDraw shape and describe the way the shape's text is

displayed. The Shape object contains a number of methods for working with the character block

collection. Each character block describes the number of characters, defined by Count. The

properties defined by the character block are applied to the text of the shape according to the

order of blocks in the character block collection.

An instance of the Character object can be retrieved by using the same properties and methods:

Document object: DefCharacter property.

Shape object: Character method.

Style object: Character property.

To create a new character block in a shape with with the specified parameters, you can use the

following methods of the Shape object: SetCharColor method, SetCharFont method,

SetCharHyperlink method, SetCharLanguage method, SetCharPos method, SetCharSize method,

SetCharSpacing method.

See Also Color object, Document object, Paragraph object, Shape object, Style object

ConceptDraw DIAGRAM Third Party Developer’s Guide

317

ColorEntry Object

ColorEntry Object

An object for working with color palette element.

Properties

isRGB Read-only. Returns True if the color scheme is RGB. Otherwise returns False.

isCMYK
Read-only. Returns True if the color scheme is CMYK. Otherwise returns

False.

isTransparent True if the color is transparant, otherwise False.

Red The color's red component in the RGB scheme.

Green The color's green component in the RGB scheme.

Blue The color's blue component in the RGB scheme.

Cyan The color's cyan component in the CMYK scheme.

Magenta The color's magenta component in the CMYK scheme.

Yellow The color's yellow component in the CMYK scheme.

Black The color's black component in the CMYK scheme.

Methods

SetRGB Sets an RGB color.

SetCMYK Sets a CMYK color.

See Also Color object, Document object

Color Object

Color Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

318

An object for working with color. An instance of this object can be retrieved from the Document

Object, Style Object, Shape Object, Character Object, TextBlock Object, Layer Object objects.

Properties

isIndex
Read Only. Returns a Boolean value. If the object has indexed color, returns

TRUE. Otherwise returns FALSE.

isRGB
Read Only. Returns a Boolean value. If the object has RGB color, returns

TRUE. Otherwise returns FALSE.

isCMYK
Read Only. Returns a Boolean value. If the object has CMYK color, returns

TRUE. Otherwise returns FALSE.

isTransparent
Gets or sets a Boolean value. If the object has transparent color, returns

TRUE. Otherwise returns FALSE.

Index Gets or sets an Integer value. Is the index of the color in the palette.

Red Gets or sets an Integer value. Represents the red component of RGB color.

Green Gets or sets an Integer value. Represents the green component of RGB color.

Blue Gets or sets an Integer value. Represents the blue component of RGB color.

Cyan
Gets or sets an Integer value. Represents the cyan component of CMYK

color.

Magenta
Gets or sets an Integer value. Represents the magenta component of CMYK

color.

Yellow
Gets or sets an Integer value. Represents the yellow component of CMYK

color.

Black
Gets or sets an Integer value. Represents the black component of CMYK

color.

Methods

SetRGB Sets an RGB color.

SetCMYK Sets a CMYK color.

GetRed
Returns the Integer value of the red color component, regardless of the color

scheme of the Color object.

GetGreen
Returns the Integer value of the green color component, regardless of the

color scheme of the Color object.

GetBlue
Returns the Integer value of the blue color component, regardless of the

color scheme of the Color object.

GetCyan
Returns the Integer value of the cyan color component, regardless of the

color scheme of the Color object.

GetMagenta
Returns the Integer value of the magenta color component, regardless of the

color scheme of the Color object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

319

GetYellow
Returns the Integer value of the yellow color component, regardless of the

color scheme of the Color object.

GetBlack
Returns the Integer value of the black color component, regardless of the

color scheme of the Color object.

See Also
Character object, ColorEntry object, Document object, Layer object, Shape

object, Style object, TextBlock object

ConnectDot Object

ConnectDot Object

Object for storing coordinates of a connection point. Connection Points are associated with an

object. They indicate locations in which other objects can be glued to it. An instance of this object

can be retrieved from the Shape object.

Properties

Name Description

X
The X-coordinate of the connection point in the coordinate system of the shape to

which it belongs.

Y
The Y-coordinate of the connection point in the coordinate system of the shape to

which it belongs.

Example
Dim MyConnectDot as ConnectDot, MyShape As Shape

MyShape = thisDoc.ActivePage.DrawRect(50,50,500,500) ' Create Shape object

MyConnectDot = MyShape.AddConnectDot()

MyConnectDot.X = 100

MyConnectDot.Y = 50

MyShape.PropertyChanged(CDPT_CONNECT_X)

MyShape.PropertyChanged(CDPT_CONNECT_Y)

ConceptDraw DIAGRAM Third Party Developer’s Guide

320

See Also Shape object

ConceptDraw Objects Constants

ConceptDraw access Objects Constants

Import / Export Constants

These constants are used in the Import/Export methods (such as Import method, Export method).

Constant Value Import Export Description

cdf_UNKNOWN 0 - - Means unknown format of file.

cdf_CDD 1 Yes Yes ConceptDraw V document file format.

cdf_CDT 2 Yes Yes ConceptDraw V template file format.

cdf_CDL 3 Yes Yes ConceptDraw V library file format.

cdf_CDW 4 Yes Yes ConceptDraw V workspace file format.

cdf_CDD1X 5 Yes Yes ConceptDraw 1.x document file format.

cdf_CDT1X 6 Yes Yes ConceptDraw 1.x template file format.

cdf_CDL1X 7 Yes Yes ConceptDraw 1.x library file format.

cdf_CDW1X 8 Yes Yes ConceptDraw 1.x workspace file format.

cdf_CDB 9 No No
ConceptDraw Basic script source file

format.

cdf_BMP 10 Yes Yes Bitmap file format.

cdf_DIB 11 Yes Yes Device-independent bitmap file format.

cdf_DCM 12

cdf_GIF 13 Yes Yes Graphics Interchange format.

cdf_ICO 14 Yes Yes Windows icon file format.

cdf_ICON 15 Yes Yes Windows icon file format.

ConceptDraw DIAGRAM Third Party Developer’s Guide

321

cdf_JPEG 16 Yes Yes
Joint Photographic Experts Group file

format.

cdf_JPG 17 Yes Yes
Joint Photographic Experts Group file

format.

cdf_PNG 18 Yes Yes Portable Network Graphics file format.

cdf_PCD 19 Yes Yes

cdf_PCDS 20

cdf_PCX 21 Yes Yes

cdf_SGI 22 Yes Yes

cdf_RAS 23 Yes Yes

cdf_SUN 24

cdf_TGA 25 Yes Yes

cdf_ICB 26

cdf_VDA 27

cdf_VST 28

cdf_TIF 29 Yes Yes Tag Image file format.

cdf_TIFF 30 Yes Yes Tag Image file format.

cdf_WPG 31 Yes Yes

cdf_XBM 32 Yes Yes

cdf_XPM 33 Yes Yes

cdf_PCT 34 Yes Yes

cdf_DXF 35 Yes Yes

cdf_HTM 36 No Yes Hypertext Markup Language file format.

cdf_HTML 37 No Yes Hypertext Markup Language file format.

cdf_EPS 38 No Yes Encapsulated postscript file format

cdf_CDX 39 Yes Yes XML for ConceptDraw file format.

cdf_OUTLINE 40 Yes Yes
ConceptDraw outline file format. It is text

format file.

cdf_FLOWDATA 41 Yes Yes ConceptDraw flowdata file format.

cdf_PPT 42 Yes Yes MS PowerPoint file format

cdf_EMF 43 Yes Yes Enhanced Metafile format.

cdf_WMF 44 Yes Yes Windows Metafile format.

ConceptDraw DIAGRAM Third Party Developer’s Guide

322

cdf_PAL 45

cdf_SWF 46 No Yes Macromedia Flash format.

cdf_PDF 47 No Yes

cdf_PSD 48 Yes Yes Adobe Photoshop Drawing format.

cdf_VDX 49 Yes No Microsoft Visio XML format.

cdf_SVG 50 No Yes Scalable Vector Graphic.

cdf_PICT 51 Yes No Macintosh PICT.

cdf_CDOCMD 52 Yes YES Conceptdraw Office command file format.

cdf_CDLX 53 Yes Yes ConceptDraw XML Libraries file format.

cdf_CDTX 54 Yes Yes ConceptDraw XML Template file format.

Property Tag Constants

Constant Value

CDPT_WIDTH 1

CDPT_HEIGHT 2

CDPT_ANGLE 3

CDPT_GPINX 4

CDPT_GPINY 5

CDPT_FLIPX 6

CDPT_FLIPY 7

CDPT_LPINX 8

CDPT_LPINY 9

CDPT_BEGINX 10

CDPT_BEGINY 11

CDPT_ENDX 12

CDPT_ENDY 13

CDPT_GEOMETRY_X 14

CDPT_GEOMETRY_Y 15

CDPT_GEOMETRY_A 16

CDPT_GEOMETRY_B 17

ConceptDraw DIAGRAM Third Party Developer’s Guide

323

CDPT_GEOMETRY_C 18

CDPT_GEOMETRY_D 19

CDPT_GEOMETRY_VISIBLE 20

CDPT_GEOMETRY_FILLED 21

CDPT_TEXTWIDTH 26

CDPT_TEXTHEIGHT 27

CDPT_TEXTANGLE 28

CDPT_TEXTPINX 29

CDPT_TEXTPINY 30

CDPT_TEXTGPINX 31

CDPT_TEXTGPINY 32

CDPT_VALIGN 33

CDPT_TOPMARGIN 34

CDPT_BOTTOMMARGIN 35

CDPT_LEFTMARGIN 36

CDPT_RIGHTMARGIN 37

CDPT_TEXTBKGND 38

CDPT_DEFTABSTOP 39

CDPT_TABALIGN 40

CDPT_TABPOS 41

CDPT_TEXT 42

CDPT_LINEPATTERN 43

CDPT_LINEWEIGHT 44

CDPT_LINECOLOR 45

CDPT_LINEBEGIN 46

CDPT_LINEEND 47

CDPT_LINEENDSIZE 48

CDPT_FILLPATTERN 49

CDPT_FILLPATCOLOR 50

CDPT_FILLCOLOR 51

ConceptDraw DIAGRAM Third Party Developer’s Guide

324

CDPT_SHADOWPATTERN 52

CDPT_SHADOWPATCOLOR 53

CDPT_SHADOWCOLOR 54

CDPT_LOCKWIDTH 55

CDPT_LOCKHEIGHT 56

CDPT_LOCKMOVEX 57

CDPT_LOCKMOVEY 58

CDPT_LOCKASPECT 59

CDPT_LOCKCALCWH 60

CDPT_LOCKROTATE 61

CDPT_LOCKDELETE 62

CDPT_LOCKBEGIN 63

CDPT_LOCKEND 64

CDPT_LOCKVERTEX 65

CDPT_LOCKFLIPX 66

CDPT_LOCKFLIPY 67

CDPT_SHOWSHAPEHANDLES 68

CDPT_SHOWCONTROLHANDLES 69

CDPT_SHOWALIGNBOX 70

CDPT_NONPRINTING 71

CDPT_RESIZEBEHAVIOUR 72

CDPT_SHOWTEXT 73

CDPT_VARIABLE_X 74

CDPT_VARIABLE_Y 75

CDPT_CONTROL_X 76

CDPT_CONTROL_Y 77

CDPT_CONTROL_XDYN 78

CDPT_CONTROL_YDYN 79

CDPT_CONTROL_XBEHAVIOUR 80

CDPT_CONTROL_YBEHAVIOUR 81

ConceptDraw DIAGRAM Third Party Developer’s Guide

325

CDPT_CONTROL_COMMENT 82

CDPT_CONNECT_X 83

CDPT_CONNECT_Y 84

CDPT_CHAR_FONT 85

CDPT_CHAR_SIZE 86

CDPT_CHAR_COLOR 87

CDPT_CHAR_STYLE 88

CDPT_CHAR_POS 90

CDPT_CHAR_LANGUAGE 91

CDPT_CHAR_SPACING 92

CDPT_CHAR_HYPERLINK 93

CDPT_PARA_FIRSTIND 94

CDPT_PARA_LEFTIND 95

CDPT_PARA_RIGHTIND 96

CDPT_PARA_HALIGN 97

CDPT_PARA_BEFORESPACING 99

CDPT_PARA_AFTERSPACING 100

CDPT_PARA_LINESPACING 101

CDPT_ACTION_ACTION 102

CDPT_ACTION_MENU 103

CDPT_ACTION_PROMPT 104

CDPT_ACTION_CHECKED 105

CDPT_ACTION_DISABLED 106

CDPT_CUSTOM_LABEL 107

CDPT_CUSTOM_PROMPT 108

CDPT_CUSTOM_TYPE 109

CDPT_CUSTOM_FORMAT 110

CDPT_CUSTOM_VALUE 111

CDPT_CUSTOM_INVISIBLE 112

CDPT_CUSTOM_VERIFY 113

ConceptDraw DIAGRAM Third Party Developer’s Guide

326

CDPT_CONNECTOBJBEGIN 129

CDPT_CONNECTOBJEND 130

CDPT_CONNECTTYPEBEGIN 131

CDPT_CONNECTTYPEEND 132

CDPT_TEXTFLIPX 133

CDPT_TEXTFLIPY 134

CDPT_LAYER 142

CDPT_HYPERLINK 143

CDPT_DBLCLICK 144

CDPT_DBLCLICKACTION 145

CDPT_ROUNDCORNERS 148

CDPT_CONNECTMODE 149

CDPT_CONNECTORKNEELIMIT 150

CDPT_CONNECTBYPASSGROUPS 151

CDPT_EVENTPAGESREORDER 152

CDPT_EVENTPAGESCOUNT 153

CDPT_EVENTIDLE 154

CDPT_EVENTTIMER 155

CDPT_EVENTLOAD 156

CDPT_CHARPROPEVENT 157

CDPT_EVENTFILENAME 158

CDPT_LINEALPHA 159

CDPT_FILLFOREGNDALPHA 160

CDPT_FILLBACKGNDALPHA 161

CDPT_SHADOWFOREGNDALPHA 162

CDPT_SHADOWBACKGNDALPHA 163

CDPT_TEXTBKGNDALPHA 164

CDPT_CHAR_ALPHA 165

CDPT_FILLTEXTURE 166

CDPT_REGULAR_PROPS_NUM 167

ConceptDraw DIAGRAM Third Party Developer’s Guide

327

CDPT_STYLED_LINEPATTERN 210

CDPT_STYLED_LINEWEIGHT 211

CDPT_STYLED_LINECOLOR 212

CDPT_STYLED_BEGINARROW 213

CDPT_STYLED_ENDARROW 214

CDPT_STYLED_ARROWSIZE 215

CDPT_STYLED_FILLPATTERN 216

CDPT_STYLED_FILLFOREGND 217

CDPT_STYLED_FILLBACKGND 218

CDPT_STYLED_SHADOWPATTERN 219

CDPT_STYLED_SHADOWFOREGND 220

CDPT_STYLED_SHADOWBACKGND 221

CDPT_STYLED_CHAR_FONT 222

CDPT_STYLED_CHAR_SIZE 223

CDPT_STYLED_CHAR_COLOR 224

CDPT_STYLED_CHAR_STYLE 225

CDPT_STYLED_CHAR_POS 226

CDPT_STYLED_CHAR_SET 227

CDPT_STYLED_CHAR_SPACING 228

CDPT_STYLED_PARA_FIRSTIND 229

CDPT_STYLED_PARA_LEFTIND 230

CDPT_STYLED_PARA_RIGHTIND 231

CDPT_STYLED_PARA_HALIGN 232

CDPT_STYLED_PARA_BEFOREIND 233

CDPT_STYLED_PARA_AFTERIND 234

CDPT_STYLED_PARA_BETWEENLN 235

CDPT_STYLED_VERTICALALIGN 236

CDPT_STYLED_TOPMARGIN 237

CDPT_STYLED_BOTTOMMARGIN 238

CDPT_STYLED_LEFTMARGIN 239

ConceptDraw DIAGRAM Third Party Developer’s Guide

328

CDPT_STYLED_RIGHTMARGIN 240

CDPT_STYLED_TEXTBKGND 241

CDPT_STYLED_TXTDEFTABSTOP 242

CDPT_STYLED_LINEALPHA 243

CDPT_STYLED_FILLFOREGNDALPHA 244

CDPT_STYLED_FILLBACKGNDALPHA 245

CDPT_STYLED_SHADOWFOREGNDALPHA 246

CDPT_STYLED_SHADOWBACKGNDALPHA 247

CDPT_STYLED_CHAR_ALPHA 248

CDPT_STYLED_TEXTBKGNDALPHA 249

CDPT_DS_DATASOURCE 250

CDPT_DS_REFRESH_TIME 251

CDPT_DS_ACTION 252

CDPT_DS_VALID 253

CDPT_DS_ACTIVE 254

CDPT_DS_DATASOURCE_PATH 255

CDPT_DS_RELIABILITY 256

CDPT_DS_SHOW_WARNINGS 257

CDPT_DS_SHOW_ERRORS 258

CDPT_DSV_NAME 259

CDPT_DSV_VALUE 260

CDPT_DSV_TYPE 261

CDPT_DSV_VISIBLE 262

CDPT_DSV_OBJECT_TYPE 263

CDPT_DSV_SHOW_DIALOG 264

CDPT_LOCKTEXTBOUND 265

CDPT_LOCKGROUP 266

CDPT_LOCKFILL 267

CDPT_LOCKLINE 268

CDPT_RAPIDDRAW 269

ConceptDraw DIAGRAM Third Party Developer’s Guide

329

CDPT_HIDEINSLIDESHOW 270

CDPT_RD_LIB_NAME 271

CDPT_RD_OBJ_NAME 272

CDPT_RD_ICON_NAME 273

CDPT_RD_LEFT_PLACING 274

CDPT_RD_RIGHT_PLACING 275

CDPT_RD_TOP_PLACING 276

CDPT_RD_BOTTOM_PLACING 277

CDPT_RD_CONNECTOR_TYPE 278

CDPT_RD_CONN_LIB_NAME 279

CDPT_RD_CONN_OBJ_NAME 280

CDPT_RD_AUTO_BALANCE 281

CDPT_RD_SPACING_X 282

CDPT_RD_SPACING_Y 283

CDPT_RD_START_CONN_POINT 284

CDPT_RD_END_CONN_POINT 285

CDPT_RD_SPACING_X_VERT_MOVE 286

CDPT_RD_SPACING_Y_HOR_MOVE 287

CDPT_RAPIDDRAW_OBJECT_BOUND 288

CDPT_RAPIDDRAW_TOP_AUTO_STEP 289

CDPT_RAPIDDRAW_LEFT_AUTO_STEP 290

CDPT_RAPIDDRAW_RIGHT_AUTO_STEP 291

CDPT_RAPIDDRAW_BOTTOM_AUTO_STEP 292

CDPT_RD_OBJECT_DESCRIPTION 293

ControlDot Object

ControlDot Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

330

The ControlDot object serves for controlling and accessing properties of control handles of

ConceptDraw shapes. Control handles allow the shape's properties to be modified automatically

when the control handle is repositioned. Each control handle has a formula that determines its

coordinates with respect the the coordinate system of the shape to which it belongs. For example,

you might use a control handle to adjust the roundness of a shape's corners or to reshape an arrow.

Properties

Name Description

X
The X-coordinate of the control handle in the coordinate system of the shape it

belongs to.

Y
The Y-coordinate of the control handle in the coordinate system of the shape it

belongs to.

XDyn
The X-coordinate of the end of the line which comes out of the control handle

when the latter is repositioned.

YDyn
The Y-coordinate of the end of the line which comes out of the control handle

when the latter is repositioned.

XBehaviour
Sets the behavior of the control handle relative to the X axis when the shape is

resized.

YBehaviour
Sets the behavior of the control handle relative to the Y axis when the shape is

resized.

Comment
The tip that comes up when you move the mouse pointer over the control

handle.

Remarks

An instance of the object can be retrieved by using the methods of the Shape object.

See Also Shape object

CustomProp Object

CustomProp Object

This object serves for storing and controlling additional information about the shape, defined by

the user (custom properties).

Properties

Label The label (unique name) of the shape's custom property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

331

Prompt The tip of the shape's custom property.

Type The type of the shape's custom property.

Format The format of the custom property.

Value The default value.

Invisible Visible / invisible state.

Verify Verify / not verify state.

Remarks

An instance of the CustomProp object can be retrieved by using the following methods of the

Shape object: AddCustomProp method, CustomProp method, CustomPropByLabel method.

See Also Shape object

DataSourceValue Object

DataSourceValue Object

Object DataSourceValue designed to provide access to fields table Data parameters of the object

(shape). Using the properties of this object, you can receive, edit and use data tables Data.

Properties

Name Data from the Data Section Name Table of parameters of the object.

Value These sections of the Value Data Table parameters of the object.

Type Data from Table Data Type section of the object parameters.

Visible These sections of the Visible Data table parameter object.

Remarks

The object instance DataSourceValue can be obtained using methods of the Shape.

See Also

Shape object, DataSource object, AddDSValue method, DSValue method,

DSValueEl method

ConceptDraw DIAGRAM Third Party Developer’s Guide

332

DataSource Object

DataSource Object

A DataSource object is designed to link the specified object properties (shapes) with the data

source. Using properties and methods, we can obtain and modify the mode of a data source.

Properties

Action The action to be performed in case of receiving new data from the source.

Active Provides a start or stop the update process data from the source.

DataSource The relative or full path to the data source.

Refresh The time interval in seconds, through which the update data from the source.

ShowErrors Determines whether to display the appropriate icon when an error occurs while

working with a data source.

ShowWarnings Determines whether to display the appropriate icon in the event of the comments in

the process of working with a data source.

Timeout The time interval in seconds over which will be by appropriate icon in the event of

an error when updating the data from the source.

Methods

ColCount Returns the maximum number of columns in the search for all rows in a table view

CSV file data source.

RowCount Returns the number of non-empty string, ie rows that contain data in a tabular

representation of the CSV file data source.

Remarks

An instance of the DataSource object can be obtained using methods of the Shape.

See Also
Shape object, DataSourceValue object, AddDataSource method, DataSource

method

Document Object

Document Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

333

The Document object is used to control a ConceptDraw document and its contents. It includes all

the necessary properties and methods for working with the contents of the document: pages,

layers, colors, styles, hyperlinks, color palette, various document settings, etc.

Properties

Name Description

ActiveLayer Active layer ID (the ID property).

ActivePage Read-only. Active page of the document.

ActiveView
Read-only. Active window of the document (represents an instance of

the active document view).

Author Describes the document's author.

Company Describes the company which created the document.

CustomMenu Read-only. Returns the user-defined menu of the document.

DefCharacter
Read-only. The sequence of characters, assigned to the new shape's text

by default.

DefFillColor Read-only. Default fill color for new shapes.

DefFillPatColor
Read-only. Default fill pattern color, applied by default to every new

shape.

DefFillPattern The type of fill pattern, applied by default to every new shape.

DefParagraph Read-only. Paragraph properties, applied by default to every new shape.

DefPenColor Read-only. Default line color for new shapes.

DefPenPattern The type of line pattern, applied by default to every new shape.

DefPenWeight Default line weight for new shapes.

DefShadowColor Read-only. Default shadow color for new shapes.

DefShadowPatColor
Read-only. The shadow fill color, applied by default to every new

shape.

DefShadowPattern
Read-only. The type of shadow pattern, applied by default to every new

shape.

DefStyle Default style, applied to all new shapes.

DefTextBlock Read-only. The text block, assigned by default to every new shape.

Desc Detailed description of the document.

FlowAroundObjects
A flag that specifies whether smart connectors should flow around

shapes on their way.

FullName Read-only. Returns the full filename of the document.

LineJumpOrient Orientation of smart connector's crossings in the document.

LineJumpSize The size of smart connector's crossings in the document.

LineJumpType The type of smart connector's crossings in the document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

334

MaxNumberOfLegs The maximum number of Smart Connector's legs.

MinDistToShapes
The minimum possible distance between a a smart connector and any

other shapes on the page, on which the smart connector is located.

Name Document file name.

PageSizeX
Document page width. It's specified in internal units of ConceptDraw

(InternalUnit).

PageSizeY
Document page height. It's specified in internal units of ConceptDraw

(InternalUnit).

PassThroughGroups

A flag that specifies whether the smart connectors in the document

should flow around the whole group (False) or individual shapes inside

the group on the connector's way (True).

Path Path to the document filename.

Scale Scale, set in the document.

ShadowOffsetX Horizontal shadow offset.

ShadowOffsetY Vertical shadow offset.

SnapSensitivity Current snap sensitivity for the document.

SplineSmooth Current spline smoothness for the document.

Subj Brief description of the document.

Title Title of the document.

UnitIndex Units of measure of the document.

Methods

Name Description

AddHyperlinkToDocu

ment
Adds a hyperlink to a ConceptDraw document.

AddHyperlinkToFile Adds a hyperlink to a local file.

AddHyperlinkToPageS

hape
Adds a hyperlink to a shape or a page of the current document.

AddHyperlinkToURL Adds a hyperlink to a URL.

AddLayer Adds a new layer to the document's layer collection.

AddPage Adds a new page to the document.

AddStyle Adds a new style to the document's style collection.

ColorEntry
Returns a color from the color table by its index in the color collection

of the document.

ColorsNum Returns the number of colors in the color table of the document.

EndRebuild
Informs the ConceptDraw engine about the termination of modifying

properties of the shapes of the document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

335

Export Exports the document to the specified file format.

FindFontByName Returns the font's index in the document's font collection.

FindPage Returns the page's index in the document's page collection.

FindStyle Returns the style's index in the document's style collection.

FirstView Returns the first window in the document's window collection.

FontName
Returns the font name by the specified font index in the document's font

collection.

FontsNum Returns the number of fonts in the document's font collection.

Hyperlink
Returns a hyperlink by the specified index in the document's hyperlink

collection.

HyperlinkByID
Searches for a hyperlink by the specified ID in the document's

hyperlink collection.

HyperlinksNum
Returns the number of hyperlinks in the document's hyperlink

collection.

Layer
Returns a layer by the specified index in the document's layer

collection.

LayerByID
Searches for a layer by its ID (the ID property) in the document's layer

collection.

LayerByName
Searches for a layer by its name (the Name property) in the document's

layer collection.

LayersNum Returns the number of layers in the document's layer collection.

MoveShapeToGroup Moves the object (shape) to the group.

MoveShapeToPage Moves the object (shape) in a specific position on another page.

NextView Returns the next window from the document's window collection.

Page Returns a page by its index in the document's page collection.

PageByID
Searches for a page by its ID (the ID property) in the document's page

collection.

PagesNum Returns the number of pages in the document.

RemoveLayer Removes a layer by its index in the document's layer collection.

RemoveLayerByID
Removes a layer with the specified ID (the ID property) from the

document.

RemovePage Removes a page by its index in the document's page collection.

RemovePageByID
Removes a page with the specified ID (the ID property) from the

document.

RemoveStyle Removes a style by its index in the document's style collection.

RemoveStyleByName
Removes a style with the specified name (the Name property) from the

document's style collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

336

RemoveUnusedHyperli

nks
Removes unused hyperlinks from the document's hyperlink collection.

RenameStyle Renames a style.

ReorderPage
Reorders pages in the document's page collection. The page being

moved is defined by the index in the page collection of the document.

ReorderPageByID

Reorders pages in the document's page collection. The page being

moved is defined by its ID (the ID property) in the page collection of

the document.

Save Saves the document.

SaveAs Saves the document with the specified parameters.

SetActivePage Sets an active page in the document by its index.

SetActivePageByID Sets an active page in the document by its ID.

SetActiveView Activates the specified view of the document.

StartRebuild
Informs the ConceptDraw engine about the beginning of modifying

properties of the shapes of the document.

Style Returns a style by the specified index in the document's style collection.

StyleByName
Searches for a style with the specified index in the document's style

collection.

StylesNum Returns the number of styles in the document's style collection.

UpdateAllViews Redraws all windows of the document.

ViewByID
Searches for the window with the specified ID (the ID property) in the

view collection of the document.

ViewsNum Returns the number of views of the current document.

Remarks

Documents, opened in the application, can be located in the application only. The Application

object has a number of methods for controlling ConceptDraw documents, opened in the

application. However, methods and properties of the Application object are not the only means to

retrieve an instance of the Document object. Other objects that belong to or are associated with

the document can refer to it.

AElement from controlling all the collections stored in a ConceptDraw document (pages, layers,

hyperlinks, styles, color palette) the Document object provides access to all windows which

display the contents of the document, and also allows to control re-calculation of properties of the

document's shapes (StartRebuild, EndRebuild), redraw the document's windows

(UpdateAllViews), etc.

An instance of the Document object can be retrieved from the following methods and properties:

Application object: ActiveDoc property, CreateNewDoc method, Doc method, DocByName

method, FirstDoc method, Import method, NextDoc method, OpenDoc method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

337

Page, ServObj, Shape objects: Document property.

Window object: Document property.

Also an instance of the Document object can be retrieved by using the thisDoc global variable,

pre-defined at document script, page script, shape script levels. The thisDoc variable in the

document-level script returns the document which script is being executed when the variable is

referred to. For the page/shape-level script it returns the document, to which belongs the

page/shape, which script is being executed.

See Also
Application object, Hyperlink object, Layer object, Page object, Style object,

Window object

DPoint Object

DPoint Object

Service object used to store coordinates of a point, used in coordinate transformations.

Properties

X Gets or sets a Double value, representing the X coordinate of the point.

Y Gets or sets a Double value, representing the Y coordinate of the point.

Methods

Equal Copies properties of an object of the same type.

Remarks

Note, that an instance of the object should be created prior to using it (before or after its

declaration). The example below demonstrates how to do it:

Example
' The New keyword is used to create a new instance of the object

Dim MyObject as new DPoint

' one more method for creating an instance of the object

Dim MySecondObject as DPoint

set MySecondObject = new DPoint

ConceptDraw DIAGRAM Third Party Developer’s Guide

338

See Also
DRect Object, Dim Statement , Set Statement, LPtoGP Method, LPtoWP

Method, WPtoLP Method

DRect Object

DRect Object

A service object used to describe and perform various operations with a rectangle.

Properties

Name Description

left
Gets or sets a Double value, representing the coordinate of the leftmost

point of the rectangle.

top
Gets or sets a Double value, representing the coordinate of the top point

of the rectangle.

right
Gets or sets a Double value, representing the coordinate of the rightmost

point of the rectangle.

bottom
Gets or sets a Double value, representing the coordinate of the bottom

point of the rectangle.

Methods

Name Description

Equal Copies properties of an object of the same type.

SetRect Sets left, top, right, bottom points of an object.

InflateRect
Extends the rectangle by the X and Y axis, calculates new coordinates of

the object.

DeflateRect
Shrinks the rectangle by the X and Y axis, calculates new coordinates of

the object.

GetWidth Returns the width of the rectangle.

GetHeight Returns the height of the rectangle.

isEmpty
Returns TRUE if the square of the rectangle equals to 0. Otherwise

returns FALSE.

PtInRect
Returns TRUE if the specified point's coordinates fall within the

rectangle's bound. Otherwise returns FALSE.

ConceptDraw DIAGRAM Third Party Developer’s Guide

339

OffsetRect
Moves the rectangle by the X and Y axis, calculates new coordinates of

the object.

SetRectEmpty Resets object properties to zero.

UnionRect

Calculates the coordinates of the minimum rectangle enough to

encompass two specified rectangles. Returns FALSE if the specified

rectangles are empty, otherwise returns TRUE.

IntersectRect

Calculates the coordinates of the rectangle, resulting from the intersection

of two specified rectangles. If such rectangle exists, returns TRUE,

otherwise returns FALSE.

NormalizeRect Resets object properties to defaults.

Remarks

The DRect object is not used in the object hierarchy of ConceptDraw Basic and is used

exclusively to facilitate working with rectangles thanks to the methods, implemented in the

DRect object.

Example
' The New keyword is used to create a new instance of the object

Dim MyObject as new DRect

' one more method for creating an instance of the object

Dim MySecondObject as DRect

set MySecondObject = new DRect

See Also DPoint Object, Dim Statement , Set Statement

Geometry Object

Geometry Object

The Geometry object is used to control the properties of the shape's geometry. It allows to

modify the geometry properties, which affect the way the geometry looks.

Properties

Name Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

340

Visible A flag, that indicates whether the geometry is visible.

Filled A flag, that indicates, whether to fill the area, enclosed by the geometry.

Methods

SegmentsNum Returns the number of segments in geometry.

Remarks

A shape includes one or more geometries, containing elementary segments, which make up the

shape. A geometry can be visible, invisible, filled or not filled. Normally, when you draw a shape

using the drawing tools in ConceptDraw, a new geometry is added when you add new segments

to a shape, created earlier.

An instance of the Geometry object can be retrieved by using the following methods of the

Shape object: AddGeometry method, Geometry method.

See Also Shape object

HyperLink Object

HyperLink Object

This object describes a hyperlink in a ConceptDraw document. A Hyperlink object enables you

to access and manipulate the properties and behavior of a a hyperlink.

Properties

ID Read-only. Hyperlink's ID.

LinkType Read-only. Hyperlink's type.

Address Read-only. A string with the address to which the hyperlink navigates.

LocalPath Read-only. A flag that specifies whether the Address is a relative (local) path.

PageID Read-only. ID of the document page, to which the hyperlinks points.

ShapeID Read-only. ID of the shape, to which the hyperlink points.

ConceptDraw DIAGRAM Third Party Developer’s Guide

341

Remarks

Hyperlink objects are stored in the hyperlink collection of the Document object. You can create

a hyperlink using the ConceptDraw interface, or using the following methods of the Document

object: AddHyperlinkToDocument, AddHyperlinkToFile, AddHyperlinkToPageShape,

AddHyperlinkToURL. An instance of the Hyperlink object can be retrieved from the document's

hyperlink collection with the help of the following methods of the Document object: Hyperlink,

HyperlinkByID.

See Also Document object, Page object, Shape object

Layer Object

Layer Object

You can use layers to organize related objects in the document. An instance of the object can be

retrieved from the Document Object.

Properties

ID Read Only. The layer ID.

Name The layer's name.

Visible The visibility flag.

Locked Flag that specifies whether the layer can be edited.

Printable Flag that specifies whether the layer can be printed.

Colored Flag that specifies whether the layer is colored.

Color Read-only. The color of shapes on the colored layer.

See Also Color Object, Document Object, ServObj Object, Shape Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

342

Library Object

Library Object

The Library object is used to get information and control the contents of a ConceptDraw library.

The methods of the Library object allow to modify the description of the library, save the library

and control master objects , stored in the library.

Properties

Name The library file name.

FullName Read-only. Full library filename, including the path.

Path Path to the library file (without filename).

Title The library title.

Author Describes the author of the library.

Subj Brief description of the library.

Company Describes the company which created the library.

Desc Contains detailed description of the library.

Methods

Save Saves the library.

SaveAs Saves the library with a file name.

AddMaster Adds a new master object (library object) to the library.

FindMaster Searches for a specified master object (library object) in the library.

Master
Returns an existing master object (library object) by its index in the

library's collection of master objects.

MasterByName Searches for a master object (library object) by the specified name.

MastersNum Returns the number of master objects (library objects) in a library.

RemoveMaster
Removes a master object (library object) from a library by its index in the

library's collection of master objects.

RemoveMasterByN

ame

Removes a master object (library object) from the library by the specified

name.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

343

The Application object has a number of methods for working with libraries opened in the

application. However, other objects can also refer to an open library. An instance of the Library

object can be retrieved by using the following methods and properties:

Application object: ActiveLib property, CreateNewLib method, Lib method, LibByName

method, OpenLib method.

Window object: Library property, Lib method, LibByName method.

See Also Application object, Master object, Shape object

Master Object

Master Object

The Master object represents a library object (master object). A library object is an item stored in

a library and that contains the following data describing the shape: the name of the library object,

the description of the object, the icon and the shape itself.

Properties

Name Description

Shape Read-only. The shape, contained in the master object.

Name The name of the library shape.

Prompt A brief description of the master object.

Methods

Name Description

Equal Makes the library shape equivalent to the specified library shape.

SetShape Sets the specified shape as the shape, contained in the given master object.

SetIcon Sets the image, contained in the specified file as the icon for the master shape.

Remarks

An instance of the Master object can be retrieved by using the following methods of the Library

object: AddMaster method, Master method, MasterByName method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

344

See Also Library object, Shape object

MenuItem Object

MenuItem Object

Represents a menu item of the ConceptDraw user-defined menu.

Properties

Type Read-only. The menu item type.

CmdID Read-only. The menu item ID.

Caption The name of the menu item.

Prompt The prompt for the menu item.

Enabled A flag that specified whether the menu item is enabled or disabled.

Checked A flag that specified whether the menu item is checked.

Parent Read-only. The parent menu for the menu item.

SubMenu Read-only. The submenu for the menu item.

OnCmdModule Read-only. The name of the module associated with the menu item.

OnCmdSub Read-only. The name of a procedure to process the menu item.

OnCmdArgs The argumets string wich passed to the processing procedure.

Methods

SetCmdProcessing Sets a procedure for processing the menu item.

Remarks

An instance of the MenuItem object can be retrieved by using the following methods of the

Menu object:AddMenuItem method, MenuItem method, MenuItemByCmdID method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

345

See Also
AddMenuItem method, MenuItem method, MenuItemByCmdID method,

Menu object

Menu Object

Menu Object

The Menu object is used to control the user-defined menu of the ConceptDraw application.

Properties

CmdID Read-only. The menu ID.

Caption The name of the menu.

Prompt The prompt for the menu.

Enabled A flag that specifies whether the menu is enabled or disabled.

Parent Read-only. The parent menu for the menu.

Methods

AddMenuItem Adds a menu item.

MenuItem Returns a menu item by its index in the menu collection.

MenuItemByCmdID Returns a menu item by its ID (the CmdID property).

MenuItemsNum Returns the number of items in the menu.

RemoveMenuItem Removes a menu item by its index in the menu collection.

RemoveMenuItemBy

CmdID
Removes a menu item by its ID (the CmdID property).

RemoveAll Removes all menu items.

FindMenuItem Searches for a menu item among the items of the menu.

Remarks

An instance of the Menu object can be retrieved by using the following methods and properties:

Application object: CustomMenu property,

Document object: CustomMenu property,

Menu object: Parent property,

MenuItem property: Parent property, SubMenu property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

346

Example

An aplication level or a document level script can add items to the custom menu of the document

and process them by using its own procedures. Below is an example of such program:
' Definition of procedure

Sub MenuItem1_CmdProc(cmdArgs As String)

 Trace "MenuItem1 : " & cmdArgs

 ' ...

 ' ...

End Sub

Dim mi As MenuItem

' Enable Document custom menu

thisDoc.CustomMenu.Caption = "My Doc menu"

' Add menu item

set mi = thisDoc.CustomMenu.AddMenuItem(0)

' Set menu item caption

mi.Caption = "Item 1"

mi.OnCmdArgs = "Args string from menu item"

' Set processing procedure

mi.SetCmdProcessing("MenuItem1_CmdProc")

' Suspends execution

Stop

See Also Application object, Document object, MenuItem object

Page Object

Page Object

The Page object is used to get information about and control the contents of a ConceptDraw

document's page. The methods and properties of the Page object allow to create on the page

simple shapes, groups, service objects and other objects, as well as control existing objects.

Properties

BackPageID The background page ID (the ID property).

Document The document which contains this page.

ID The page ID.

ConceptDraw DIAGRAM Third Party Developer’s Guide

347

IsBackground The flag that specifies whether this page can be a background page.

Name The page name.

Methods

ArcTo Creates an arc.

BeginShape Returns the current shape, being edited (the current Basic shape).

ConvertToGroup Converts a Vector Picture to a group.

ConvertToVFPicture Converts a shape to a Vector Picture.

DoForConnected Causes BASIC procedure with an appropriate title for each of the objects

that are attached (either directly or through other objects) to the object

with the specified identifier.

DrawConnector Creates a connector.

DrawGroup Creates a group.

DrawGuide Creates the Guide service object.

DrawLine Creates a line.

DrawOval Creates an ellipse.

DrawRect Creates a rectangle.

DrawSector Creates a sector of a circle or ellipse.

DrawSmartConnecto

r

Creates a Smart Connector.

DrawStamp Draws a copy of the specified shape with the specified size and position,

same as the Stamp tool in ConceptDraw.

DrawStampSelection Draws copies of all selected shapes with the specified size and position,

same as the Stamp tool in ConceptDraw.

DropStamp Creates a copy of the shape, same as the Stamp tool in ConceptDraw,

preserving the size of the original shape.

DropStampSelection Creates copies of all selected shapes, same as the Stamp tool in

ConceptDraw, preserving the size of the original shapes.

EndShape Notifies when creation of the shape is finished.

GetShapeByName Searches for the object (shape) for a given name in the position

stranitse.Returns found object (shape) in a collection of objects (shapes).

InsertPicture Inserts a picture from a file onto the page.

LineTo Creates a line in the current Basic shape for this page.

MoveTo
Specifies the position of the current point of the shape, used for creating

it.

RemoveAllServObjs Removes all service objects on the page.

RemoveAllShapes Removes all shapes on the page.

ConceptDraw DIAGRAM Third Party Developer’s Guide

348

RemoveServObj
Removes a service object by its index in the service object collection of

the document.

RemoveServObjByI

D
Removes a service object by its ID (the ID property).

RemoveShape Removes a shape by its index in the shape collection of the page.

RemoveShapeByID Removes a shape by its ID (the ID property).

ReorderServObj

Moves the service object to the specified position in the service object

collection of the page.

The service object to be repositioned is indicated by its index.

ReorderServObjByI

D

Moves the service object to the specified position in the service object

collection of the page.

The service object to be repositioned is indicated by its ID (the ID

property).

ReorderShape

Moves the shape to the specified position in the shape collection of the

page.

The shape to be repositioned is indicated by its index.

ReorderShapeByID

Moves the shape to the specified position in the shape collection of the

page.

The shape to be repositioned is indicated by its ID (the ID property).

ServObj
Returns a service object by its index in the service object collection of the

page.

ServObjByID
Returns a service object by the specified unique number (the ID property)

of the service object.

ServObjsNum Returns the number of service objects on the page.

Shape Returns a shape by its index in the shape collection of the page.

ShapeByID Returns a shape by its unique number (the ID property).

ShapeBySubID Returns a shape by its unique number (the SubID property).

ShapesNum Returns the number of shapes on the page.

SplineStart Adds the Spline start segment to the shape.

SplineTo Draws a spline in the shape.

Remarks

Pages can be stored only inside a ConceptDraw document. Each ConceptDraw document contains

its own page collection which can be controlled by using the methods and properties of the

Document object. However, the Document object is not the only way to get an instance of the

Page object, as various objects (service objects and regular shapes) can reference to the page to

which they belong.

Methods for drawing shapes on the page are similar to those used for drawing shapes in a group,

as the page is in fact a parent object for shapes, as the group is. The coordinate system of the page

ConceptDraw DIAGRAM Third Party Developer’s Guide

349

is at the highest level and is referred to as "global" in ConceptDraw. The methods of the Page

object allow to work with all types of ConceptDraw objects that can exist on a document page.

All objects that belong to a page are stored in two collections - regular shapes and service objects.

The Page object has corresponding groups of methods for working with these collections (see

above).

An instance of the Page object can be retrieved by using the following methods and properties:

Document object: ActivePage property, AddPage method, Page method, PageByID method.

SerbObj, Shape objects: Page property.

Window object: Page property.

Also an instance of the Page object can be retrieved by using the thisDoc global variable, pre-

defined at the page and shape script levels. The thisDoc variable in the page-level script returns

the page which script is being executed when the variable is referred to. For the shape-level script

it returns the page, to which belongs the shape, which script is being executed.

See Also Document object, ServObj object, Shape object

Paragraph Object

Paragraph Object

The Paragraph object serves for controlling a ConceptDraw shape's text paragraph. It represents

a block of text that ends with a line feed symbol. Shape's text may have several paragraphs. A

paragraph contains the parameters for alignment, indents, line spacing and other of the text which

it contains.

Properties

Name Description

AfterSpacing The distance between this paragraph and the one below.

BeforeSpacing The distance between this paragraph and the one above.

Count Read Only. Returns the number of characters in the paragraph.

FirstInd The first line indent value.

HAlign The horizontal alignment type for the paragraph.

LeftInd
The distance all lines of text in a paragraph are indented from the left margin

of the text block.

LineSpacing The distance between one line of text and the next.

ConceptDraw DIAGRAM Third Party Developer’s Guide

350

RightInd
The distance all lines of text in a paragraph are indented from the right

margin of the text block.

Remarks

Paragraphs are stored in a ConceptDraw shape and describe the appearance of the shape's text.

The Shape object contains a number of methods for working with its own paragraph collection.

Each paragraph describes the number of symbols specified in the Count property. Paragraph

properties are applied to the shape's text in the same order as the paragraphs are located in the

paragraph collection of the shape.

An instance of the Paragraph object can be retrieved by using the following properties and

methods:

Document object: DefParagraph property.

Shape object: Paragraph method.

Style object: Paragraph property.

To create a new paragraph with specified parameter in a shape, use the following methods of the

Shape object: SetParaAfterSpacing method, SetParaBeforeSpacing method, SetParaFirstInd

method, SetParaHAlign method, SetParaLeftInd method, SetParaLineSpacing method,

SetParaRightInd method.

See Also
Character object, Document object, Shape object, Style object, TextBlock

object

ServObj Object

ServObj Object

The ServObj object describes properties of a ConceptDraw service object - such as a guide line.

By using properties of ServObj, you can change the angle of the guide, position of its rotation

center, name and description, find out to which group, document or page this service object

belongs, etc.

Properties

Angle
The angle to which the service object (guide) is rotated with respect to its

rotation center.

ConceptDraw DIAGRAM Third Party Developer’s Guide

351

Desc A brief description of the service object.

Document Read-only. The document, which contains the service object.

GPinX
The X coordinate of the service object's rotation center in the global

coordinate system - that is, in the coordinate system of its parent group/page.

GPinY
The Y coordinate of the service object's rotation center in the global

coordinate system - that is, in the coordinate system of its parent group/page.

ID Read-only. The service object ID.

Layer The layer on which the service object lies.

Name The name of the service object.

ObjType Read-only. The service object type.

Page Read-only. The page, which contains the service object.

Parent Read-only. The parent group of the service object.

SubID Read-only. The ID of the service object inside its parent shape (group).

Methods

Equal
Copies all properties and contents of the specified service object to this

service object.

GetDoubleProper

ty
Returns the value of a Double type property.

GetPropertyForm

ula
Returns the property's formula in the form of a string.

GetStringPropert

y
Returns the value of a String type property

IsDefaultFormula
Returns True if the specified property of the service object has a formula that

is marked as default. Otherwise returns False.

IsNullFormula
Returns True if the specified property of the service object has no formula.

Otherwise returns False.

PropertyChanged

Tells the ConceptDraw engine that the value of the specified table property

has been changed and the formulas of the dependent properties must be re-

calculated.

RecalcProperty
Tells the ConceptDraw engine that the value of the specified table property is

to be re-calculated using its table formula.

SetDefaultFormu

la
Creates a default formula for the specified table property of the shape.

SetDoubleProper

ty
Sets a value of the specified Double type table property.

SetNullFormula Removes the formula from the specified table property of the shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

352

SetPropertyForm

ula
Sets a table formula for the specified table property of the shape.

SetStringPropert

y
Sets a value of the specified String type table property.

Remarks

Service objects can be located inside a group or by themselves on a ConceptDraw document page.

Each page and group of a ConceptDraw document contain their own collections of service objects

and have corresponding methods for working with service objects. An instance of the ServObj

object can be retrieved by using the following methods of the Page and Shape objects: ServObj

method, ServObjByID method.

To draw a new guide on a page or in a group you can use the DrawGuide method.

See Also Document object, Page object, Shape object

Shape Object

Shape Object

The Shape object is used for controlling and obtaining information about a shape in a

ConceptDraw document. Provides access to virtually all elements and characteristics of a shape.

In ConceptDraw Basic, the Shape object describes all ConceptDraw shapes except service objects

- that is, 1D-shapes, simple 2D-shapes, groups, connectors, smart connectors, vector pictures,

object that contain raster images, and other. Depending on the shape type to which the instance of

the Shape object corresponds, the object supports different methods and properties.

Properties

Name Supported Types Description

Angle All

The angle to which the given object is rotated

relative to the coordinate system of the parent

shape.

BeginX 1D-shape
The X coordinate of the begin point of the

shape.

BeginY 1D-shape
The Y coordinate of the begin point of the

shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

353

ConnectObjBegin
1D-shape, connectors,

smart-connectors

The ID of the shape, to which the begin point

of this 1D-shape is connected.

ConnectObjEnd
1D-shape, connectors,

smart-connectors

The ID of the shape, to which the end point of

this 1D-shape is connected.

ConnectTypeBegin
1D-shape, connectors,

smart-connectors

The connection type of the connector's begin

point to the shape.

ConnectTypeEnd
1D-shape, connectors,

smart-connectors

The connection type of the connector's begin

point to the shape.

DblClick All The shape's double-click action.

DblClickAction All The user-defined double-click action.

Desc All The description of the shape.

Document All
Read-only. Returns the document, to which the

shape belongs.

EndX 1D-shape The X-coordinate of the end point of the shape.

EndY 1D-shape The Y-coordinate of the end point of the shape.

FillColor 1D-shape, 2D-shape Read-only. The fill color of the shape.

FillPatColor 1D-shape, 2D-shape Read-only. The fill pattern color of the shape.

FillPattern 1D-shape, 2D-shape The type of the fill pattern of the shape.

FlipX All
A flag that specifies whether the shape is

flipped horizontally.

FlipY All
A flag that specifies whether the shape is

flipped vertically.

FlowAroundObjects Smart-connector

A flag that specifies whether the smart

connector should flow around other shapes,

located on the same page as this smart

connector (True - flow around, False - pass

through).

GPinX All

The X-coordinate of the rotation center of the

shape in the coordinate system of the parent

group.

GPinY All

The X-coordinate of the rotation center of the

shape in the coordinate system of the parent

group.

Height All The height of the shape.

Hyperlink All The ID of the hyperlink, assigned to the shape.

ID All Read-only. ID of the shape.

Is1D All
Read-only. True if 1D-shape, False if 2D-

shape or other object type.

Layer All The ID of the layer to which the shape belongs.

ConceptDraw DIAGRAM Third Party Developer’s Guide

354

LineBegin 1D-shape The begin arrowhead type of a 1D-shape.

LineEnd 1D-shape The end arrowhead type of a 1D-shape.

LineEndSize 1D-shape
The size of begin and end arrowheads of a 1D-

shape.

LockAspect All
A flag that protects the shape from

unproportional resizing.

LockBegin 1D-shape
A flag that protects the begin point of a 1D-

shape from repositioning with the mouse.

LockCalcWH All

A flag that specifies whether to update the

alignment box size if the coordinates of the

shape's vertices have been changed.

LockConnector Smart-connector
A flag that doesn't allow the smart connector to

re-route automatically.

LockDelete All A flag that protects the shape from deleting.

LockEnd 1D-shape
A flag that protects the end point of a 1D-shape

from repositioning with the mouse.

LockFlipX All
A flag that protects the shape from flipping

horizontally.

LockFlipY All
A flag that protects the shape from flipping

vertically.

LockHeight All
A flag that protects the shape's height when the

shape is resized.

LockMoveX All
A flag that protects the shape from horizontal

repositioning.

LockMoveY All
A flag that protects the shape from vertical

repositioning.

LockRotate All A flag that protects the shape from rotation.

LockTextBound 1D-shape, 2D-shape

A flag that protects the shape on the border of

the text object to go beyond the boundaries of

the object.

LockVertex All
A flag that protects the vertices from

modifying with the mouse.

LockWidth All
A flag that protects the shape's width when the

shape is resized.

LPinX All

The X offset of the shape's rotation center

(GPin) with respect to the center of the shape's

coordinate system.

LPinY All

The Y offset of the shape's rotation center

(GPin) with respect to the center of the shape's

coordinate system.

ConceptDraw DIAGRAM Third Party Developer’s Guide

355

Name All The shape's name.

NonPrinting All

A flag that specifies whether to print the shape

when the document is printed: True - don't

print shape, False - print shape.

ObjType All
The shape type: simple shape, group, vector

picture, etc.

Page All The page to which the shape belongs.

Parent All
The parent group (the group to which this

shape belongs).

PenColor 1D-shape, 2D-shape Read-only. The line color for this shape.

PenPattern 1D-shape, 2D-shape The line pattern for this shape.

PenWeight 1D-shape, 2D-shape The line width for this shape.

RoundCorners 1D-shape, 2D-shape The corner radius of the shape.

ShadowColor 1D-shape, 2D-shape The shape's shadow color.

ShadowPatColor 1D-shape, 2D-shape The shape's shadow pattern color.

ShadowPattern 1D-shape, 2D-shape The shape's shadow pattern type.

ShowAlignBox All
A flag that sets whether to display the shape's

alignment box.

ShowControlHandles All
A flag that sets whether to display the shape's

control handles.

ShowShapeHandles All
A flag that sets whether to display the shape's

resize and rotation handles.

ShowText All
A flag that sets whether to display the shape's

text.

SubID All
Read-only. The unique number of the shape

within its parent object (group or page).

Text All The string that contains the text of the shape.

TextAngle All

The angle to which the object text is rotated

with respect to the coordinate system of the

shape.

TextBlock All The shape's text block.

TextFlipX All

A flag that specifies whether the shape's text is

flipped horizontally. True - text is flipped,

False - text is not flipped.

TextFlipY All

A flag that specifies whether the shape's text is

flipped vertically. True - text is flipped, False -

text is not flipped.

TextGPinX All
The X-coordinate of the rotation center of the

shape's text block.

ConceptDraw DIAGRAM Third Party Developer’s Guide

356

TextGPinY All
The Y-coordinate of the rotation center of the

shape's text block.

TextHeight All The text block height.

TextLPinX All

The X offset of the rotation center of the

shape's text block with respect to the center of

the shape's coordinate system.

TextLPinY All

The Y offset of the rotation center of the

shape's text block with respect to the center of

the shape's coordinate system.

TextWidth All The text block width.

Width All The shape's height.

Methods

Name Supported Types Description

Action All
Returns a user-defined action by its index in

the user-defined action collection of the shape.

ActionsNum All
Returns the number of user-defined actions of

the shape.

AddAction All Adds a new user-defined action.

AddConnectDot All Adds a new connection point to the shape.

AddControlDot All Adds a new control handle to the shape.

AddCustomProp All
Adds a new connection point custom property

to the shape.

AddDataSource All Adds a new data source to the collection of

data source object (shape).

AddDSValue all Adds a new row containing the field Value, in

the Data Table parameters of the object

(shape).

AddGeometry 1D-shape, 2D-shape
Adds a new geometry to the geometry

collection of the shape.

AddVariable All
Adds a new user variable to the variable

collection of the shape.

ArcTo All Draws an arc.

BeginShape group

Creates a shape in the group which is later

considered as the current Basic shape of the

group, or returns the current Basic shape of the

group.

Character All
Returns a character block by its index in the

character block collection of the shape.

http://translate.googleusercontent.com/l

ConceptDraw DIAGRAM Third Party Developer’s Guide

357

CharactersNum All
Returns the number of character blocks in the

shape.

ColorProperty All

Returns the color of the specified shape

property. The property is defined by the

constant tag and the indexes of the geometry

and segment of the shape to which it belongs.

ConnectDot All
Returns a connection point by its index in the

connection point collection of the shape.

ConnectDotsNum All
Returns the number of connection points in the

connection point collection of the shape.

ControlDot All
Returns a control handle by its index in the

control handle collection of the shape.

ControlDotsNum All
Returns the number of control handles in the

control handle collection of the shape.

ConvertToGroup group

Converts a ConceptDraw Vector Picture object

to a ConceptDraw group preserving its position

in the document.

ConvertToVFPicture group

Converts a ConceptDraw shape to a Vector

Picture object preserving its position in the

document.

CSVColorValue all Returns an instance of Color, which contains

information about the color, the value of which

are located at the specified position in the table

view a CSV file of the specified data source

object (shape).

CSVGetColumnForKe

y

all Returns the number of columns found by

searching on a key in a table view of this CSV

file data source object (shape).

CSVMinRowLength all Returns the minimum number of lines (from all

the rows) in a tabular representation of a CSV

file of the specified data source object (shape).

CSVRowLength all Returns the number of elements in the

specified row in a table view of this CSV file

data source object (shape).

CSVRowMaxElement all Returns the maximum element of the specified

row in a table view of this CSV file data source

object (shape).

CSVRowMinElement all Returns the minimum element of the specified

row in a table view of this CSV file data source

object (shape).

http://translate.googleusercontent.com/l

ConceptDraw DIAGRAM Third Party Developer’s Guide

358

CSVRowNum all Returns the number of rows in a table view of

this CSV file data source object (shape).

CSVText all Returns the text that are in the specified

position in the table view a CSV file of the

specified data source object (shape).

CSVTextForKey all Returns the text found by searching on a key in

a table view of this CSV file data source object

(shape).

CSVValue all Returns an integer value that is at the specified

position in the table view of this CSV file data

source object (shape).

CSVValueD all Gets a value that is in the specified position in

the table view of this CSV file data source

object (shape).

CSVValueDForKey all Returns the value found using the search key in

a table view of this CSV file data source object

(shape).

CSVValueForKey all Returns the integer value found by searching

on a key in a table view of this CSV file data

source object (shape).

CSVValueType all Returns the type of data that resides in the

specified position in the table view a CSV file

of the specified data source object (shape).

CustomProp All
Returns a custom property by its index in the

custom property collection of the shape.

CustomPropByLabel All
Returns a custom property by its label in the

custom property collection of the shape.

CustomPropsNum All
Returns the number of custom properties of the

shape.

DataSource All
Returns a collection of data from the data

source object (shape) of the index.

DataSourcesNum All
Returns the number of data sources in the

collection of the object (shape).

DrawConnector group Draws a connector.

DrawGroup group Creates a group inside the given group.

DrawGuide group Draws a guide line.

DrawLine All Draws a line.

DrawOval All Draws an ellipse.

DrawRect All Draws a rectangle.

DrawSector All Draws a sector of the circle.

ConceptDraw DIAGRAM Third Party Developer’s Guide

359

DrawSmartConnector group Draws a smart connector.

DrawStamp group

Draws inside the group a copy of the specified

shape with the specified size and position,

same as the Stamp tool in ConceptDraw.

DrawStampSelection group

Draws inside the group copies of all selected

shapes with the specified size and position,

same as the Stamp tool in ConceptDraw.

DropStamp group

Creates inside the group a copy of the specified

shape, same as the Stamp tool in ConceptDraw,

preserving the size of the original shape.

DropStampSelection group

Creates inside the group copies of all selected

shapes, same as the Stamp tool in

ConceptDraw, preserving the size of the

original shapes.

DSValue all Returns an instance of an object

DataSourceValue, containing data from a table

row Data parameters of the object (shape) of

the index.

DSValueEl all Returns an instance of an object by name

DataSourceValue line (field Name) Data Table

parameters of the object (shape), containing in

the Value data list.

DSValuesNum all Returns the number of rows in a table Data

parameters of the object (shape).

EndShape group Returns the current Basic shape of the group

and informs ConceptDraw that creation of the

shape is finished.

Equal All Copies all the properties and the contents of the

specified shape to the given shape.

ExcelColorValue All Returns an instance of Color, which contains

information about the color, the value of which

are located at the specified position in the table

view XLS file specified data source object.

ExcelGetColumnForK

ey

All Returns the column number, found by

searching on a key in a table view XLS file

specified data source object.

ExcelMinRowLength All Returns the minimum number of lines (from all

the rows) in the table view XLS file specified

data source object.

ExcelRowLength All Returns the number of elements in the

specified row in a table view XLS file specified

data source object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

360

ExcelRowMaxElement All Returns the maximum element of the row in

the table view XLS file specified data source

object.

ExcelRowMinElement All Returns the minimum element of the row in the

table view XLS file specified data source

object.

ExcelRowNum All Returns the number of rows in a table view

XLS file specified data source object.

ExcelText All Returns the text written in a specified position

in the table view XLS file specified data source

object.

ExcelTextForKey All Returns the text found by searching on a key in

a table view XLS file specified data source

object (shape).

ExcelValue All Returns an integer value that is at the specified

position in the table view XLS file specified

data source object (shape).

ExcelValueD All Gets a value that is at the specified position in

the table view XLS file specified data source

object.

ExcelValueDForKey All Returns the value found using the search key in

a table view XLS file specified data source

object.

ExcelValueForKey All Returns the integer value found by searching

on a key in a table view XLS file specified data

source object.

ExcelValueType All Returns the type of data that resides in the

specified position in the table view XLS file

specified data source object.

FileText All Returns the text written in that text file data

source object.

GeometriesNum 1D-shape, 2D-shape Returns the number of geometries in the shape.

Geometry 1D-shape, 2D-shape
Returns a geometry by its index in the

geometry collection of the shape.

GetBooleanProperty All Returns the value of a Boolean type property.

GetByteProperty All Returns the value of a Byte type property.

GetCharacterIndex All

Returns the index of the character block which

includes the character with the specified index

in the line of the shape's text.

GetDoubleProperty All Returns the value of a Double type property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

361

GetIndex All

Returns the index of the object (shape) in a

collection of objects (shapes) of the parent

group.

GetIntegerProperty All Returns the value of an Integer type property.

GetLongProperty All Returns the value of a Long type property.

GetParagraphIndex All

Returns the index of the paragraph in the

shape's paragraph collection by the specified

character's index in the shape's text.

GetPropertyFormula All
Returns the property's formula in the form of a

string.

GetShapeByName group Searches for the object (shape) with the given

name of the group.Returns the position of the

found object (shape) in a collection of objects

(shapes) of the group.

GetSingleProperty All Returns the value of a Single type property.

GetStringProperty All Returns the value of a String type property

GPtoLp All Performs the conversion of the coordinates of

the coordinate system of the parent object

(shape) (group or page) in the local coordinate

system of (this) object (shape).

InsertPicture group Inserts into a group an object that contains

picture from the specified file.

IsDefaultFormula All Returns True if the specified property of the

shape has a formula that is marked as

default. Otherwise returns False.

IsNullFormula All Returns True if the specified property of the

shape has no formula.Otherwise returns False.

LAtoWA All Converts the specified angle from local

coordinates of this shape into global

coordinates.

LineTo 1D-shape, 2D-shape,

group

Draws a line in the shape.

LPtoGP All Converts the coordinates of the point from

local coordinates of this shape into the

coordinate system of the parent shape (group or

page).

LPtoWP All Converts the coordinates of the point from

local coordinate system of this shape into

global coordinates.

MoveTo 1D-shape, 2D-shape,

group

Sets the position of the current point of the

shape, used for drawing shapes.

ConceptDraw DIAGRAM Third Party Developer’s Guide

362

Paragraph All Returns a paragraph by its index in the

paragraph collection of the shape.

ParagraphsNum All Returns the number of paragraphs in the

shape's text.

PropertyChanged All Tells the ConceptDraw engine that the value of

the specified table property has been changed

and the formulas of the dependent properties

must be re-calculated.

RecalcProperty All Tells the ConceptDraw engine that the value of

the specified table property is to be re-

calculated using its table formula.

RemoveAction All Removes a user-defined action by its index in

the user-defined action collection of the shape.

RemoveAllServObjs group Removes all service objects that belong to the

group.

RemoveAllShapes group Removes all shapes that belong to the group.

RemoveCharacter All Removes a character block by its index in the

character block collection of the shape.

RemoveConnectDot All Removes a connection point by its index in the

connection point collection of the shape.

RemoveControlDot All Removes a control handle by its index in the

control handle collection of the shape.

RemoveCustomProp All Removes a user-defined action by its index in

the user-defined action collection of the shape.

RemoveDataSource All Deletes the data source from the collection of

data sources, the object (shape) of the index.

RemoveDSValue All Removes a row from a table Data parameters

of the object (shape) of the index.

RemoveGeometry 1D-shape, 2D-shape Removes a geometry by its index in the

geometry collection of the shape.

RemoveParagraph All Removes a paragraph by its index in the

paragraph collection of the shape.

RemoveServObj group Removes a service object by its index in the

service object collection of the group.

RemoveServObjByID group Removes a service object with the

specified ID (the ID property) from the service

object collection of the group.

RemoveShape group Removes a shape by its index in the shape

collection of the group.

ConceptDraw DIAGRAM Third Party Developer’s Guide

363

RemoveShapeByID group Removes a shape with the specified ID from

the shape collection of the group.

RemoveVariable All Removes a user-defined variable by its index in

the user-defined variable collection of the

shape.

ReorderServObj group Moves the service object to the specified

position in the service object collection of the

group.

ReorderServObjByID group Moves a service object with the specified ID to

the indicated position in the service object

collection of the group.

ReorderShape group Moves the shape to the specified position in the

shape collection of the group.

ReorderShapeByID group Moves a shape with the specified ID to the

indicated position in the shape collection of the

group.

SendBack all Moves the object (shape) in the first position in

the collection of objects (shapes) of the parent

group.

SendFront all Moves the object (shape) in the last position in

the collection of objects (shapes) of the parent

group.

ServObj group Returns a service object by its index in the

service object collection of the group.

ServObjByID group Searches for a service object with the specified

ID in the service object collection of the group.

ServObjsNum group Returns the number of service objects in the

group.

SetBooleanProperty All Sets the value of a Boolean type property by

the specified tag.

SetByteProperty All Sets the value of a Byte type property by the

specified tag.

SetCharColor All Sets color for the specified character block of

the shape's text.

SetCharFont All Sets font for the specified character block of

the shape's text.

SetCharHyperlink All Sets hyperlink for the specified character block

of the shape's text.

SetCharLanguage All Sets encoding for the specified character block

of the shape's text.

ConceptDraw DIAGRAM Third Party Developer’s Guide

364

SetCharPos All Sets position (subscript, superscript) for the

specified character block of the shape's text.

SetCharSize All Sets font size for the specified character block

of the shape's text.

SetCharSpacing All Sets character spacing for the specified

character block of the shape's text.

SetCharStyle All Sets font style (bold, italic, underline, etc.) For

the specified character block of the shape's text.

SetDefaultFormula All Creates a default formula for the specified table

property of the shape.

SetDoubleProperty All Sets a value of the specified Double type table

property.

SetIntegerProperty All Sets a value of the specified Integer type table

property.

SetLongProperty All Sets a value of the specified Long type table

property.

SetNullFormula All Removes the formula from the specified table

property of the shape.

SetParaAfterSpacing All Sets spacing between the specified and next

paragraph of the shape's text.

SetParaBeforeSpacing All Sets spacing between the specified and

previous paragraph of the shape's text.

SetParaFirstInd All Sets the first line indent for the specified

paragraph of the shape.

SetParaHAlign All Sets horizontal alignment type for the specified

paragraph relative to the text box.

SetParaLeftInd All Sets the distance to the left edge of the text box

for the specified paragraph of the shape.

SetParaLineSpacing All Sets the line spacing for the specified

paragraph of the shape.

SetParaRightInd All Sets the distance to the right edge of the text

box for the specified paragraph of the shape.

SetPropertyFormula All Sets a table formula for the specified table

property of the shape.

SetSingleProperty All Sets a value of the specified Single type table

property.

SetStringProperty All Sets a value of the specified String type table

property.

SetStyle All Assigns a style with the specified name to the

shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

365

Shape group Returns a shape by its index in the shape

collection of the group.

ShapeByID group Searches for a shape with the specified ID in

the shape collection of the group.

ShapeBySubID group Searches for a shape with the specified SubID

in the shape collection of the group.

ShapesNum group Returns the number of shapes in the group.

SplineStart 1D-shape, 2D-shape,

group

Starts drawing a new spline.

SplineTo 1D-shape, 2D-shape,

group

Creates a spline segment in the shape.

StepBack all Moves the object (shape) back by one position

in the collection of objects (shapes) of the

parent group.

StepFront all Moves the object (shape) by one position in the

collection of objects (shapes) of the parent

group.

Variable All Returns a user-defined variable by its index in

the user-defined variable collection of the

shape.

VariablesNum All Returns the number of user-defined variables

contained in the shape.

WPtoLP All Converts the coordinates of the specified point

from the global coordinate system to the local

coordinate system of this shape.

XPathText All Returns the text written in the specified XML

file data source object.

XPathValue All Returns the integer value from the specified

XML file data source object.

XPathValueD All Returns the value of the specified XML file

data source object.

Remarks

A ConceptDraw shape can be located on a document page, inside a group of shapes, or be stored

inside a library object (Master object) - that is, inside a library. Which page or group contains its

own collection of ConceptDraw shapes, and uses the appropriate methods of the Page and Shape

objects to control them. Each library object can contain only one ConceptDraw shape. An

instance of the Shape object can also be retrieved by using properties of other objects (Shape,

ServObj, Window) which refer to the shape to which they belong.

ConceptDraw DIAGRAM Third Party Developer’s Guide

366

The Shape object has some properties, known as table properties of the shape - that is, the

properties which can be associated with a table formula. To work with such properties as with

table properties the appropriate methods of the Shape object are used (see above). Note, that if a

table property was modified, one should use the RecalcProperty and PropertyChanged methods

to re-calculate the depending properties and re-draw the shape respectively.

Also the methods of the Shape object provide control over connection points of connectors,

control handles, user-defined actions, variables, custom properties, text block parameters,

paragraphs and character blocks of the shape's text, shape geometries, etc.

An instance of the Shape object can be retrieved by using the following methods and properties:

Master object: Shape property.

Page and Shape object: Shape method, ShapeByID method and other

ServObj and Shape object: Parent property.

Window object: Shape property.

Also an instance of the Shape object can be retrieved by using the thisShape global variable, pre-

defined at the shape script level. thisShape returns the shape which script is being executed when

the variable is referred to.

See Also
Character object, Color object, Document object, Hyperlink object, Master

object, Page object, Paragraph object, ServObj object, TextBlock object,

Window object

Style Object

Style Object

The Style object describes the ConceptDraw document style. It allows to control the following

style properties: line color, fill color, line weight, various text parameters, etc.

Properties

Character Read-only. Text display parameters for this style.

EndsSize The end arrows size - 1D-shape for this style.

FillColor Read-only. The fill color.

FillPatColor Read-only. The pattern fill color.

FillPattern The pattern fill type.

ConceptDraw DIAGRAM Third Party Developer’s Guide

367

HasCharAttr A flag that specifies whether the Character property is effective.

HasEndsAttr
A flag that specifies whether the arrowhead properties for 1D shapes are

effective: LineBegin, LineEnd and LineEndSize.

HasFillAttr
A flag that specifies whether the shape's fill properties are effective in this

style: FillColor, FillPatColor and FillPattern.

HasParaAttr A flag that specifies whether the Paragraph property is effective.

HasPenAttr
A flag that specifies whether the shape's line properties are effective in

this style: PenColor, PenPattern and PenWeight.

HasShadowAttr
A flag that specifies whether the shape's shadow properties are effective

in this style: ShadowColor, ShadowPatColor and ShadowPattern.

HasTxtblockAttr A flag that specifies whether the TextBlock property is effective.

LineBegin The begin arrowhead type of a 1D-shape.

LineEnd The end arrowhead type of a 1D-shape.

LineEndSize The size of begin and end arrowheads of a 1D-shape.

Name
Read-only. The name of the style. The unique name that defines the style

within the scope of the style collection of the document.

Paragraph Read-only. Paragraph parameters.

PenColor Read-only. The color of the shape's lines.

PenPattern The shape's line pattern.

PenWeight The shape's line weight.

ShadowColor Read-only. The shape's shadow color.

ShadowPatColor Read-only. The shape's shadow pattern color.

ShadowPattern The shape's shadow pattern type.

TextBlock Read-only. The text block parameters.

Methods

SetFillColor
Sets the fill color (pattern) of an object (shape) for the current style of the

document.

SetFillPatColor
Sets the color of the fill pattern of the object (shape) for the current style

of the document.

SetPenColor
Sets the line color of the object (shape) for the current style of the

document.

SetShadowColor
Sets the color of the shadow of the object (shape) for the
current style of the document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

368

SetShadowPatColor
Sets the color of the pattern (pattern), the shadow of the object (shape) for

the current style of the document.

Remarks

Each ConceptDraw document has its own style collection. The Document object has methods for

working with style collections. However, styles are intended for describing properties of

ConceptDraw shapes. So, it's possible to apply style properties to a ConceptDraw shape by using

the SetStyle method of the Shape object. To set the default style for new shapes, created in the

document, use the DefStyle property of the Document object.

An instance of the Style object can be retrieved by using the following methods of the Document

object: AddStyle method, Style method, StyleByName method.

Alternatively, the style properties can be changed from within ConceptDraw, menu "Format-

>Define Styles".

See Also
Character object, Color object, Document object, Paragraph object,

TextBlock object, Shape object

TabStop Object

TabStop Object

The TabStop object controls tab stop properties: text alignment relative to the tab stop, tab stop

position.

Properties

Align Determines the alignment of the text with respect to the tab stop.

Pos
The distance between the tab stop position and the left edge of the text block,

where this tab stop is located.

Remarks

Tab stop positions of a text block specify positions to which the insertion point jumps when you

hit Tab when editing text. Each TextBlock object contains its own tab stop collection and the

corresponding methods for working with that collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

369

An instance of the TabStop object can be retrieved by using the following methods of the

TextBlock object: AddTabStop method, TabStop method.

See Also Shape object, TextBlock object

TextBlock Object

TextBlock Object

The TextBlock object provides access to various text block properties of a ConceptDraw shape,

such as the dimensions of the text block, background color, tab stop properties and more.

Properties

VAlign Vertical alignment type of the text within the text block.

TopMargin The top margin of the text block.

BottomMargin The bottom margin of the text block.

LeftMargin The left margin of the text block.

RightMargin The right margin of the text block.

TextBkgnd Read-only. Text block background color.

DefTabStop The default tab stop distance from the left edge of the text block.

Methods

AddTabStop Adds a new tab stop to the tab stop collection of the text block.

RemoveTabStop
Removes the specified tab stop and returns the number of remaining tab

stops.

TabStop
Returns a TabStop object corresponding to a tab stop with the specified

index in the tab stop collection of the text block.

TabStopsNum Returns the number of tab stops in a text block.

Remarks

A text block is used to describe text properties of a ConceptDraw shape (TextBlock property

(Shape object)). An instance of the TextBlock object is also contained in the document

ConceptDraw DIAGRAM Third Party Developer’s Guide

370

(DefTextBlock property) to describe the default text block settings for new shapes, and in a

document style (TextBlock property (Style object)) to describe the text block settings applied to

shapes when the style is assigned to them.

See Also Document object, Shape object, Style object, TabStop object

Variable Object

Variable Object

A service object. You may need variables when several different fields use result of the same

calculations. So, the additional variables can be used to store the results. You may also use the

additional variables to store various object parameters, which you're working with, so that you

don't have to refer to them. An instance of this object can be retrieved from the Shape Object.

Properties

X The X-coordinate of the point.

Y The Y-coordinate of the point.

See Also Shape object

Window Object

Window Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

371

The Window object is used to get information about and to control windows in ConceptDraw.

The following window types exist in ConceptDraw: document view, library view, table view and

ConceptDraw Basic Editor window.

Properties

Property
Supported

Window Types
Description

ID all windows Read-only. Returns the window ID.

Type all windows Read-only. Returns the window type.

State all windows Read-only. Returns the state of the window.

Left all windows
Read-only. Return the X coordinate of the top left

point of the window.

Top all windows
Read-only. Return the Y coordinate of the top left

point of the window.

Height all windows Read-only. Returns the window height in pixels.

Width all windows Read-only. Returns the window width in pixels.

ViewZoom document view The zoom level set in this window.

ViewCenterX document view
Read-only. Returns the X coordinate of the point,

displayed in the center of the window.

ViewCenterY document view
Read-only. Returns the X coordinate of the point,

displayed in the center of the window.

Document document view
Read-only. Returns the document which contents

is displayed in the window.

Library library view
Read-only. Returns the active library in the library

window.

Page document view
Read-only. Returns the document page displayed

in the window.

Shape
document view,

table view

Read-only. Returns the shape displayed in the

window, if the window is the Edit Group window.

Methods

FindLib library view
Returns the index of the library in the library

collection of the window.

GetSelectedService document view
Returns the index of the library in the library

collection of the window.

GetSelectedShape document view
Returns the index of the library in the library

collection of the window.

Lib library view
Returns a library by its index in the library

collection of the window.

ConceptDraw DIAGRAM Third Party Developer’s Guide

372

LibByName library view
Returns a library by the specified name (the Name

property).

LibsNum library view
Returns the number of the libraries, opened in the

window.

Deselect document view
Deselect a shape by the specified ID (the ID

property) of the shape.

DeselectAll document view
Deselects all shapes on the page displayed in the

window.

GetSelectedService

method
document view

Returns a service object from the collection-

selected objects (shapes) is displayed in a window

or group of pages to index.

GetSelectedShape

method
document view

Returns an object (shape)-selected objects from

the collection (shapes) is displayed in a window or

group of pages to index.

Select document view
Selects a shape by the specified ID (the ID

property) of the shape.

SelectAll document view
Selects all shapes on the page displayed in the

window.

SelectedNum document view
Returns the number of selected shapes on the

page, displayed in the window.

SetWindowRect document view Sets the size and position of the window.

Minimize all windows Minimizes the window.

Maximize all windows Maximizes the window.

Restore all windows
Restores the original size and position of the

window.

ScrollViewTo document view
Scrolls the window to the point with the specified

coordinates.

Remarks

An instance of the Window object can be retrieved by using the following methods and

properties:

The Application object: ActiveLibWnd property, LibWindowByID method, FirstLibWindow

method, NextLibWindow method.

The Document object: ActiveView property, ViewByID method, FirstView method, NextView

method.

See Also Application object, Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

373

ConceptDraw access Objects Properties

Action Property (Action object)

Action Property

A Byte value. Gets or sets the result of the formula, assigned to the shape.

Applies to objects: Action

Syntax
[Let] RetVal = object.Action

[Let] object.Action = SetVal

The Action property syntax has these Elements:

Element Description

object A reference to an instance of the shape.

RetVal A Byte value, the result of execution of the formula.

SetVal A Byte value, the result of execution of the formula.

Remarks

To set the formula, use the SetPropertyFormula method of the Shape Object.

Example

This example demonstrates how the Action property can be used.
Dim s as Shape, MyAction as Action

' Assume the shape with ID 1 is on the active page.

' Also assume the shape contains at least one action.

s = thisDoc.ActivePage.ShapeByID(1)

' Take reference to an instance of the Action object

Set MyAction = s.Action(1)

' Output the result of the funciton defined in the action.

trace MyAction.Action

ConceptDraw DIAGRAM Third Party Developer’s Guide

374

See Also
Action Object, Shape Object, SetPropertyFormula Method, ActionsNum

Method, AddAction Method, Action Method, RemoveAction Method

Action Property (DataSource object)

A String type property. The action that will be done in the case of new data from the source.

Applies to: DataSource object

Syntax

[[Let] ActionRet =] object.Action

[Let] object.Action = ActionSet

The Action property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

ActionRet Optional. A String type variable.

ActionSet Required. An expression that returns a String value.

Remarks

The Action property is also a table parameter of the DataSource, that is, its value can be described

by a formula. To work with Action as a table parameter, use the CDPT_DS_ACTION constant

tag.

Example

dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.Action

ds.Action = "Time"

trace ds.Action

or

thisShape.SetPropertyFormula("_CALLTHIS(""Function Name"")", CDPT_DS_ACTION,

1)

ConceptDraw DIAGRAM Third Party Developer’s Guide

375

trace ds.Action

See Also
DataSource object, Active property, DataSource property, Refresh property,

ShowErrors property, ShowWarnings property, Timeout property

ActiveDoc Property

ActiveDoc Property

Read-only. Returns the active Document object, the document shown in the active window.

Applies to: Application object

Syntax
[[Set] docRet =] object.ActiveDoc

The ActiveDoc property syntax has these Elements:

Element Description

object Required. An expression that returns an Application object.

docRet Optional. A variable of the Document type.

Remarks

Only one document from the documents, open in the application, can be active. When no

documents are open, there is no active document and the ActiveDoc property returns the value

Nothing.

Example

This example contains an application-level script. It demonstrates using the ActiveDoc property.
Dim active_doc as Document ' Declare variable

set active_doc = thisApp.ActiveDoc ' Get active document

active_doc.Name = "Current_doc" ' Seta a new filename to active

document

' ... here may be some code for inflation of your document

active_doc.Save() ' Save active document with a new name

ConceptDraw DIAGRAM Third Party Developer’s Guide

376

TRACE active_doc.FullName ' Display full filename of saved

document

See Also Document object

ActiveLayer Property

ActiveLayer Property

Long property. Gets or sets the document's active layer ID (the ID property). The active layer is

the layer to which shapes are assigned when dropped on the drawing page.

Applies to: Document object

Syntax
[[Let] layerIDRet =] object.ActiveLayer

[Let] object.ActiveLayer = layerIDSet

The ActiveLayer property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

layerIDRet Optional. A Long variable.

layerIDSet
Required. An expression that returns a Long value. The ID (ID property)

of the layer to be set as the active layer of the document.

Remarks

There is always an active layer in the document, because a ConceptDraw document always

contains at least one layer. If there is no layer with the ID, specified by layerIDSet in the

document, the value of the ActiveLayer property is not modified. Use the LayerByID method to

retrieve an instance of the Layer object by the layer ID.

Example

This example contains a document-level script. The script draws two rectangles on the first page

of the document. The first rectangle has ID 1, the second rectangle has ID 2.

ConceptDraw DIAGRAM Third Party Developer’s Guide

377

' Make active the layer with ID 1

thisDoc.ActiveLayer = 1

' Draw rectangle on the active layer

thisDoc.Page(1).DrawRect(100,100,700,400)

' Make active the layer with ID 2.

thisDoc.ActiveLayer = 2

' Draw rectangle on the active layer

thisDoc.Page(1).DrawRect(300,300,900,600)

See Also
ID property, Layer method, LayerByID method, LayersNum method, Layer

object

ActiveLibWnd Property

ActiveLibWnd Property

Read-only. Returns an instance of the Window object, corresponding to the active library

window.

Applies to: Application object

Syntax
[[Set] libWindowRet =] object.ActiveLibWnd

The ActiveLibWnd property syntax has these Elements:

Element Description

object Required. An expression returning an .Application object.

libWindowRet Optional. A Window type variable.

Remarks

If ActiveLibWnd returns Nothing, there is no active library window in the application, and no

active library.However, it doesn't mean that there are no open libraries in the application. Note,

that an active library window always contains an active library.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

378

This example contains an application-level script. It demonstrates an attempt to find a bug in

ConceptDraw Basic by using the fact that the active library window always contains the active

library.
' Declare variables

Dim lib_wnd as Window

Dim m_lib as Library

' Get active library window

Set lib_wnd = thisApp.ActiveLibWnd

If lib_wnd <> Nothing Then

 ' Get active library in the active library window

 Set m_lib = lib_wnd.Library

 if m_lib <> thisApp.ActiveLib Then

 MsgBox("Oh, NO! You ve found a BUG! Please report this at

www.conceptdraw.com as soon as you can!")

 else

 MsgBox("Wanna find some bugs? No, our company cannot help you.")

 End If

Else

 MsgBox("There is no active library window now!")

End If

See Also Window object, Library object

ActiveLib Property

ActiveLib Property

Read-only. Returns an instance of the Library object corresponding to the active library.

Applies to: Application object

Syntax
[[Set] libRet =] object.ActiveLib

The ActiveLib property syntax has these Elements:

Element Description

object Required. An expression returning an Application object.

libRet Optional. A Library type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

379

If there is no active library in the application, the ActiveLib property returns Nothing. However,

it doesn't mean that there are no open libraries in the application. Use the SetActiveLib method to

make a library active.

Example

This example contains an application-level script. It demonstrates using the ActiveLib property.
Dim active_lib as Library ' Declare a Library type variable

Set active_lib = thisApp.ActiveLib ' Set active library

active_lib.Name = "Current_Lib" ' Give new filename to active library

'... some code to inflate your active lib

active_lib.Save() ' Save library with new filename.

TRACE active_lib.FullName ' Display full filename and path to the

saved library

See Also SetActiveLib method, Library object

ActivePage Property

ActivePage Property

Read-only. Returns an instance of the Page object corresponding to the active page of the

document.

Applies to: Document object

Syntax
[[Set] pageRetl =] object.ActivePage

The ActivePage property syntax has these Elements:

Element Description

object Required. An expression returning a Document object.

pageRet Optional. A Page type variable.

Remarks

Note, that a document always has at least one page, and one page is always active. If there is more

than one page in the document, the active page is the one displayed in the active document view.

ConceptDraw DIAGRAM Third Party Developer’s Guide

380

To set a new active page use the SetActivePage method. If you address the ActivePage property

when the active window is note a page view (for instance, it's the ConceptDraw Basic Editor

window), the ActivePage property returns the most recent active page.

Example

This example contains a document-level script. It draws rectangles on the first three pages of the

document, using the ActivePage property to address the pages. The SetActivePage is used to set

active pages in this order: Page 1, then Page 2, then Page 3.
' If there are less than 3 pages in the document

' then add remaining pages

If thisDoc.PagesNum() < 3 Then

 thisDoc.AddPage()

End If

If thisDoc.PagesNum() < 3 Then

 thisDoc.AddPage()

End If

' Set page 1 as active page

thisDoc.SetActivePage(1)

' Draw rectangle on page 1

thisDoc.ActivePage.DrawRect(100, 100, 700, 500).Text = 1

' Set page 2 as active page

thisDoc.SetActivePage(2)

' Draw rectangle on page 2

thisDoc.ActivePage.DrawRect(100, 100, 700, 500).Text = 2

' Set page 3 as active page

thisDoc.SetActivePage(3)

' Draw rectangle on page 3

thisDoc.ActivePage.DrawRect(100, 100, 700, 500).Text = 3

See Also SetActivePage method, SetActivePageByID method, Page object

ActiveView Property

ActiveView Property

Read-only. Returns an instance of the Window object, corresponding to the active document

view.

Applies to: Document object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

381

[[Set] windowRet =] object.ActiveView

The ActiveView property syntax has these Elements:

Element Description

object Required. An expression returning a Document object.

windowRet Optional. A Window type variable.

Remarks

If there is no active document view, the ActiveView property returns a Window object,

corresponding to the most recent active page of the document (the ActivePage property). It

doesn't necessarily return the last active document view, rather any window, corresponding to the

most recent active page of the document. The active document view type (the Type property) is

document view (cdDOCVIEW).

Example

This example contains a document-level script. It demonstrates how to control the active

document view by using the ActiveView property of the document.
' Maximize window

thisDoc.ActiveView.Maximize()

' Display message

MsgBox("Active View is Maximized!")

' Minimize active window

thisDoc.ActiveView.Minimize()

MsgBox("Active View is Minimized!")

' Restore the original view of the window

thisDoc.ActiveView.Restore()

MsgBox("Active View is Restored!")

See Also ActivePage property, Type property, Window object

Active Property

Active Property

A Boolean type property. Provides start or a stop of process of updating of data from a source.

True - start of process of updating of data from a source. False - a stop of process of updating of

data from a source. By default Active property is equal to False.

ConceptDraw DIAGRAM Third Party Developer’s Guide

382

Applies to: DataSource object

Syntax
[[Let] ActiveRet =] object.Active

[Let] object.Active = ActiveSet

The Active property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

ActiveRet Optional. A Boolean type variable.

ActiveSet Required. An expression that returns a Boolean value.

Remarks

The Active property is also a table parameter of the DataSource, that is, its value can be described

by a formula. To work with Active as a table parameter, use the CDPT_DS_ACTIVE constant

tag.

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.Active

ds.Active = True

trace ds.Active

or

thisShape.SetPropertyFormula("False",CDPT_DS_ACTIVE, 1)

trace ds.Active

See Also
DataSource object, Action property, DataSource property, Refresh property,

ShowErrors property, ShowWarnings property, Timeout property

Address Property

Address Property

Read-only. A String value. Represents a path to the file or URL to which the hyperlink points.

Applies to: Hyperlink object

ConceptDraw DIAGRAM Third Party Developer’s Guide

383

Syntax
[[Set] addressRet =] object.Address

The Address property syntax has these Elements:

Element Description

object Required. An expression that returns a Hyperlink object.

addressRet Optional. A String type variable.

Remarks

This property is efficient if the hyperlink has the type cdLinkToFile or cdLinkToURL (the

LinkType property).

See Also
AddHyperlinkToDocument method, AddHyperlinkToFile method,

AddHyperlinkToURL method

AfterSpacing Property

AfterSpacing Property

A Single type property. Specifies the amount of space inserted after each paragraph in the shape's

text block.

Applies to: Paragraph object

Syntax
[Let] singleRet = object.AfterSpacing

[Let] object.AfterSpacing = afterSpacingSet

The AfterSpacing property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

singleRet Optional. A Single type variable.

afterSpacingSet Required. An expression that returns a Single value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

384

Remarks

The interval is specified in InternalUnit (internal units of measure of ConceptDraw).

The AfterSpacing property is also a table parameter of the shape, to which the object paragraph

belongs. That is, its value can depend on a formula. To work with AfterSpacing as a table

parameter, use the CDPT_PARA_AFTERSPACING constant tag.

Example

This example shows how to increase the spacing between the second and the third paragraphs. It

assumes that there is a shape with at least three paragraphs of text on the current page.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Increase spacing between second and third paragraphs by 150 points

s.Paragraph(2).AfterSpacing = 150

' Inform ConceptDraw Engine about the changes to recalculate and redraw the

document

s.PropertyChanged(CDPT_PARA_AFTERSPACING)

See Also SetParaAfterSpacing method

Align Property

Align Property

A Byte type property. Specifies the horizontal alignment type of text with respect to the current

tab stop.

Applies to: TabStop object

Syntax
[[Let] byteRet =] object.Align

[Let] object.Align = alignSet

The Align property syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the TabStop object.

byteRet Optional. A Byte type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

385

alignSet Required. An expression that returns a Byte type value.

Remarks

The following constants show the possible alignment values:

Constant Value Description

cdTabStopLeft 0 Alignment to the left edge.

cdTabStopCenter 1 Alignment by the center.

cdTabStopRight 2 Alignment to the right edge.

cdTabStopDecimal 3
Alignment by the decimal point (for point-delimited real

numbers).

cdTabStopComma 4
Alignment by the decimal comma (for comma-delimited

real numbers).

The Align property is also a table parameter of the shape, which contains the text block with the

object tab stop inside. That is, its value can depend on a formula. To work with Align as a table

parameter, use the CDPT_TABALIGN constant tag.

Example

This example demonstrates using the Align property. It assumes, that the active page contains the

shape with ID1, which has text. Also, at least one tab stop is defined.
Dim s as Shape, MyTabStop as TabStop

' Assume shape with ID 1 exists on page.

' Assume the shape's text contains several numbers

' located on different lines and having point as decimal separator

s = thisDoc.ActivePage.ShapeByID(1)

' Add tab stop that will obtain number 1

s.TextBlock.AddTabStop()

' Get reference to a TabStop object

Set MyTabStop = s.TextBlock.TabStop(1)

' Set properties for the first tab stop.

' Numbers in different lines must be aligned by their decimal points.

MyTabStop.Pos = 200

MyTabStop.Align = cdbTabStopDecimal

' Inform ConceptDraw Engine about the changes to recalculate and redraw the

document

s.PropertyChanged(CDPT_TABALIGN)

s.PropertyChanged(CDPT_TABPOS)

See Also Pos property, Shape object, TextBlock object

ConceptDraw DIAGRAM Third Party Developer’s Guide

386

Angle Property

Angle Property

A Double type property. Represents the angle to which the shape is rotated clockwise around its

rotation center (GPinX, GPinY properties). The angle is measured with respect to the horizontal

axis, in the coordinate system of the parent shape (parent group or page).

Applies to: ServObj object, Shape object

Syntax
[[Let] angleRet =] object.Angle

[Let] object.Angle = angleSet

The Angle property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

heightRet Optional. A Double type variable.

angleSet Required. An expression that returns a Double value.

Remarks

The Angle property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with Angle as a table parameter, use the CDPT_ANGLE constant tag.

The angle values are specified in radians.

See Also
Angle property, GPinX property, GPinY property, FlipX property, FlipY

property, Height property, LPinX property, LPinY property, Width property

Author Property

Author Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

387

String property. Gets or sets a string containing the name of the author of the document/library.

Applies to: Document object, Library object

Syntax
[[Let] authorRet =] object.Author

[Let] object.Author = authorSet

The Author property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

authorRet Optional. A String type variable.

authorSet
Required. An expression that returns a String value. The string to be set as

the name of the author of the document.

Remarks

For a new document the Author property contains an empty string.

Setting the Author property for a document is equivalent to entering information in the Author

box in the Document Properties dialog box, tab General (click Document Properties on the File

menu). To set Author for a library, use the Properties dialog from the File ->Library menu.

Example

The example below contains a document-level script. It demonstrate how to view the author

information for a document by creating a Text object with the "DocAuthor" formula.
Dim shp As Shape ' Declare variables

Set shp = thisDoc.ActivePage.DrawRect(100,100,1000,300) ' Draw rectangle

shp.Text = ""

shp.SetPropertyFormula("DocAuthor", CDPT_TEXT) ' Set formula for the

Text property

shp.RecalcProperty(CDPT_TEXT) ' Re-calculating the Text

property

thisDoc.Author = "New Document Author" ' Set new value for the

Author property

See Also Company property, Desc property, Subj property, Title property

ConceptDraw DIAGRAM Third Party Developer’s Guide

388

BackPageID Property

BackPageID Property

A Long type property. Gets or sets the ID (ID property) of the background page for the specified

page.

Applies to: Page object

Syntax
[[Let] longRet =] object.BackPageID

[Let] object.BackPageID = backPageIDSet

The BackPageID property syntax has these Elements:

Element Description

object Required. An expression that returns a Page object.

longRet Optional. A Long type variable.

backPageIDSet Required. An expression that returns a Long value.

Remarks

The contents of a background page is displayed on the background of the page it's assigned to, but

can't be edited. The backPageIDSet returns an ID of a page within the same document (the

Document property) which can be set as background page (the IsBackGround property). A

background page can be set as background for itself, that is the BackPageID property is only

effective, if the IsBackground value is False for the page.

See Also ID property, Document property

BeforeSpacing Property

BeforeSpacing Property

A Single type property. The amount of space inserted before each paragraph in the shape's text

block.

ConceptDraw DIAGRAM Third Party Developer’s Guide

389

Applies to: Paragraph object

Syntax
[Let] singleRet = object.BeforeSpacing

[Let] object.BeforeSpacing = beforeSpacingSet

The BeforeSpacing property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

singleRet Optional. A Single type variable.

beforeSpacingS

et
Required. An expression that returns a Single value.

Remarks

The interval is specified in InternalUnit (internal units of measure of ConceptDraw).

The BeforeSpacing property is also a table parameter of the shape, to which the object paragraph

belongs. That is, its value can be defined by a formula. To work with BeforeSpacing as a table

parameter, use the CDPT_PARA_BEFORESPACING constant tag.

Example

This example shows how to increase the spacing between the first and the second paragraphs. It

assumes that there is a shape with at least three paragraphs of text on the current page.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Increase spacing between the first and second paragraphs by 150 points

s.Paragraph(2).BeforeSpacing = 150

' Inform ConceptDraw Engine about the changes to recalculate and redraw the

document

s.PropertyChanged(CDPT_PARA_BEFORESPACING)

See Also SetParaBeforeSpacing method

ConceptDraw DIAGRAM Third Party Developer’s Guide

390

BeginX Property

BeginX Property

A Double type property. The X-coordinate of the begin point of the 1D shape.

Applies to: Shape object

Syntax
[[Let] beginXRet =] object.BeginX

[Let] object.BeginX = beginXSet

The BeginX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

beginXRet Optional. A Double type variable.

beginXSet Required. An expression that returns a Double value.

Remarks

This property is effective for 1D-shapes only. To determine the shape type, use the following

properties: Is1D, ObjType.

The BeginX property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with BeginX as a table parameter, use the CDPT_BEGINX constant tag.

The unit of measure for the coordinates are is InternalUnit.

See Also
BeginY property, EndX property, EndY property, Is1D property, ObjType

property

BeginY Property

BeginY Property

A Double type property. The Y-coordinate of the begin point of the 1D shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

391

Applies to: Shape object

Syntax
[[Let] beginYRet =] object.BeginY

[Let] object.BeginY = beginYSet

The BeginY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

beginYRet Optional. A Double type variable.

beginYSet Required. An expression that returns a Double value.

Remarks

This property is effective for 1D-shapes only. To determine the shape type, use the following

properties: Is1D, ObjType.

The BeginY property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with BeginY as a table parameter, use the CDPT_BEGINY constant tag.

The unit of measure for the coordinates are is InternalUnit.

See Also
BeginX property, EndX property, EndY property, Is1D property, ObjType

property

Black Property

Black Property

Gets or sets an Integer value, that represents the black component of CMYK color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] blackRet =] object.Black

[Let] object.Black = blackSet

ConceptDraw DIAGRAM Third Party Developer’s Guide

392

The Black property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

blackRet Optional. An Integer value.

blackSet Required. An expression that returns an Integer value.

Remarks

The Black property is only effective if the color is a CMYK color (see the IsCMYK property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

black component of the fill color (in CMYK format) of a Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsCMYK<> false Then ' A CMYK color?

 MsgBox(s.FillColor.Black) ' If yes, display the value of the black

component.

endif

See Also Cyan property, Magenta property, Yellow property, IsCMYK property

Blue Property

Blue Property

Gets or sets an Integer value, that represents the blue component of an RGB color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] blueRet =] object.Blue

[Let] object.Blue = blueSet

The Blue property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

393

object Required. An expression that returns an object from the Applies to list.

blueRet Optional. An Integer value.

blueSet Required. An expression that returns an Integer value.

Remarks

The Blue property is only effective if the color is a RGB color (see the IsRGB property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

blue component of the fill color (in RGB format) of a Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsRGB <> false Then ' An RGB color ?

 MsgBox(s.FillColor.Blue) ' If yes, display the value of the blue component

endif

See Also Blue property, Green property, Red property, IsRGB Property

BottomMargin Property

BottomMargin Property

A Single type property. Specifies the distance between the bottom border of the text box and the

last line of text it contains.

Applies to: TextBlock object

Syntax
[[Let] singleRet =] object.BottomMargin

[Let] object.BottomMargin = bottomMarginSet

The BottomMargin property syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

394

singleRet Optional. A Single type variable.

bottomMargin

Set
Required. An expression that returns a Single value.

Remarks

The unit of measure for the BottomMargin property is InternalUnit.

The BottomMargin property is also a table parameter of the shape, to which the object text block

belongs - that is, its value can be described by a formula. To work with BottomMargin as a table

parameter, use the CDPT_BOTTOMMARGIN constant tag.

Example

This example shows how to increase the distance between the bottom border of the text box and

the last line of text it contains. It assumes the shape exists and contains text.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Increase the distance between the bottom border of the text box and the last

line of text by 20 points.

s.TextBlock.BottomMargin = 20

' Inform ConceptDraw Engine about the changes to recalculate and redraw the

document

s.PropertyChanged(CDPT_BOTTOMMARGIN)

Bottom Property

Bottom Property

Gets or sets a Double value, representing the coordinates of the bottom point of an instance of the

shape.

Applies to objects: DRect

Syntax
[Let] RetVal = object.Bottom

[Let] object.Bottom = SetVal

Element Description

object A reference to an instance of the shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

395

RetVal A Double type variable

SetVal A Double value

Example
Dim MyObject as new DRect ' Create an instance of the shape

MyObject.Bottom = 200

See Also DRect Object

Caption Property

Caption Property

A String value. Gets or sets the name of a menu or menu item.

Applies to: Menu object, MenuItem object

Syntax
[[Let] captionRet =] object.Caption

[Let] object.Caption = captionSet

The Caption property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

captionRet Optional. A String value.

captionSet Required. An expression that returns a String value.

Remarks

The Caption property contains the name of the menu or a menu item as it's displayed in

ConceptDraw for the upper-level user-defined menu, obtained with the CustomMenu property.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

396

This example contains a document-level script.
dim mainMenu as Menu, myMenuItem as MenuItem

' Get reference to a Menu object from thisDoc

mainMenu = thisDoc.CustomMenu

' Remove all exisitng menu items

mainMenu.RemoveAll()

' Give a name to mainMenu

mainMenu.Caption = "My Caption"

' Add a MenuItem object to mainMenu

myMenuItem = mainMenu.AddMenuItem(0)

' Name it myMenuItem

myMenuItem.Caption = "My Caption 2"

Character Property

Character Property

Read-only. Returns a Character object that contains the character block parameters for this style.

Applies to: Style object

Syntax
[[Let] characterRet =] object.Character

The Character property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

characterRet Optional. A Character type variable.

Remarks

You can't modify the Character object, stored in the Character property of the style, however

you can change the attributes of this instance of the Character object. When a style is assigned to

a shape, the parameters of the Character property of the style are applied to all character blocks

of the shape. The Character property is only effective if the HasCharAttr property of this style

is True.

See Also
HasCharAttr property, Paragraph property, TextBlock property, Character

object

ConceptDraw DIAGRAM Third Party Developer’s Guide

397

Checked Property

Checked Property

A Boolean value. Gets and sets the state of a check mark beside the command name on the menu.

Applies to: Action object, MenuItem object

Syntax
[[Let] checkedRet =] object.Checked

[Let] object.Checked = checkedSet

The Checked property syntax has these Elements:

Element Description

object Required. An expression that returns a MenuItem object.

checkedRet Optional. A Boolean type variable.

checkedSet Required. An expression that returns a Boolean value.

Remarks

If True, displays a check mark beside the command name on the menu. If False, the check mark

is not displayed.

Example

This example contains a document-level script.
Dim s as Shape, MyAction as Action

' Assume the shape with ID 1 exists on the active page.

' Assume the shape contains at least one action.

s = thisDoc.ActivePage.ShapeByID(1)

' Get a reference to the Action object

Set MyAction = s.Action(1)

' Set check mark

MyAction.Checked = True

ConceptDraw DIAGRAM Third Party Developer’s Guide

398

CmdID Property

CmdID Property

Read-only. A Long value. Identifier of a menu or a menu item.

Applies to: Menu object, MenuItem object

Syntax
[[Let] cmdIDRet =] object.CmdID

The CmdID property syntax has these Elements:

Element Description

object Required. An expression that returns a MenuItem object.

cmdIDRet Optional. A Long type variable.

Remarks

This identifier represents a unique integer number, associated with a user-defined item or a menu

item within the ConceptDraw application.

Colored Property

Colored Property

A Boolean value, that indicates whether a layer is colored.

Applies to objects: Layer

Syntax
[[Let] RetVal =] object.Colored

[Let] object.Colored = SetVal

The Colored property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

SetVal A Boolean value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

399

Remarks

If the Colored property is TRUE, all objects on the layer are displayed in the color, defined by

the Color property. Otherwise the objects are displayed in their original colors.

Example

This example demonstrates using the Colored property.
Dim MyLayer as Layer

' Get Layer 2 from thisDoc

set MyLayer = thisDoc.Layer(2)

' Make it colored

MyLayer.Colored = True

See Also Layer Object, Document Object

Color Property

Color Property

Read-only. Returns a Color object that corresponds to the color of an instance of the object from

the Applies To list.

Applies to: Character object, Layer object

Syntax
[[Set] colorRet =] object.Color

The Color property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

colorRet Optional. A Color type variable.

Remarks

When object is a block of characters, its color means the color of all characters in this character

block. The Color property is also a table parameter of the shape to which this character block

ConceptDraw DIAGRAM Third Party Developer’s Guide

400

belongs, that is, its value can be described by a formula. To work with Color as a table parameter,

use the CDPT_CHAR_COLOR constant tag.

When object is a layer, its color means the color of all shapes that belong to that layer, providing

the layer is colored (the Colored property).

See Also Colored property, Count property, SetCharColor method, Color object

Comment Property

Comment Property

Gets or sets a String value, that represents a comment or prompt.

Applies to objects: ControlDot

Syntax
[Let] RetVal = object.Comment

[Let] object.Comment = SetVal

The Comment property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A String type variable.

SetVal A String value.

Example

This example demonstrates using the Comment property.
Dim MyControlDot as ControlDot, MyShape As Shape

MyShape = thisDoc.ActivePage.DrawRect(50,50,500,500) ' Create a Shape

object

MyControlDot = MyShape.AddControlDot()

MyControlDot.X = 100 ' Set coordinates for control handle

MyControlDot.Y = 150

ConceptDraw DIAGRAM Third Party Developer’s Guide

401

MyControlDot.Comment = "Wise Dot" ' Set prompt

' Inform ConceptDraw engine about changes

MyShape.PropertyChanged(CDPT_CONTROL_X)

MyShape.PropertyChanged(CDPT_CONTROL_Y)

MyShape.PropertyChanged(CDPT_CONTROL_COMMENT)

Company Property

Company Property

String property. Returns or sets the value of the Company field in a document's or library's

properties.

Applies to: Document object, Library object

Syntax
[[Let] companyRet =] object.Company

object.Company = companySet

The Company property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

companyRet Optional. A String type variable.

companySet Required. An expression that returns a String value.

Remarks

For a new document or library the Company property returns an empty string. Setting the

Company property for a document is equivalent to entering information in the Company field in

the Document Properties dialog box, tab General (click Document Properties on the File menu).

To set Company for a library, use the Properties dialog from the File ->Library menu.

Example

This example contains an application-level script. The program asks the user from a company

name, an assigns this name to the Company property of all open documents, which don't have

this property set.
' Declare variables

Dim cur_doc As Document

Dim str_company As String

' Ask user to enter company name

str_company = InputBox("Enter company name:")

ConceptDraw DIAGRAM Third Party Developer’s Guide

402

' If user input nothing, then quit program

If str_company = "" Then

 MsgBox("You did not enter anything!")

 End

End If

' Check all open documents starting from the end of the list

For i=thisApp.DocsNum() To 1 Step -1

 ' Get document

 Set cur_doc = thisApp.Doc(i)

 ' If no company name is set, set company name provided by user

 If cur_doc.Company = "" Then

 cur_doc.Company = str_company

 End If

Next i

See Also Title property, Author property, Subj property, Desc property

ConnectObjBegin Property

ConnectObjBegin Property

A Long type property. ID (the ID property) of the shape, to which the begin point of this 1D-

shape is connected.

Applies to: Shape object

Syntax
[[Let] shapeIDBeginRet =] object.ConnectObjBegin

[Let] object.ConnectObjBegin = shapeIDBeginSet

The ConnectObjBegin property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

shapeIDBeginR

et
Optional. A Long type variable.

shapeIDBeginS

et

Required. An expression that returns a Long value. The ID (ID property)

of the shape, to which the begin point of this shape is to be connected.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

403

This property is only effective for 1D-shapes. If the shape with shapeIDBeginSet ID is not found

in the shape collection of the page to which object belongs, the ConnectObjBegin property

doesn't change its value. Also notice that an 1D-shape can't be connected to itself.

If ConnectObjBegin is modified, object is completely rebuilt and connected to the new shape,

defined by shapeIDBeginSet.

See Also
ConnectObjEnd property, ConnectTypeBegin property, ConnectTypeEnd

property

ConnectObjEnd Property

ConnectObjEnd Property

A Long type property. ID (the ID property) of the shape, to which the end point of this 1D-shape

is connected.

Applies to: Shape object

Syntax
[[Let] shapeIDEndRet =] object.ConnectObjEnd

[Let] object.ConnectObjEnd = shapeIDEndSet

The ConnectObjEnd property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

shapeIDEndRet Optional. A Long type variable.

shapeIDEndSet
Required. An expression that returns a Long value. The ID (ID property)

of the shape, to which the end point of this shape is to be connected.

Remarks

This property is only effective for 1D-shapes. If the shape with shapeIDEndSet ID is not found in

the shape collection of the page to which object belongs, the ConnectObjEnd property doesn't

change its value. Also notice that an 1D-shape can't be connected to itself.

If ConnectObjEnd is modified, object is completely rebuilt and connected to the new shape,

defined by shapeIDEndSet.

ConceptDraw DIAGRAM Third Party Developer’s Guide

404

See Also
ConnectObjBegin property, ConnectTypeBegin property, ConnectTypeEnd

property

ConnectTypeBegin Property

ConnectTypeBegin Property

A Byte type property. Determines the connection type of the connector's begin point to the shape.

Applies to: Shape object

Syntax
[[Let] typeBeginRet =] object.ConnectTypeBegin

[Let] object.ConnectTypeBegin = typeBeginSet

The ConnectTypeBegin property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

typeBeginRet Optional. A Byte type variable.

typeBeginSet Required. An expression that returns a Byte value.

Remarks

Below are the possible values of ConnectTypeBegin:

Constant Value Description

CDCT_NoConnect 0
The endpoint of connector is not connected to any

other shape.

CDCT_Left 1 Connected to the middle of the shape's left side.

CDCT_Top 2 Connected to the middle of the shape's top side.

CDCT_Right 3 Connected to the middle of the shape's right side.

CDCT_Bottom 4
Connected to the middle of the shape's bottom

side.

CDCT_Centre 5
Connected to the side of the shape's alignment box

that is nearest to the other end of the connector.

ConceptDraw DIAGRAM Third Party Developer’s Guide

405

CDCT_ConnectDot 255 Connected to a connection point.

When ConnectTypeBegin is modified, object is rebuilt and re-connected to the shape with the

new connection type.

See Also
ConnectObjBegin property, ConnectObjEnd property, ConnectTypeEnd

property

ConnectTypeEnd Property

ConnectTypeEnd Property

A Byte type property. Determines the connection type of the connector's end point to the shape.

Applies to: Shape object

Syntax
[[Let] typeEndRet =] object.ConnectTypeEnd

[Let] object.ConnectTypeEnd = typeEndSet

The ConnectTypeEnd property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

typeEndRet Optional. A Byte type variable.

typeEndSet Required. An expression that returns a Byte value.

Remarks

Below are the possible values of ConnectTypeEnd:

Constant Value Description

CDCT_NoConnect 0
The endpoint of connector is not connected to any

other shape.

CDCT_Left 1 Connected to the middle of the shape's left side.

CDCT_Top 2 Connected to the middle of the shape's top side.

ConceptDraw DIAGRAM Third Party Developer’s Guide

406

CDCT_Right 3 Connected to the middle of the shape's right side.

CDCT_Bottom 4
Connected to the middle of the shape's bottom

side.

CDCT_Centre 5
Connected to the side of the shape's alignment box

that is nearest to the other end of the connector.

CDCT_ConnectDot 255 Connected to a connection point.

When ConnectTypeEnd is modified, object is rebuilt and re-connected to the shape with the new

connection type.

See Also
ConnectObjBegin property, ConnectObjEnd property, ConnectTypeBegin

property

Count Property

Count Property

Read-only. A Long type property. Indicates the number of characters in the character block or

paragraph.

Applies to: Character object, Paragraph object

Syntax
[[Let] countRet =] object.Count

The Count property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

countRet A Long type property.

Remarks

Always returns a value equal to or greater than 1 as there's always at least one character in a

character block/paragraph.

ConceptDraw DIAGRAM Third Party Developer’s Guide

407

See Also

CustomMenu Property

CustomMenu Property

Read-only. Returns an instance of the Menu object, corresponding to the user-defined menu of

the application/document.

Applies to: Application object, Document object

Syntax
[[Set] menuRet =] object.CustomMenu

The CustomMenu property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the object from the

Applies to list.

menuRet Optional. A Menu type variable.

Remarks

There are two types of user-defined menu: of the application and of the document (the

Application and Document objects respectively). The user-defined menu is located in the Tools

menu of ConceptDraw and is visible if contains at least one item. The Tools menu can incorporate

no more than two user-defined menus at a time - one for the application, the other for the active

document (the ActiveDoc property).

Example

This example contains an application-level script. It displays the properties of the application's

user-defined menu CustomMenu.
thisApp.CustomMenu.Caption = "App Custom Menu"

thisApp.CustomMenu.Prompt = "App Custom Menu Prompt"

TRACE "------------------------"

TRACE "thisApp.CustomMenu.CmdID = " & thisApp.CustomMenu.CmdID

TRACE "thisApp.CustomMenu.Caption = " & thisApp.CustomMenu.Caption

TRACE "thisApp.CustomMenu.Prompt = " & thisApp.CustomMenu.Prompt

TRACE "thisApp.CustomMenu.Enabled = " & thisApp.CustomMenu.Enabled

ConceptDraw DIAGRAM Third Party Developer’s Guide

408

TRACE "------------------------"

See Also Menu object

Cyan Property

Cyan Property

Gets or sets an Integer value, that represents the cyan component of CMYK color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] cyanRet =] object.Cyan

[Let] object.Cyan = cyanSet

The Blue property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

cyanRet Optional. An Integer value.

cyanSet Required. An expression that returns an Integer value.

Remarks

The Cyan property is only effective if the color is a CMYK color (see the IsCMYK property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

cyan component of the fill color (in CMYK format) of a Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsCMYK<> false Then ' A CMYK color?

 MsgBox(s.FillColor.Cyan) ' If yes, display the value of the cyan

component.

endif

ConceptDraw DIAGRAM Third Party Developer’s Guide

409

See Also Magenta property, Yellow property, Black property, IsCMYK property

DataSource Property

DataSource Property

A String type property. A relative or full way to a source of data.

Applies to: DataSource object

Syntax
[[Let] dataSourceRet =] object.DataSource

[Let] object.DataSource = dataSourceSet

The DataSource property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

dataSourceRet Optional. A String type variable.

dataSourceSet Required. An expression that returns a String value.

Remarks

The DataSource property is also a table parameter of the DataSource, that is, its value can be

described by a formula. To work with DataSource as a table parameter, use the

CDPT_DS_DATASOURCE constant tag.

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.DataSource

ds.DataSource = "TxtSource.txt"

trace ds.DataSource

or

thisShape.SetPropertyFormula("""TxtSource.txt""",CDPT_DS_DATASOURCE, 1)

trace ds.DataSource

ConceptDraw DIAGRAM Third Party Developer’s Guide

410

See Also
DataSource object, Action property, Active property, Refresh property,

ShowErrors property, ShowWarnings property, Timeout property

DblClickAction Property

DblClickAction Property

An Integer type property. Determines the user-defined action when the shape is double-clicked.

The user-defined action will be effective only if the DblClick property has the same value as

DBLCLICK_ACTION.

Applies to: Shape object

Syntax
[[Let] dblClickActionRet =] object.DblClickAction

[Let] object.DblClickAction = dblClickActionSet

The DblClickAction property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dblClickActionR

et
Optional. A Byte type variable.

dblClickActionS

et

Required. An expression that returns a Byte value. Represents the index

of the user-defined action in the user-defined actions of the shape. The

valid range is from 0 to 256.

Remarks

The DblClickAction property specified the index in the collection of the user-defined action to be

performed when the shape is double-clicked. To determine the number of user-defined actions of

the shape, use the ActionsNum method. If DblClickAction equals 0, the next action in the

collection will be performed each time the shape is double-clicked.

See Also
DblClick property, DblClickAction property, Action method, ActionsNum

method, Action object

ConceptDraw DIAGRAM Third Party Developer’s Guide

411

DblClick Property

DblClick Property

A Byte type property. Gets or sets the double-click action of the shape.

Applies to: Shape object

Syntax
[[Let] dblClickRet =] object.DblClick

[Let] object.DblClick = dblClickSet

The DblClick property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dblClickRet Optional. A Byte type variable.

dblClickSet Required. An expression that returns a Byte value.

Remarks

The DblClick property can take the following possible values:

Constant Value Description

DBLCLICK_NOACTIO

N
0 Take no action.

DBLCLICK_EDITTEXT 1 Edit shape's text.

DBLCLICK_OPENGRO

UP
2 Edit group.

DBLCLICK_SHAPESH

EET
3 Open the shape's parameter table.

DBLCLICK_GOTOHLI

NK
4 Go to the hyperlink.

DBLCLICK_OLE 5
Launch the OLE-application (if the shape is

embedded).

DBLCLICK_ACTION 9
Perform a user-defined action (the

DblClickAction property).

ConceptDraw DIAGRAM Third Party Developer’s Guide

412

See Also DblClick property, DblClickAction property

DefCharacter Property

DefCharacter Property

Read-only. Returns an instance of the Character object that corresponds to a sequence of

characters, set by default for the text of a shape when it's created in the document.

Applies to: Document object

Syntax
[[Set] characterRet =] object.DefCharacter

The DefCharacter property syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

characterRet Optional. A Character type variable.

Remarks

The DefCharacter property describes a sequence of characters which properties are assigned by

default to the text of the new shapes created in the document. Note, that newly created shapes

don't contain text, and therefore don't contain any instances of the Character object. That's why

the property will be applied to the shape at the moment the text is assigned to it, provided the

shape didn't contain any text before. That is, when text is added to the shape, a sequence of

characters fully identical to the DefCharacter property and including all the text assigned to the

shape, is added to the character sequence collection of the shape.

To set default parameters for the paragraphs and text blocks for every new shape in the document,

use the DefParagraph and DefTextBlock properties respectively.

See Also
DefParagraph property, DefTextBlock property, Character object, Shape

object

ConceptDraw DIAGRAM Third Party Developer’s Guide

413

DefFillColor Property

DefFillColor Property

Read-only. Returns an instance of the Color object that corresponds to the fill color, applied by

default to every new shape created in the document.

Applies to: Document object

Syntax
[[Set] colorRet =] object.DefFillColor

The DefFillColor property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

colorRet Optional. A Color type variable.

Remarks

When a new shape is created in the document, the value of the properties of the Color object

which contains the DefFillColor property is set to the corresponding properties of the Color

object which contains the FillColor property of the new shape.

See Also
DefFillPatColor property, DefFillPattern property, FillColor property, Color

object, Shape object

DefFillPatColor Property

DefFillPatColor Property

Read-only. Returns an instance of the Color object, corresponding to the color of the fill pattern

of the shape, set by default to every new shape in the document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

414

Applies to: Document object

Syntax
[[Set] colorRet =] object.DefFillPatColor

The DefFillPatColor property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

colorRet Optional. A Color type variable.

Remarks

When a new shape is created in the document, the value of the properties of the Color object

which contains the DefFillPatColor property is set to the corresponding properties of the Color

object which contains the FillPatColor property of the new shape.

See Also
DefFillColor property, DefFillPattern property, FillPatColor property, Color

object, Shape object

DefFillPattern Property

DefFillPattern Property

A Long type property. Gets and sets the type of the fill pattern, applied by default to every new

shape, created in the document.

Applies to: Document object

Syntax
[[Let] fillPatternRet =] object.DefFillPattern

[Let] object.DefFillPattern = fillPatternSet

The DefFillPattern property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

415

fillPatternRet Optional. A Long type variable.

fillPatternSet Required. An expression that returns a Long value.

Remarks

When a new shape is created in the document, the value of the DefFillPattern property is set to

the corresponding FillPattern property of the shape. The range of valid values for the

DefFillPattern property is the same as for the FillPattern property of the Shape object.

See Also
DefFillColor property, DefFillPatColor property, FillPattern property, Color

object, Shape object

DefParagraph Property

DefParagraph Property

Read-only. Returns an instance of the Paragraph object that corresponds to the paragraph,

assigned by default to the text of every new shape created in the document.

Applies to: Document object

Syntax
[[Set] paragraphRet =] object.DefParagraph

The DefParagraph property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

paragraphRet Optional. A Paragraph type variable.

Remarks

The DefParagraph property contains parameters describing a paragraph, which are applied by

default to the text of new shapes created in the document. Note, that new shapes don't contain

text, that is, they don't contain any instances of the Paragraph object, which describes the

paragraph parameters. So, this property will be applied to the shape at the moment the text is

assigned to the shape, provided the shape didn't contain any text before. That is, when text is

ConceptDraw DIAGRAM Third Party Developer’s Guide

416

added to the shape, a paragraph, fully identical to the DefParagraph paragraph and containing all

text assigned to the shape is added to the paragraph collection of the shape.

To set default parameters to the sequence of characters and text block for the new shapes created

in the document, use the DefCharacter and DefTextBlock properties respectively.

See Also
DefCharacter property, DefTextBlock property, Paragraph object, Shape

object

DefPenColor Property

DefPenColor Property

Read-only. Returns an instance of the Color object, that contains information about the line color

set by default to every new shape created in the document.

Applies to: Document object

Syntax
[[Set] colorRet =] object.DefPenColor

The DefPenColor property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

colorRet Optional. A Color type variable.

Remarks

When a new shape is created in the document, the value of the properties of the Color object

which contains the DefPenColor property is set to the corresponding properties of the Color

object which contains the PenColor property of the new shape.

See Also
DefPenPattern property, DefPenWeight property, PenColor property, Color

object, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

417

DefPenPattern Property

DefPenPattern Property

A Long type property. Gets and sets the line pattern applied by default to new shapes created in

the document.

Applies to: Document object

Syntax
[[Let] patternRet =] object.DefPenPattern

[Let] object.DefPenPattern = patternSet

The DefPenPattern property syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

patternRet Optional. A Long type variable.

patternSet Required. An expression that returns a Long value.

Remarks

When a new shape is created in the document, the value of the DefPenPattern property is set to

the corresponding PenPattern property of the shape. The range of valid values for

DefPenPattern is the same as for the PenPattern property of the Shape object.

See Also
DefPenColor property, DefPenWeight property, PenPattern property, Shape

object

DefPenWeight Property

DefPenWeight Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

418

A Long value. Gets or sets the line weight, set by default to new shapes created in the document.

Applies to: Document object

Syntax
[[Let] weightRet =] object.DefPenWeight

[Let] object.DefPenWeight = weightSet

The DefPenWeight property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

weightRet Optional. A Long type variable.

weightSet Required. An expression that returns a Long value.

Remarks

When a new shape is created in the document, the value of the DefPenWeight property is set to

the corresponding PenWeight property of the shape. The range of valid values for

DefPenWeitgh is the same as for the PenWeight property of the Shape object.

See Also
DefPenColor property, DefPenPattern property, PenWeight property, Shape

object

DefShadowColor Property

DefShadowColor Property

Read-only. Returns an instance of the Color object that contains information about the shadow

color of the shape, which is applied by default to new shapes created in the document.

Applies to: Document object

Syntax
[[Set] colorRet =] object.DefShadowColor

The DefShadowColor property syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

419

Element Description

object Required. An expression, that returns a Document object.

colorRet Optional. A Color type variable.

Remarks

When a new shape is created in the document the value of the properties of the Color object

which contains the DefShadowColor property is set to the corresponding properties of the Color

object which contains the ShadowColor property of the new shape.

See Also
DefShadowPatColor property, DefShadowPattern property, ShadowColor

property, Color object, Shape object

DefShadowPatColor Property

DefShadowPatColor Property

Read-only. Returns an instance of the Color object, that contains information about the shadow

pattern color of the shape, set by default to every new shape in the document.

Applies to: Document object

Syntax
[[Set] colorRet =] object.DefShadowPatColor

The DefShadowPatColor property syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

colorRet Optional. A Color type variable.

Remarks

When a new shape is created in the document, the value of the properties of the Color object

which contains the DefShadowPatColor property is set to the corresponding properties of the

Color object which contains the ShadowPatColor property of the new shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

420

See Also
DefShadowColor property, DefShadowPattern property, ShadowPatColor

property, Color object, Shape object

DefShadowPattern Property

DefShadowPattern Property

A Long type property. Gets and sets the type of the shadow pattern, applied by default to new

shapes, created in the document.

Applies to: Document object

Syntax
[[Let] patternRet =] object.DefShadowPattern

[Let] object.DefShadowPattern = patternSet

The DefShadowPattern property syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

patternRet Optional. A Long type variable.

patternSet Required. An expression that returns a Long value.

Remarks

When a new shape is created in the document, the value of the DefShadowPattern property is set

to the corresponding ShadowPattern property of the shape. The range of valid values for the

DefShadowPattern property is the same as for the ShadowPattern property of the Shape object.

See Also
DefShadowColor property, DefShadowPatColor property, ShadowPattern

property, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

421

DefStyle Property

DefStyle Property

A Long type property. Gets or sets the style index (the number of the style in the style collection

of the document), which is applied by default to new shapes created in the document.

Applies to: Document object

Syntax
[[Let] styleIndexRet =] object.DefStyle

[Let] object.DefStyle = styleIndexSet

The DefStyle property syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

styleIndexRet Optional. A Long type variable.

styleIndexSet
Required. An expression that returns a Long value. The index of the style

in the style collection of the document.

Remarks

If styleIndexSet is less than -1 or greater than the number of the styles in the style collection of the

document, the DefStyle property doesn't change its value. Also, the DefStyle property can take

the following values: 0 - normal style, the style set in ConceptDraw by default, -1 - no style.

To find out the number of styles in the style collection of the document, use the StylesNum

method. To retrieve a style by its index in the style collection of the document, use the Style

method.

See Also
FindStyle method, Style method, StyleByName method, StylesNum method,

Style object

ConceptDraw DIAGRAM Third Party Developer’s Guide

422

DefTabStop Property

DefTabStop Property

A Single type value. Represents the default tab stop position from the left edge of the text block.

It's used as the default value for new tab stops, added to the tab stop collection of the text block.

Applies to: TextBlock object

Syntax
[[Let] singleRet =] object.DefTabStop

[Let] object.DefTabStop = defTabStopSet

The DefTabStop property syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

singleRet Optional. A Single type variable.

defTabStopSet Required. An expression that returns a Single value.

Remarks

The value of DefTabStop is measured in the internal ConceptDraw units (InternalUnit).

The DefTabStop property is also a table parameter of the shape, which contains the object text

block, that is, its value can be described by a formula. To work with DefTabStop as a table

parameter, use the CDPT_DEFTABSTOP constant tag.

Example

This example shows how to modify the interval of the default tab stops in a shape that contains a

text block.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Sets the default tab stop interval

s.TextBlock.DefTabStop = 200

' Inform ConceptDraw engine about the changes for re-drawing

s.PropertyChanged(CDPT_DEFTABSTOP)

See Also Pos property (TabStop object), AddTabStop method

ConceptDraw DIAGRAM Third Party Developer’s Guide

423

DefTextBlock Property

DefTextBlock Property

Read-only. Returns an instance of the TextBlock object that contains parameters of the text

block, assigned by default to the text of every new shape created in the document.

Applies to: Document object

Syntax
[[Set] textBlockRet =] object.DefTextBlock

The DefTextBlock property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

textBlockRet Optional. A TextBlock type variable.

Remarks

The DefTextBlock property contains parameters describing a text block, which are applied by

default to the text of new shapes created in the document. Note, that new shapes don't contain

text, that is, they don't contain any instances of the TextBlock object, which describes the text

block parameters. So, this property will be applied to the shape at the moment text is assigned to

the shape, provided the shape didn't contain any text before. That is, when text is added to the

shape, a text block, fully identical to the DefTextBlock text block and containing all text assigned

to the shape is added to the paragraph collection of the shape.

To set default parameters to the sequence of characters and paragraph for the new shapes created

in the document, use the DefCharacter and DefParagraph properties respectively.

See Also
DefCharacter property, DefParagraph property, TextBlock object, Shape

object

ConceptDraw DIAGRAM Third Party Developer’s Guide

424

Desc Property

Desc Property

A String type property. Gets or sets a descriptive text string for an object from the Applies to list.

Applies to: Document object, Library object, ServObj object, Shape object

Syntax
[[Let] descRet =] object.Desc

[Let] object.Desc = descSet

The Desc property syntax has these Elements:

Element Description

object Required. An expression, that returns an object in the Applies to list.

descRet Optional. A String type variable.

descSet
Required. An expression that returns a String value. The string that is set

as description for the object in the Applies To.

Remarks

The Desc property contains an empty string for any new document, library, guide line or shape.

The Desc property of any of the objects can also be changed in the dialogs in ConceptDraw:

"File->Document Properties->General" for a document, "File->Library->Properties" - for a

library, "Format->Shape Properties->Information" - for service objects and simple shapes.

Example

This example contains an application-level script. It adds the last revision date (current date) to

the Desc property of a document.
Dim cur_doc As Document ' Declare variables

' Get the first document from the document collection of the application

Set cur_doc = thisApp.FirstDoc()

' Loop for all documents of the application

While cur_doc <> Null

 ' Write current date to the end of document description

 cur_doc.Desc = cur_doc.Desc & Chr(13) & Chr(10) & "...was updated: " & Now

 ' Get next document

 Set cur_doc = thisApp.NextDoc()

Wend

ConceptDraw DIAGRAM Third Party Developer’s Guide

425

See Also Author property, Company property, Subj property, Title property

Disabled Property

Disabled Property

A Boolean value. Gets or sets the state of a menu item.

Applies to objects: Action

Syntax
[Let] RetVal = object.Disabled

[Let] object.Disabled = SetVal

The Disabled property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

SetVal A Boolean value.

Remarks

If TRUE, the menu item is disabled, otherwise enabled.

Example

This example demonstrates using the Disabled property.
Dim s as Shape, MyAction as Action

' Assume shape with ID 1 exists on the active page.

' Assume the shape contains at least one Action.

s = thisDoc.ActivePage.ShapeByID(1)

' Get reference to an instance of the Action object.

Set MyAction = s.Action(1)

' Set Disabled state

MyAction.Disabled = True

ConceptDraw DIAGRAM Third Party Developer’s Guide

426

See Also
Action Object, Shape Object, SetPropertyFormula Method, ActionsNum

Method, AddAction Method, Action Method, RemoveAction Method

DocumentsPath Property

DocumentsPath Property

Read-only. A String value. Returns the full way to files which are on the way, adjusted in

Preferences appendix dialogue in the Paths tab in the field of Documents.

Applies to: Application object

Syntax
[[Let] DocumentsPathRet =] object.DocumentsPath

The DocumentsPaht property syntax has these Elements:

Element Description

object Required. An expression that returns a Application object.

DocumentsPath

Ret
Optional. A String type variable.

Remarks

The DocumentsPath property by default matters: "root ConceptDraw DIAGRAM/Samples

folder".

See Also
Application object, HelpPath property, LibrariesPath property,

TemplatesPath property

Document Property (Page, ServObj, Shape objects)

Document Property (Page, ServObj, Shape objects)

ConceptDraw DIAGRAM Third Party Developer’s Guide

427

Read-only. Gets the Document object that is associated with the document that contains an object

from the Applies to list.

Applies to: Page object, ServObj object, Shape object

Syntax
[[Set] documentRet =] object.Document

The Document property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

documentRet Optional. A Document type variable.

Remarks

For shapes stored in a library this property always returns Nothing.

See Also Page property, Parent property, Document object

Document Property

Document Property

Read-only. Gets the Document object that is associated with the document whose contents is

displayed in this window of ConceptDraw.

Applies to: Window object

Syntax
[[Set] documentRet =] object.Document

The Document property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

documentRet Optional. A Document type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

428

Remarks

This method is only effective if the window is a document window (see the Type property). For

all other window types the Document property always returns Nothing.

See Also Library property, Page property, Shape property, Document object

Action Property (DataSource object)

Action Property (DataSource object)

A String type property. The action that will be done in the case of new data from the source.

Applies to: DataSource object

Syntax
[[Let] ActionRet =] object.Action

[Let] object.Action = ActionSet

The Action property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

ActionRet Optional. A String type variable.

ActionSet Required. An expression that returns a String value.

Remarks

The Action property is also a table parameter of the DataSource, that is, its value can be described

by a formula. To work with Action as a table parameter, use the CDPT_DS_ACTION constant

tag.

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.Action

ds.Action = "Time"

ConceptDraw DIAGRAM Third Party Developer’s Guide

429

trace ds.Action

or

thisShape.SetPropertyFormula("_CALLTHIS(""Function Name"")", CDPT_DS_ACTION,

1)

trace ds.Action

See Also
DataSource object, Active property, DataSource property, Refresh property,

ShowErrors property, ShowWarnings property, Timeout property

Enabled Property

Enabled Property

A Long value. A flag that specifies whether a menu or a menu item is enabled or disabled.

Applies to: Menu object, MenuItem object

Syntax
[[Let] enabledRet =] object.Enabled

[Let] object.Enabled = enabledSet

The Enabled property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

enabledRet Optional. A Boolean type variable.

enabledSet Required. An expression that returns a Boolean value.

Remarks

If Enabled is TRUE, the menu or the menu item is operating (enabled). Otherwise either the

menu item is disabled, or all items of the menu are disabled (if applied to the menu).

ConceptDraw DIAGRAM Third Party Developer’s Guide

430

EndsSize Property

EndsSize Property

A Long type property. Specifies the ending arrows size 1D-shape.

Applies to: Style object

Syntax
[[Let] longRet =] object.EndsSize

[Let] object.EndsSize = endsSizeSet

The EndsSize property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

endsSizeSet Required. An expression that returns a Long value.

Remarks

The value of LineEnd can be in the range of 0 to 4.

Style object:

When a style is assigned to a shape, the parameters of the endsSize property of the style are set to

the endsSize property of the shape.

See Also LineBegin property, LineEnd property

EndX Property

EndX Property

A Double type property. The X-coordinate of the end point of the shape.

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

431

Syntax
[[Let] endXRet =] object.EndX

[Let] object.EndX = endXSet

The EndX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

endXRet Optional. A Double type variable.

endXSet Required. An expression that returns a Double value.

Remarks

This property is only effective for 1D-shapes. The type of a shape can be determined by using the

following properties: Is1D, ObjType.

The EndX property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with EndX as a table parameter, use the CDPT_ENDX constant tag.

The unit of measure for the specified coordinates is the internal ConceptDraw unit

(InternalUnit).

See Also
BeginX property, BeginY property, EndY property, Is1D property, ObjType

property

EndY Property

EndY Property

A Double type property. The X-coordinate of the end point of the shape.

Applies to: Shape object

Syntax
[[Let] endYRet =] object.EndY

[Let] object.EndY = endYSet

ConceptDraw DIAGRAM Third Party Developer’s Guide

432

The EndY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

endYRet Optional. A Double type variable.

endYSet Required. An expression that returns a Double value.

Remarks

This property is only effective for 1D-shapes. The type of a shape can be determined by using the

following properties: Is1D, ObjType.

The EndY property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with EndY as a table parameter, use the CDPT_ENDY constant tag.

The unit of measure for the specified coordinates is the internal ConceptDraw unit

(InternalUnit).

See Also
BeginX property, BeginY property, EndX property, Is1D property, ObjType

property

FillColor Property

FillColor Property

Read-only. Returns an instance of the Color object that corresponds to the fill color of the shape.

Applies to: Shape object, Style object

Syntax
[[Set] colorRet =] object.FillColor

The FillColor property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

colorRet Optional. A Color type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

433

Remarks

Shape object:

Note, that the shape is filled only when it has closed geometries, that is, geometries whose begin

and end points coincide.

The FillColor property is also a table parameter of the shape, that is, its value can be described by

a formula. To work with FillColor as a table parameter, use the CDPT_FILLCOLOR constant

tag.

Style object:

When a style is assigned to a shape, the parameters of the FillColor property of the style are set to

the FillColor property of the shape. FillColor is only effective when the HasFillAttr property of

this style is True.

To change the fill pattern color and pattern type of a shape, use the FillPatColor and FillPattern

properties respectively.

See Also
DefFillColor property, FillPatColor property, FillPattern property,

HasFillAttr property, Color object

Filled Property

Filled Property

A Boolean type property. Gets or sets a flag, that specifies whether to fill or not the area, enclosed

by the geometry. If True, the geometry is filled, otherwise it isn't filled

Applies to: Geometry object

Syntax
[[Let] filledRet =] object.Filled

[Let] object.Filled = filledSet

The Filled property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

filledRet Optional. A Boolean type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

434

filledSet Required. An expression that returns a Boolean value.

Remarks

The Filled property is also a table parameter of the shape, that owns the object geometry, that is,

its value can be described by a formula. To work with Filled as a table parameter, use the

CDPT_GEOMETRY_FILLED constant tag.

See Also Visible property, Shape object

FillPatColor Property

FillPatColor Property

Read-only. Returns an instance of the Color object that corresponds to the pattern color of the

shape.

Applies to: Shape object, Style object

Syntax
[[Set] colorRet =] object.FillPatColor

The FillPatColor property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

colorRet Optional. A Color type variable.

Remarks

Shape object:

The FillPatColor property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with FillPatColor as a table parameter, use the

CDPT_FILLPATCOLOR constant tag.

Style object:

ConceptDraw DIAGRAM Third Party Developer’s Guide

435

When a style is assigned to a shape, the parameters of the FillPatColor property of the style are

set to the FillPatColor property of the shape. FillPatColor is only effective when the

HasFillAttr property of this style is True.

To change the fill color and pattern type, use the FillColor and FillPattern properties

respectively.

See Also
DefFillPatColor property, FillColor property, FillPattern property,

HasFillAttr property, Color object

FillPattern Property

FillPattern Property

A Long type property. Gets and sets the fill pattern of the shape.

Applies to: Shape object

Syntax
[[Let] longRet =] object.FillPattern

[Let] object.FillPattern = fillPatternSet

The FillPattern property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

fillPatternSet Required. An expression that returns a Long value.

Remarks

The values of the FillPattern property can be in the range of 0 to 69.

Shape object:

The FillPattern property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with FillPattern as a table parameter, use the CDPT_FILLPATTERN

constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

436

Style object:

When a style is assigned to a shape, the parameters of the FillPattern property of the style are set

to the FillPattern property of the shape. FillPattern is only effective when the HasFillAttr

property of this style is True.

To change the fill color and pattern type, use the FillColor and FillPattern properties

respectively.

See Also
DefFillPattern property, FillColor property, FillPatColor property,

HasFillAttr property, Property Tags Constants

FirstInd Property

FirstInd Property

A Single type property. Determines the first line indent for this paragraph.

Applies to: Paragraph object

Syntax
[Let] singleRet = object.FirstInd

[Let] object.FirstInd = firstIndSet

The FirstInd property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

singleRet Optional. A Single type variable.

firstIndSet Required. An expression that returns a Single value.

Remarks

The distance for the first line indent is specified in the internal ConceptDraw units

(InternalUnit).

The FirstInd property is also a table parameter of the shape that contains the object paragraph,

that is, its value can be described by a formula. To work with FirstInd as a table parameter, use

the CDPT_PARA_FIRSTIND constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

437

Example

This example demonstrates how to set a 1 cm indent for the first line of the paragraph in the

shape. It assumes that a shape containing text exists on the current page.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Set indent in the first line of the text block's first paragraph.

s.Paragraph(1).FirstInd = 100

' Inform ConceptDraw Engine about changes for re-drawing

s.PropertyChanged(CDPT_PARA_FIRSTIND)

See Also SetParaFirstInd method

FlipX Property

FlipX Property

A Boolean type property. Specifies whether or not the shape is flipped horizontally. False - the

shape is not flipped. True - the shape is flipped horizontally.

Applies to: Shape object

Syntax
[[Let] flipXRet =] object.FlipX

[Let] object.FlipX = flipXSet

The FlipX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

flipXRet Optional. A Boolean type variable.

flipXSet Required. An expression that returns a Boolean value.

Remarks

The FlipX property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with FlipX as a table parameter, use the CDPT_FLIPX constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

438

See Also FilpY property, Property Tags Constants

FlipY Property

FlipY Property

A Boolean type property. Specifies whether or not the shape is flipped vertically. False - the

shape is not flipped. True - the shape is flipped vertically.

Applies to: Shape object

Syntax
[[Let] flipYRet =] object.FlipY

[Let] object.FlipY = flipYSet

The FlipY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

flipYRet Optional. A Boolean type variable.

flipYSet Required. An expression that returns a Boolean value.

Remarks

The FlipY property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with FlipY as a table parameter, use the CDPT_FLIPY constant tag.

See Also FilpX property, Property Tags Constants

ConceptDraw DIAGRAM Third Party Developer’s Guide

439

FlowAroundObjects Property

FlowAroundObjects Property

A Boolean type property.

Shape object: gets or sets the flag that specifies whether the smart connector should avoid shapes

on its way, located on the same page as the smart connector (True - avoid, False - pass through).

Document object: sets the default value for new smart connectors created in the document.

Applies to: Document object, Shape object

Syntax
[[Let] flowAroundRet =] object.FlowAroundObjects

[Let] object.FlowAroundObjects = flowAroundSet

The FlowAroundObjects property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

flowAroundRet Optional. A Boolean type variable.

flowAroundSet Required. An expression that returns a Boolean value.

Remarks

If object is a document, then when a new smart connector is created, the value of the

FlowAroundObjects property is set to the FlowAroundObjects property of this smart

connector. You can also modify the FlowAroundObjects property by using the ConceptDraw

interface - in the menu "Shape->Connector->Flow Around Objects".

See Also
FlowAroundObjects property, LineJumpOrient property, LineJumpSize

property, LineJumpType property, MaxNumberOfLegs property,

MinDistToShapes property, PassThroughGroups property

Font Property

Font Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

440

A Long type property. Gets or sets the index of the font in the font collection of the document,

used to display the characters of this character block.

Applies to: Character object

Syntax
[[Let] longRet =] object.Font

[Let] object.Font = fontIndexSet

The Font property syntax has these Elements:

Element Description

object Required. An expression that returns a Character object.

longRet Optional. A Long type variable.

fontIndexSet Required. An expression that returns a Long value.

Remarks

Each font in the font collection of a ConceptDraw document has has a unique number (index).

The fonts are numbered starting from 0. This should be considered when you change the value of

the Font property.

The Font property is also a table parameter of the shape which contains the object character

block, that is, its value can be described by a formula. To work with Font as a table parameter,

use the CDPT_CHAR_FONT constant tag.

Note

Font numbers may change when fonts are added to or removed from the system. Also keep in

mind that font sets are different on different computers. To find out a font's index and the total

number of fonts installed on the system, use the FontName, FindFontByName, FontsNum

methods of the Document object.

Example

This example is used to change the font of the shape with ID 1, which is located on the current

page.
Dim MyFontNumber As Long, MyShape As Shape

' Get the index for Times New Roman font

MyFontNumber = thisDoc.FindFontByName("Times New Roman")

' Shape with ID 1 must be on the current page of the document

Set MyShape = thisDoc.ActivePage.ShapeByID(1)

If MyFontNumber <> -1 Then ' if the font is found
' Set the font (MyShape.Character(1) must exist)

 MyShape.Character(1).Font = MyFontNumber

' Call PropertyChanged to inform ConceptDraw Engine,

' that the given property has changed.

ConceptDraw DIAGRAM Third Party Developer’s Guide

441

 MyShape.PropertyChanged(CDPT_CHAR_FONT)

EndIf

See Also
Character object, FontName method , FindFontByName method , FontsNum

method

Format Property

Format Property

A String value. Gets or sets the formatting of a custom property.

Applies to objects: CustomProp

Syntax
[[Let] RetVal =] object.Format

[Let] object.Format = SetVal

The Format property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A String type variable.

SetVal A String type variable.

Remarks

The Format property is only effective when the Type property value is a fixed list or a variable

list.The Format property contains a list of possible values, separated with ";" (semicolon).

Example

This example demonstrates working with the CustomProp object.
Dim MyShape As Shape, MyProperty as CustomProp

' Create shape

MyShape = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

' Create custom properties for MyShape

MyProperty = MyShape.AddCustomProp()

' Working with the properties of MyProperty

MyProperty.Label = "IP"

ConceptDraw DIAGRAM Third Party Developer’s Guide

442

MyProperty.Prompt = "TCP/IP address"

MyProperty.Type = 3

MyProperty.Format = "192.168.0.1;192.168.0.2;192.168.0.3"

MyProperty.Value = "192.168.0.1"

MyProperty.Invisible = FALSE

MyProperty.Verify = TRUE

See Also CustomProp Object, Document Object

FullName Property

FullName Property

Read-only. A String type property. Returns the full name to the document/library file, including

the path to the file (the Path property) if it has been set, and the name of the file itself (the Name

property).

Applies to: Document object, Library object

Syntax
[[Let] fullNameRet =] object.FullName

The FullName property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

fullNameRet Optional. A String type variable.

Remarks

The FullName property is a combination of the Path and Name properties of the corresponding

objects:
thisDoc.FullName = (thisDoc.Path & thisDoc.Name) '

returns True

thisApp.Lib(1).FullName = (thisApp.Lib(1).Path & thisApp.Lib(1).Name) '

returns True

FullName changes automatically when Path or Name are changed, and also when the document

or library are saved under a new name in ConceptDraw using the Save dialog.

ConceptDraw DIAGRAM Third Party Developer’s Guide

443

See Also Name property, Path property

GPinX Property

GPinX Property

A Double type property. The X-coordinate of the rotaion center of the shape/service object in the

coordinate system of the parent group/page.

Applies to: ServObj object, Shape object

Syntax
[[Let] gpinXRet =] object.GPinX

[Let] object.GPinX = gpinXSet

The GPinX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

gpinXRet Optional. A Double type variable.

gpinXSet Required. An expression that returns a Double value.

Remarks

If object is an instance of the Shape object, the GPinX property is also a table parameter of the

shape, that is, its value can be described by a formula. To work with GPinX as a table parameter,

use the CDPT_GPINX constant tag.

An instance of the parent group (parent object) can be retrieved by using the Parent property. To

get the page which owns the shape, use the Page property.

The unit of measure for the coordinates are the internal ConceptDraw units (InternalUnit).

See Also
GPingX property, GPinY property, LPinX property, LPinY property, Page

property, Parent property, Property Tags Constants

ConceptDraw DIAGRAM Third Party Developer’s Guide

444

GPinY Property

GPinY Property

A Double type property. The Y-coordinate of the rotaion center of the shape/service object in the

coordinate system of the parent group/page.

Applies to: ServObj object, Shape object

Syntax
[[Let] gpinYRet =] object.GPinY

[Let] object.GPinY = gpinYSet

The GPinY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

gpinYRet Optional. A Double type variable.

gpinYSet Required. An expression that returns a Double value.

Remarks

If object is an instance of the Shape object, the GPinY property is also a table parameter of the

shape, that is, its value can be described by a formula. To work with GPinY as a table parameter,

use the CDPT_GPINY constant tag.

An instance of the parent group (parent object) can be retrieved by using the Parent property. To

get the page which owns the shape, use the Page property.

The unit of measure for the coordinates are the internal ConceptDraw units (InternalUnit).

See Also
GPingX property, GPinY property, Page property, Parent property, Property

Tags Constants

ConceptDraw DIAGRAM Third Party Developer’s Guide

445

Green Property

Green Property

Gets or sets an Integer value, that represents the green component of an RGB color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] greenRet =] object.Green

[Let] object.Green = greenSet

The Green property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

greenRet Optional. An Integer type variable.

greenSet Required. An expression that returns an Integer value.

Remarks

The Green property is only effective if the color is an RGB color (see the IsRGB property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

green component of the fill color (in RGB format) of a Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsRGB <> false Then ' An RGB color?

 MsgBox(s.FillColor.Green) ' If yes, display the value of the green

component.

endif

See Also Blue property, Green property, Red property, IsRGB Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

446

HAlign Property

HAlign Property

A Byte type property. Specifies horizontal alignment of the paragraph's text with respect to the

text block's alignment box.

Applies to: Paragraph object

Syntax
[Let] byteRet = object.HAlign

[Let] object.HAlign = hAlignSet

The HAlign property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

byteRet Optional. A Byte type variable.

hAlignSet Required. An expression that returns a Byte value.

Remarks

There are the following types of horizontal alignment:

Constant Value Description

cdHorizLeft 0 Alignment to the left edge.

cdHorizCenter 1 Alignment to the center.

cdHorizRight 2 Alignment to the right edge.

The HAlign property is also a table parameter of the shape, which contains the object paragraph,

that is, its value can be described by a formula. To work with HAlign as a table parameter, use

the CDPT_PARA_HALIGN constant tag.

Example

This example demonstrates how to align the first paragraph of the shape's text to the right. It

assumes a shape that contains text exists in the document.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Align the first paragraph to the right

s.Paragraph(1).HAlign = cdbHorzRight

' Inform ConceptDraw Engine about the changes for re-drawing.

s.PropertyChanged(CDPT_PARA_HALIGN)

ConceptDraw DIAGRAM Third Party Developer’s Guide

447

See Also SetParaHAlign method

HasCharAttr Property

HasCharAttr Property

A Boolean type property. A flag that specifies whether the Character property of this style is

effective. True - the Character property is effective. False - the character block attributes stored

in the Character property don't apply when the style is assigned to a shape.

Applies to: Style object

Syntax
[[Let] booleanRet =] object.HasCharAttr

[Let] object.HasCharAttr = hasCharAttrSet

The HasCharAttr property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasCharAttrSet Required. An expression that returns a Boolean value.

See Also
Character property, HasEndsAttr property, HasFillAttr property, HasParaAttr

property, HasPenAttr property, HasShadowAttr property, HasTxtblockAttr

property

HasEndsAttr Property

HasEndsAttr Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

448

A Boolean type property. A flag that specifies whether the LineBegin, LineEnd and

LineEndSize properties of this style, that control line end attributes, are effective. True - the

parameters are effective. False - the line end parameters don't apply when the style is assigned to

a shape.

Applies to: Style object

Syntax
[[Let] booleanRet =] object.HasEndsAttr

[Let] object.HasEndsAttr = hasEndsAttrSet

The HasEndsAttr property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasEndsAttrSet Required. An expression that returns a Boolean value.

See Also
HasCharAttr property, HasFillAttr property, HasParaAttr property,

HasPenAttr property, HasShadowAttr property, HasTxtblockAttr property,

LineBegin property, LineEnd property, LineEndSize property

HasFillAttr Property

HasFillAttr Property

A Boolean type property. A flag that specifies whether the FillColor, FillPatColor and

FillPattern properties of this style, that control the fill attributes of a shape, are effective. True -

the parameters are effective. False - the fill parameters don't apply when the style is assigned to a

shape.

Applies to: Style object

Syntax
[[Let] booleanRet =] object.HasFillAttr

[Let] object.HasFillAttr = hasFillAttrSet

The HasFillAttr property syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

449

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasFillAttrSet Required. An expression that returns a Boolean value.

See Also
FillColor property, FillPatColor property, FillPattern property, HasCharAttr

property, HasEndsAttr property, HasParaAttr property, HasPenAttr property,

HasShadowAttr property, HasTxtblockAttr property

HasParaAttr Property

HasParaAttr Property

A Boolean type property. A flag that specifies whether the Paragraph property of this style is

effective. True - the Paragraph property is effective. False - the text paragraph attributes stored

in the Paragraph property don't apply when the style is assigned to a shape.

Applies to: Style object

Syntax
[[Let] booleanRet =] object.HasParaAttr

[Let] object.HasParaAttr = hasParaAttrSet

The HasParaAttr property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasParaAttrSet Required. An expression that returns a Boolean value.

See Also
HasCharAttr property, HasEndsAttr property, HasFillAttr property,

HasPenAttr property, HasShadowAttr property, HasTxtblockAttr property,

Paragraph property

ConceptDraw DIAGRAM Third Party Developer’s Guide

450

HasPenAttr Property

HasPenAttr Property

A Boolean type property. A flag that specifies whether the PenColor, PenPattern and

PenWeight properties of this style, that control the line attributes, are effective. True - the

parameters are effective. False - the line parameters don't apply when the style is assigned to a

shape.

Applies to: Style object

Syntax
[[Let] booleanRet =] object.HasPenAttr

[Let] object.HasPenAttr = hasPenAttrSet

The HasPenAttr property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasPenAttrSet Required. An expression that returns a Boolean value.

See Also
HasCharAttr property, HasEndsAttr property, HasFillAttr property,

HasParaAttr property, HasShadowAttr property, HasTxtblockAttr property,

PenColor property, PenPattern property, PenWeight property

HasShadowAttr Property

HasShadowAttr Property

A Boolean type property. A flag that specifies whether the ShadowColor, ShadowPatColor and

ShadowPattern properties of this style, that control shadow attributes of a shape, are effective.

True - the parameters are effective. False - the shadow parameters don't apply when the style is

assigned to a shape.

Applies to: Style object

ConceptDraw DIAGRAM Third Party Developer’s Guide

451

Syntax
[[Let] booleanRet =] object.HasShadowAttr

[Let] object.HasShadowAttr = hasShadowAttrSet

The HasShadowAttr property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasShadowAttr

Set
Required. An expression that returns a Boolean value.

See Also
HasCharAttr property, HasEndsAttr property, HasFillAttr property,

HasParaAttr property, HasPenAttr property, HasTxtblockAttr property,

ShadowColor property, ShadowPatColor property, ShadowPattern property

HasTxtblockAttr Property

HasTxtblockAttr Property

A Boolean type property. A flag that specifies whether the TextBlock property of this style is

effective. True - the TextBlock property is effective. False - the text block attributes stored in the

TextBlock property don't apply when the style is assigned to a shape.

Applies to: Style object

Syntax
[[Let] booleanRet =] object.HasTxtblockAttr

[Let] object.HasTxtblockAttr = hasTxtblockAttrSet

The HasTxtblockAttr property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

booleanRet Optional. A Boolean type variable.

hasTxtblockAttr

Set
Required. An expression that returns a Boolean value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

452

See Also
HasCharAttr property, HasEndsAttr property, HasFillAttr property,

HasParaAttr property, HasPenAttr property, HasShadowAttr property,

TextBlock property

Height Property (Shape object)

Height Property (Shape object)

A Double type property. The shape's height.

Applies to: Shape object

Syntax
[[Let] heightRet =] object.Height

[Let] object.Height = heightSet

The Height property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

heightRet Optional. A Double type variable.

heightSet Required. An expression that returns a Double value.

Remarks

The Height property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with Height as a table parameter, use the CDPT_HEIGHT constant tag.

The unit of measure for the shape's height set by Height is the internal ConceptDraw unit

(InternalUnit).

See Also
Angle property, GPinX property, GPinY property, FlipX property, FlipY

property, Height property, LPinX property, LPinY property, Width property

ConceptDraw DIAGRAM Third Party Developer’s Guide

453

Height Property (Window object)

Height Property (Window object)

Read-only. A Long type property. Returns the height of the window in pixels.

Applies to: Window object

Syntax
[[Let] heightRet =] object.Height

The Height property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

heightRet Optional. A Long type variable.

Remarks

Note, that window coordinates and dimensions are measured in screen pixels. To change the

position and dimensions of a window, use the SetWindowRect method.

See Also Left property, Top property, Width property, SetWindowRect method

HelpPath Property

HelpPath Property

Read-only. A String value. Returns the full way to files and folders which are on the way,

adjusted in Preferences appendix dialogue in the Paths tab in the field of Help.

Applies to: Application object

Syntax
[[Let] HelpPathRet =] object.HelpPath

The HelpPaht property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

454

object Required. An expression that returns a Application object.

HelpPathRet Optional. A String type variable.

Remarks

The HelpPath property by default matters: "root folder ConceptDraw DIAGRAM/Help".

See Also
Application object, DocumentsPath property, LibrariesPath property,

TemplatesPath property

Hyperlink Property

Hyperlink Property

A Long type property. Represents the ID (ID property) of the hyperlink, associated with the

shape or character block.

Applies to: Character object, Shape object

Syntax
[[Let] hyperlinkIDRet =] object.Hyperlink

[Let] object.Hyperlink = hyperlinkIDSet

The Hyperlink property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

hyperlinkIDRet Optional. A Long type variable.

hyperlinkIDSet
Required. An expression that returns a Long value. The ID of the

hyperlink.

Remarks

If there's no hyperlink with the ID specified by hyperlinkIDSet, the Hyperlink property doesn't

change its value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

455

The Hyperlink property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with Hyperlink as a table parameter, use the CDPT_HYPERLINK

constant tag if object is a ConceptDraw shape, or CDPT_CHAR_HYPERLINK if object is a

character block.

Example
dim id as Long

' Determine hyperlink ID of ShapeByID(6).Character(1)

' (assume the Shape with ID 6 exists on the page and the shape

' has a Character object, which has a hyperlink)

id = thisDoc.ActivePage.ShapeByID(6).Character(1).HyperLink

' Display the Address Property of the hyperlink with the ID obtained above.

MsgBox(thisDoc.HyperlinkByID(id).Address)

See Also
ID property, HyperlinkByID method, Document object, SetCharHyperlink

method

ID Property

ID Property

Read-only. A Long type property, that indicates the ID of an object from the Applies to list. The

ID of an object is a unique integer number, associated with the object when it's created. The ID is

unique only within the scope of the collection to which it belongs. For instance, the ID of a shape

is unique within the scope of the page collection of the document, however, a page with the same

ID may exist in another document. The same applies to layers, etc.

Applies to: Hyperlink object, Layer object, Page object, ServObj object, Shape object, Window

object

Syntax
[[Let] idRet =] object.ID

The ID property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

idRet Optional. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

456

Remarks

For a Window object the ID property identifies the window. In Elementicular, in the Windows

version of ConceptDraw, ID is a HWND (handle to a window) of the corresponding window.

See Also SubID property

Index Property

Index Property

Gets or sets an Integer value, which is an index representation of a color.

Applies to objects: Color

Syntax
[Let] RetVal = object.Index

[Let] object.Index = SetVal

The Index property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal An Integer value within the 0 - 255 range.

SetVal An Integer value within the 0 - 255 range.

Remarks

Prior to using the Index property it's recommended that you call the IsIndex property.

Example

This example demonstrates how to find out the fill color index of the Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsIndex <> false Then ' An index color ?

ConceptDraw DIAGRAM Third Party Developer’s Guide

457

 trace s.FillColor.Index ' If yes, display its value

endif

See Also Color Object, IsIndex Property

Invisible Property

Invisible Property

A Boolean value. Specifies whether the custom property is visible in the Custom Properties dialog

box.

Applies to objects: CustomProp

Syntax
[[Let] RetVal =] object.Invisible

[Let] object.Invisible = SetVal

The Invisible property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

SetVal A Boolean type variable.

Remarks

If Invisible is TRUE the corresponding CustomProp object won't be displayed in the Custom

Properties dialog.

Example

This example demonstrates working with the CustomProp object.
Dim MyShape As Shape, MyProperty as CustomProp

' Create a Shape

MyShape = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

' Create custom properties for MyShape

MyProperty = MyShape.AddCustomProp()

ConceptDraw DIAGRAM Third Party Developer’s Guide

458

' Working with the properties of MyProperty

MyProperty.Label = "IP"

MyProperty.Prompt = "TCP/IP address"

MyProperty.Type = 3

MyProperty.Format = "192.168.0.1;192.168.0.2;192.168.0.3"

MyProperty.Value = "192.168.0.1"

MyProperty.Invisible = FALSE

MyProperty.Verify = TRUE

See Also CustomProp Object, Document Object

Is1D Property

Is1D Property

Read-only. A Boolean type property. A flag that indicates whether the shape is a 1D-shape

(True) or a 2D-shape (False).

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.Is1D

The Is1D property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

booleanRet Optional. A Boolean type variable.

Remarks

The value of the Is1D property determines the behavior of the shape and which properties can be

applied to the given instance of object. To find out the type of the shape (simple shape, group,

etc.) use the ObjType property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

459

See Also ObjType property

IsBackground Property

IsBackground Property

A Boolean type property. A flag, specifying whether this page can be used as a background page

for other pages.

Applies to: Page object

Syntax
[[Let] isBackgroundRet =] object.IsBackground

[Let] object.IsBackground = isBackgroundSet

The IsBackground property syntax has these Elements:

Element Description

object Required. An expression that returns a Page object.

isBackgroundR

et
Optional. A Long type variable.

isBackgroundS

et
Required. An expression that returns a Long value.

Remarks

If IsBackground for a page is False, this page can't be used as a background page for other pages

(the BackPageID property). A page can't have a background page associated with it if its

IsBackground property is True.

See Also BackPageID property

ConceptDraw DIAGRAM Third Party Developer’s Guide

460

IsCMYK Property

IsCMYK Property

Read-only. Returns a Boolean value. If the object has a CMYK color, returns TRUE. Otherwise

returns FALSE.

Applies to: Color object, ColorEntry object

Syntax
[[Let] isCMYKRet =] object.IsCMYK

The IsCMYK property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

isCMYKRet Optional. A Boolean type variable.

Remarks

It's recommended that you check the status of this property before using the Cyan, Magenta,

Yellow and Black properties.

Example

This example contains a document-level script. It demonstrates how to find out the color format

of the fill color in a Shape object. If the color is in CMYK format, the value of the cyan

component is displayed.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsCMYK <> false Then ' A CMYK color?

 trace s.FillColor.Cyan ' If yes, display the value of the Cyan property

endif

See Also
Black property, Cyan property, Magenta property, Yellow property , Index

Property, IsRGB Property, IsCMYK Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

461

IsIndex Property

IsIndex Property

Read-only. Returns a Boolean value. If the object has an indexed color, returns TRUE. Otherwise

returns FALSE.

Applies to objects: Color

Syntax
[Let] RetVal = object.IsIndex

The IsIndex property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

Remarks

It's recommended that you check the status of this property before using the Index Property.

Example

This example checks whether the fill color in a Shape object is an indexed color. If yes, it

displays the index of the color.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsIndex <> false Then ' An indexed color??

 trace s.FillColor.Index ' If yes, display the index

endif

See Also Color Object, Index Property, IsRGB Property, IsCMYK Property

IsRGB Property

IsRGB Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

462

Read-only. Returns a Boolean value. If the object has an RGB color, returns TRUE. Otherwise

returns FALSE.

Applies to: Color object, ColorEntry object

Syntax
[[Let] isRGBRet =] object.IsRGB

The IsRGB property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

isRGBRet Optional. A Boolean type variable.

Remarks

It's recommended that you check the status of this property before using the Red, Green, and Blue

properties.

Example

This example contains a document-level script. It demonstrates how to find out the color format

of the fill color in a Shape object. If the color is in the RGB format, the value of the Red

component is displayed.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsRGB <> false Then ' An RGB color ?

 trace s.FillColor.Red ' If yes, display the value of the Red property

endif

See Also
Blue property, Green property, Red property, Index Property, IsRGB

Property, IsCMYK Property

IsTransparent Property

IsTransparent Property

A Boolean value. If True, the color is transparent. Otherwise is False.

ConceptDraw DIAGRAM Third Party Developer’s Guide

463

Applies to: Color object, ColorEntry object

Syntax
[[Let] transparentRet =] object.IsTransparent

[Let] object.IsTransparent = transparentSet

The IsTransparent property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

transparentRet Optional. A Boolean type variable.

transparentSet Required. An expression that returns a Boolean value.

Example

This example contains a document-level script. It demonstrates how to make a shape's fill

transparent.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsTransparent <> true Then ' Is the color transparent?

 s.FillColor.IsTransparent = true ' If not, make it transparent

 s.PropertyChanged(CDPT_FILLCOLOR) ' Inform ConceptDraw Engine

endif

See Also Index Property, IsRGB Property, IsCMYK Property

Label Property

Label Property

A String type property. The label of a custom property.

Applies to: CustomProp object

Syntax
[[Let] labelStrRet =] object.Label

ConceptDraw DIAGRAM Third Party Developer’s Guide

464

[Let] object.Label = labelStrSet

The Label property syntax has these Elements:

Element Description

object Required. An expression that returns a CustomProp object.

labelStrRet Optional. A String type variable.

labelStrSet Required. An expression that returns a String value.

Example

This example demonstrates working with the CustomProp object.
Dim MyShape As Shape, MyProperty as CustomProp

' Create a Shape

MyShape = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

' Create custom properties for MyShape

MyProperty = MyShape.AddCustomProp()

' Working with the properties of MyProperty

MyProperty.Label = "IP"

MyProperty.Prompt = "TCP/IP address"

MyProperty.Type = 3

MyProperty.Format = "192.168.0.1;192.168.0.2;192.168.0.3"

MyProperty.Value = "192.168.0.1"

MyProperty.Invisible = FALSE

MyProperty.Verify = TRUE

Language Property

Language Property

A Byte type property. Gets or sets the charset of the character block.

Applies to: Character object

Syntax
[[Let] byteRet =] object.Language

[Let] object.Language = languageSet

The Language property syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

465

Element Description

object Required. An expression that returns a Character object.

byteRet Optional. A Byte type variable.

languageSet Required. An expression that returns a Byte value.

Remarks

The Language property can take of the the following possible values:

Constant Value Description

ANSI_CHARSET 0 ANSI charset.

DEFAULT_CHARSET 1 Default charset.

SYMBOL_CHARSET 2 Symbol charset.

MAC_CHARSET 77 Macintosh charset.

SHIFTJIS_CHARSET 128 charset.

HANGEUL_CHARSET 129 Hungarian charset.

HANGUL_CHARSET 129 Hungarian charset.

JOHAB_CHARSET 130 charset.

GB2312_CHARSET 134 charset.

CHINESEBIG5_CHARS

ET
136 Chinese charset.

GREEK_CHARSET 161 Greek charset.

TURKISH_CHARSET 162 Turkish charset.

VIETNAMESE_CHARS

ET
163 Vietnamese charset.

HEBREW_CHARSET 177 Hebrew charset.

ARABIC_CHARSET 178 Arabic charset.

BALTIC_CHARSET 186 Baltic charset.

RUSSIAN_CHARSET 204 Russian (cyrillic) charset.

THAI_CHARSET 222 Thai charset.

EASTEUROPE_CHARS

ET
238 East Europe charset.

OEM_CHARSET 255 OEM charset.

The Language property is also a table parameter of the shape which contains the object character

block, that is, its value can be described by a formula. To work with Language as a table

parameter, use the CDPT_CHAR_LANGUAGE constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

466

Example

This example demonstrates how to find out the charset of the first Character object of the Shape

object with ID 1, located on the current page.
Dim MyShape As Shape

' The shape with ID 1 must exist on the current page

Set MyShape = thisDoc.ActivePage.ShapeByID(1)

' Display information about the charset of MyShape.Character(1)

' (it assumes MyShape.Character(1) exists)

MsgBox(MyShape.Character(1).Language)

See Also SetCharLanguage method

Layer Property

Layer Property

A Long type property. ID of the layer (the ID property), on which the shape/service object is

located.

Applies to: ServObj object, Shape object

Syntax
[[Let] layerIDRet =] object.Layer

[Let] object.Layer = layerIDSet

The Layer property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

layerIDRet Optional. A Long type variable.

layerIDSet Required. An expression that returns a Long value. The ID of the layer.

Remarks

If there is no layer with the specified layerIDSet in the layer collection of the document, the

Layer property doesn't change its value, as a shape can't be located on a nonexisting layer. To

check whether the layer with the specified ID exists in the document, use the LayerByID method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

467

See Also ID property, LayerByID method, Layer object

LeftInd Property

LeftInd Property

A Singe type property. The distance all lines of text in a paragraph are indented from the left

margin of the text block.

Applies to: Paragraph object

Syntax
[Let] singleRet = object.LeftInd

[Let] object.LeftInd = leftIndSet

The LeftInd property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

singleRet Optional. A Single type variable.

leftIndSet Required. An expression that returns a Single value.

Remarks

Indents are specified in internal ConceptDraw units (InternalUnit).

The LeftInd property is also a table parameter of the shape that contains the object paragraph,

that is, its value can be described by a formula. To work with LeftInd as a table parameter, use

the CDPT_PARA_LEFTIND constant tag.

Example

This example demonstrates how to set a left indent for the second paragraph of a shape. It

assumes there is a shape on the current page, and its text contains at least two paragraphs.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

ConceptDraw DIAGRAM Third Party Developer’s Guide

468

' Move the second paragraph of by 100 points right from the left border of the

text block.

s.Paragraph(2).LeftInd = 100

' Inform ConceptDraw Engine about the changes for re-drawing.

s.PropertyChanged(CDPT_PARA_LEFTIND)

See Also SetParaLeftInd method

LeftMargin Property

LeftMargin Property

A Single type property. The distance the text inside the text block is offset from the left border of

the text box.

Applies to: TextBlock object

Syntax
[[Let] singleRet =] object.LeftMargin

[Let] object.LeftMargin = leftMarginSet

The LeftMargin property syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

singleRet Optional. A Single type variable.

leftMarginSet Required. An expression that returns a Single value.

Remarks

The unit of measure for the LeftMargin property are internal ConceptDraw units (InternalUnit).

The LeftMargin property is also a table parameter of the shape which contains the object text

block, that is, its value can be described by a formula. To work with LeftMargin as a table

parameter, use the CDPT_LEFTMARGIN constant tag.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

469

This example demonstrates how to increase the distance between the text and left border of the

text block of an existing shape.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Increase the distance between the text and the left border of the text box

by 20 points.

s.TextBlock.LeftMargin = 20

' Inform ConceptDraw Engine about the changes for re-drawing.

s.PropertyChanged(CDPT_LEFTMARGIN)

Left Property

Left Property

For the DRect object:

Gets or sets a Double value, that represents the coordinates of the leftmost point of the instance of

the object.

For the Window object:

Gets or sets a Long value, that represents the coordinates of the leftmost point of the window,

associated with the object.

Applies to objects: DRect, Window

Syntax

For the DRect object:

[[Let] RetVal =] object.Left

[Let] object.Left = SetVal

Element Description

object A reference to an instance of the object.

RetVal A Double type variable.

SetVal A Double value.

For the Window object:

[[Let] RetVal =] object.Left

ConceptDraw DIAGRAM Third Party Developer’s Guide

470

Element Description

object A reference to an instance of the object.

RetVal A Long type variable. The default unit of measure is unit.

Example
Dim MyObject as new DRect ' Create an instance of the object

MyObject.Left = 100

See Also DRect Object, Window Object

Left Property (Window object)

Left Property (Window object)

Read-only. A Long type property. Returns the X-coordinate of the top left corner of the window.

Applies to: Window object

Syntax
[[Let] leftRet =] object.Left

The Left property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

leftRet Optional. A Long type variable.

Remarks

Note, that the coordinates of the window position are specified in screen pixels, and the

coordinate origin is in the left top corner of the parent window frame. To change the dimensions

and position of the window, use the SetWindowRect method.

Example
..........

ConceptDraw DIAGRAM Third Party Developer’s Guide

471

See Also Top property, Height property, Width property, SetWindowRect method

LibrariesPath Property

LibrariesPath Property

Read-only. A String value. Returns the full way to files which are on the way, adjusted in

Preferences appendix dialogue in the Paths tab in the field of Libraries.

Applies to: Application object

Syntax
[[Let] LibrariesPathRet =] object.LibrariesPath

The LibrariesPath property syntax has these Elements:

Element Description

object Required. An expression that returns a Application object.

LibrariesPathRe

t
Optional. A String type variable.

Remarks

The LibrariesPath property by default matters: "personal folder of the user

/AppData/Local/CS Odessa/ConceptDraw Office/ConceptDraw DIAGRAM

DIAGRAM/Libraries".

See Also
Application object,DocumentsPath property, HelpPath property,

TemplatesPath property

ConceptDraw DIAGRAM Third Party Developer’s Guide

472

Library Property

Library Property

Read-only. Gets an instance of the Library object that represents the active library in this library

window.

Applies to: Window object

Syntax
[[Set] libraryRet =] object.Library

The Library property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

libraryRet Optional. A Library type variable.

Remarks

This property is only effective if the window is a library window (see the Type property). For all

other window types the Library property returns Nothing. The active library is the library whose

contents is displayed in the window.

See Also Document property, Page property, Shape property, Library object

LineBegin Property

LineBegin Property

A Long type property. Specifies the begin arrowhead type for a 1D-shape.

Applies to: Shape object, Style object

Syntax
[[Let] longRet =] object.LineBegin

ConceptDraw DIAGRAM Third Party Developer’s Guide

473

[Let] object.LineBegin = lineBeginSet

The LineBegin property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

lineBeginSet Required. An expression that returns a Long value.

Remarks

The value of LineBegin can be in the range of 0 to 60. The 0 value means the 1D-shape has no

begin arrowhead (No Arrows).

Shape object:

The LineBegin property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LineBegin as a table parameter, use the CDPT_LINEBEGIN

constant tag.

Style object:

When a style is assigned to a shape, the parameters of the LineBegin property of the style are set

to the LineBegin property of the shape. LineBegin is only effective when the HasEndsAttr

property of this style is True.

See Also HasEndsAttr property, LineEnd property, LineEndSize property

LineEndSize Property

LineEndSize Property

A Long type property. Specifies the begin and end arrowhead size for a 1D-shape.

Applies to: Shape object, Style object

Syntax
[[Let] longRet =] object.LineEndSize

[Let] object.LineEndSize = lineEndSizeSet

ConceptDraw DIAGRAM Third Party Developer’s Guide

474

The LineEndSize property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

lineEndSizeSet Required. An expression that returns a Long value.

Remarks

The LineEndSize property can take the following values:

Constant Value Description

cdLESTiny 0 Tiny size.

cdLESSmall 1 Small size.

cdLESMedium 2 Medium size.

cdLESLarge 3 Large size.

cdLESHuge 4 Huge size.

Shape object:

The LineEndSize property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with LineEndSize as a table parameter, use the

CDPT_LINEENDSIZE constant tag.

Style object:

When a style is assigned to a shape, the parameters of the LineEndSize property of the style are

set to the LineEndSize property of the shape. LineEndSize is only effective when the

HasEndsAttr property of this style is True.

See Also HasEndsAttr property, LineBegin property, LineEnd property

LineEnd Property

LineEnd Property

A Long type property. Specifies the end arrowhead type for a 1D-shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

475

Applies to: Shape object, Style object

Syntax
[[Let] longRet =] object.LineEnd

[Let] object.LineEnd = lineEndSet

The LineEnd property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

lineEndSet Required. An expression that returns a Long value.

Remarks

The value of LineEnd can be in the range of 0 to 60. The 0 value means the 1D-shape has no end

arrowhead (No Arrows).

Shape object:

The LineEnd property is also a table parameter of the shape, that is, its value can be described by

a formula. To work with LineEnd as a table parameter, use the CDPT_LINEEND constant tag.

Style object:

When a style is assigned to a shape, the parameters of the LineEnd property of the style are set to

the LineEnd property of the shape. LineEnd is only effective when the HasEndsAttr property of

this style is True.

See Also HasEndsAttr property, LineBegin property, LineEndSize property

ConnectCrossType Property

LineJumpOrient Property

A Long type property. Gets and sets the orientation of the line jumps on smart connector's

crossings.

Applies to: Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

476

Syntax
[[Let] jumpOrientRet =] object.LineJumpOrient

[Let] object.LineJumpOrient = jumpOrientSet

The LineJumpOrient property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

jumpOrientRet Optional. A Long type variable.

jumpOrientSet Required. An expression that returns a Long value.

Remarks

The LineJumpOrient can take only one of these values:

Constant Value Description

cdNoJumps 0 No line jumps

cdVertJumps 1 Vertical line jumps orientation

cdHorisJumps 2 Vertical line jumps orientation

You can also change the LineJumpOrient property from the ConceptDraw menu:"Tools->Line

Jump Orientation".

See Also
FlowAroundObjects property, LineJumpSize property, LineJumpType

property, MaxNumberOfLegs property, MinDistToShapes property,

PassThroughGroups property

LineJumpSize Property

LineJumpSize Property

A Double type property. Gets and sets the line jump size for smart connector's crossings.

Applies to: Document object

Syntax
[[Let] jumpSizeRet =] object.LineJumpSize

[Let] object.LineJumpSize = jumpSizeSet

ConceptDraw DIAGRAM Third Party Developer’s Guide

477

The LineJumpSize property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

jumpSizeRet Optional. A Double type variable.

jumpSizeSet Required. An expression that returns a Double value.

Remarks

The value of the line jump size is set in the internal units of ConceptDraw (InternalUnit).

The value of the LineJumpSize property can be also viewed and changed in the following dialog

in ConceptDraw:"File->Document Properties->Advanced->Connectors And Routing".

See Also
FlowAroundObjects property, LineJumpOrient property, LineJumpType

property, MaxNumberOfLegs property, MinDistToShapes property,

PassThroughGroups property

LineJumpType Property

LineJumpType Property

A Long type property. Gets and sets the type of smart connector's crossings in the document.

Applies to: Document object

Syntax
[[Let] jumpTypeRet =] object.LineJumpType

[Let] object.LineJumpType = jumpTypeSet

The LineJumpType property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

jumpTypeRet Optional. A Long type variable.

jumpTypeSet Required. An expression that returns a Long value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

478

The LineJumpType can take only one of these values:

Constant Value Description

cdJumpSquare 1 As a square bridge

cdJumpArc 2 As an arcover bridge

cdJump2sides 3 As a two-side bridge

cdJump3sides 4 As a three-side bridge

cdJumpGap 5 As a gap

You can also change the LineJumpOrient property from the ConceptDraw menu: "Tools->Line

Jump Type".

See Also
FlowAroundObjects property, LineJumpOrient property, LineJumpSize

property, MaxNumberOfLegs property, MinDistToShapes property,

PassThroughGroups property

LineSpacing Property

LineSpacing Property

A Single type property. Specifies the distance between the lines of the paragraph.

Applies to: Paragraph object

Syntax
[Let] singleRet = object.LineSpacing

[Let] object.LineSpacing = lineSpacingSet

The LineSpacing property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

singleRet Optional. A Single type variable.

lineSpacingSet Required. An expression that returns a Single value.

Remarks

The line spacing is specified in internal ConceptDraw units (InternalUnit).

ConceptDraw DIAGRAM Third Party Developer’s Guide

479

The LineSpacing property is also a table parameter of the shape which contains the object

paragraph, that is, its value can be described by a formula. To work with LineSpacing as a table

parameter, use the CDPT_PARA_LINESPACING constant tag.

Example

This example demonstrates how to increase the spacing between the lines in a paragraph of text. It

assumes there is a shape which contains text on the active page of the document.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Set line spacing.

s.Paragraph(1).LineSpacing = 100

' Inform ConceptDraw Engine about the changes for re-drawing

s.PropertyChanged(CDPT_PARA_LINESPACING)

See Also SetParaLineSpacing method

LinkType Property

LinkType Property

Read-only. A Long value, indicating the type of the hyperlink.

Applies to: Hyperlink object

Syntax
[[Let] linkTypeRet =] object.LinkType

The LinkType property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Hyperlink object.

linkTypeRet Optional. A Long type variable.

Remarks

The LinkType can have the following values:

Constant Value Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

480

cdLinkNone 0
The Hyperlink object has no hyperlink (the hyperlink

doesn't point to anything).

cdLinkToFile 1

The hyperlink points to a local file, which is either a

ConceptDraw document, or a file of any other supported

format. If the hyperlink points to a ConceptDraw

document, it may also indicate a page and a shape inside

this document, which are described by the PageID and

ShapeID properties respectively.

cdLinkToURL 2 The hyperlink points to an Internet address (URL).

cdLinkToPageShape 3

The hyperlink points to a page or a shape inside the same

document. The page and the shape are described by the

PageID and ShapeID properties respectively.

See Also ID property, PageID property, ShapeID property

LocalPath Property

LocalPath Property

Read-only. A Boolean value. A flag that specifies in which form the path to the file (the Address

property), pointed to by the hyperlink, is stored.

Applies to: Hyperlink object

Syntax
[[Let] localPathRet =] object.LocalPath

The LocalPath property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Hyperlink object.

localPathRet Optional. A Boolean type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

481

If LocalPath is True, the Address property contains the relative path to the file (with respect to

the folder which was the current folder when the hyperlink was created). Otherwise, the full path

to the file is stored. (absolute path).

The LocalPath property is only effective when the hyperlink points to a file, that is, the hyperlink

is of the cdLinkToFile type (see the LinkType property).

See Also Address property, LinkType property

LockAspect Property

LockAspect Property

A Boolean type property. A flag that specifies whether the shape can be resized

unporportionally.True - only proportional resizing is the width and height of the shape is allowed.

False - both proportional and unproportional resizing is possible.

Applies to: Shape object

Syntax
[[Let] lockAspectRet =] object.LockAspect

[Let] object.LockAspect = lockAspectSet

The LockAspect property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockAspectRet Optional. A Boolean type variable.

lockAspectSet Required. An expression that returns a Boolean value.

Remarks

The LockAspect property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockAspect as a table parameter, use the CDPT_LOCKASPECT

constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

482

See Also

LockBegin property, LockCalcWH property, LockDelete property, LockEnd

property, LockFlipX property, LockFlipY property, LockHeight property,

LockMoveX property, LockMoveY property, LockRotate property,

LockTextBound property, LockVertex property, LockWidth property

LockBegin Property

LockBegin Property

A Boolean type property. A flag that specifies whether the begin point of the 1D-shape can be

repositioned with the mouse.True - it can't be repositioned. False - it can be repositioned.

Applies to: Shape object

Syntax
[[Let] lockBeginRet =] object.LockBegin

[Let] object.LockBegin = lockBeginSet

The LockBegin property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockBeginRet Optional. A Boolean type variable.

lockBeginSet Required. An expression that returns a Boolean value.

Remarks

The LockBegin property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockBegin as a table parameter, use the CDPT_LOCKBEGIN

constant tag.

See Also

BeginX property, BeginY property, LockAspect property, LockCalcWH

property, LockDelete property, LockEnd property, LockFlipX property,

LockFlipY property, LockHeight property, LockMoveX property,

LockMoveY property, LockRotate property, LockTextBound property,

LockVertex property, LockWidth property

ConceptDraw DIAGRAM Third Party Developer’s Guide

483

LockCalcWH Property

LockCalcWH Property

A Boolean type property. A flag that specifies whether to re-calculate the size of the shape's

alignment box, when the coordinates of the shape's vertices were modified. True - the alignment

box size is re-calculated, False - not re-calculated.

Applies to: Shape object

Syntax
[[Let] lockCalcWHRet =] object.LockCalcWH

[Let] object.LockCalcWH = lockCalcWHSet

The LockCalcWH property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockCalcWHRe

t
Optional. A Boolean type variable.

lockCalcWHSet Required. An expression that returns a Boolean value.

Remarks

The LockCalcWH property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with LockCalcWH as a table parameter, use the

CDPT_LOCKCALCWH constant tag.

See Also

LockAspect property, LockBegin property, LockDelete property, LockEnd

property, LockFlipX property, LockFlipY property, LockHeight property,

LockMoveX property, LockMoveY property, LockRotate property,

LockTextBound property, LockVertex property, LockWidth property

ConceptDraw DIAGRAM Third Party Developer’s Guide

484

LockConnector Property

LockConnector Property

A Boolean type property. A flag that blocks a smart connector from re-routing when its end

points are repositioned. True - the smart connector doesn't change its form if it's possible, False -

the smart connector changes its form automatically.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.LockConnector

[Let] object.LockConnector = lockConnectorSet

The LockConnector property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

lockConnectorS

et
Required. An expression that returns a Boolean value.

Remarks

For a new smart connector the LockConnector property is False by default.

See Also

LockAspect property, LockBegin property, LockDelete property, LockEnd

property, LockFlipX property, LockFlipY property, LockHeight property,

LockMoveX property, LockMoveY property, LockRotate property,

LockTextBound property, LockVertex property, LockWidth property

LockDelete Property

LockDelete Property

A Boolean type property. A flag that specifies whether the shape is protected from deleting.True

- protection is on, False - protection is off.

ConceptDraw DIAGRAM Third Party Developer’s Guide

485

Applies to: Shape object

Syntax
[[Let] lockDeleteRet =] object.LockDelete

[Let] object.LockDelete = lockDeleteSet

The LockDelete property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockDeleteRet Optional. A Boolean type variable.

lockDeleteSet Required. An expression that returns a Boolean value.

Remarks

The LockDelete property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockDelete as a table parameter, use the CDPT_LOCKDELETE

constant tag.

See Also

LockAspect property, LockBegin property, LockCalcWH property, LockEnd

property, LockFlipX property, LockFlipY property, LockHeight property,

LockMoveX property, LockMoveY property, LockRotate property,

LockTextBound property, LockVertex property, LockWidth property

Locked Property

Locked Property

A Boolean value. Specifies whether the layer is locked.

Applies to objects: Layer

Syntax
[[Let] RetVal =] object.Locked

[Let] object.Locked = SetVal

The Locked property syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

486

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

SetVal A Boolean type value.

Remarks

If Locked is TRUE, you won't be able to edit shapes on this layer. You can set the Locked

property to TRUE only when the layer is not active.

Example
Dim MyLayer as Layer

' Get the second Layer of thisDoc

set MyLayer = thisDoc.Layer(2)

' Make it Locked

' (assume that MyLayer is not active)

MyLayer.Locked = True

See Also Layer Object, Document Object

LockEnd Property

LockEnd Property

A Boolean type property. A flag that specifies whether the end point of the 1D-shape can be

repositioned with the mouse.True - it can't be repositioned. False - it can be repositioned.

Applies to: Shape object

Syntax
[[Let] lockEndRet =] object.LockEnd

[Let] object.LockEnd = lockEndSet

The LockEnd property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

487

lockEndRet Optional. A Boolean type variable.

lockEndSet Required. An expression that returns a Boolean value.

Remarks

The LockEnd property is also a table parameter of the shape, that is, its value can be described by

a formula. To work with LockEnd as a table parameter, use the CDPT_LOCKEND constant tag.

See Also

EndX property, EndY property, LockAspect property, LockBegin property,

LockCalcWH property, LockDelete property, LockFlipX property,

LockFlipY property, LockHeight property, LockMoveX property,

LockMoveY property, LockRotate property, LockTextBound property,

LockVertex property, LockWidth property

LockFlipX Property

LockFlipX Property

A Boolean type property. A flag that specifies whether the shape can be flipped horizontally.

True - horizontal flipping is allowed. False - horizontal flipping is not allowed.

Applies to: Shape object

Syntax
[[Let] lockFlipXRet =] object.LockFlipX

[Let] object.LockFlipX = lockFlipXSet

The LockFlipX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockFlipXRet Optional. A Boolean type variable.

lockFlipXSet Required. An expression that returns a Boolean value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

488

The LockFlipX property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockFlipX as a table parameter, use the CDPT_LOCKFLIPX

constant tag.

See Also

FlipX property, LockAspect property, LockBegin property, LockCalcWH

property, LockDelete property, LockEnd property, LockFlipY property,

LockHeight property, LockMoveX property, LockMoveY property,

LockRotate property, LockTextBound property, LockVertex property,

LockWidth property

LockFlipY Property

LockFlipY Property

A Boolean type property. A flag that specifies whether the shape can be flipped vertically. True -

vertical flipping is allowed. False - vertical flipping is not allowed.

Applies to: Shape object

Syntax
[[Let] lockFlipYRet =] object.LockFlipY

[Let] object.LockFlipY = lockFlipYSet

The LockFlipY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockFlipXRet Optional. A Boolean type variable.

lockFlipXSet Required. An expression that returns a Boolean value.

Remarks

The LockFlipY property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockFlipY as a table parameter, use the CDPT_LOCKFLIPY

constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

489

See Also

FlipY property, LockAspect property, LockBegin property, LockCalcWH

property, LockDelete property, LockEnd property, LockFlipX property,

LockHeight property, LockMoveX property, LockMoveY property,

LockRotate property, LockTextBound property, LockVertex property,

LockWidth property

LockHeight Property

LockHeight Property

A Boolean type property. A flag that specifies whether to allow changing the shape's height when

the shape is resized. True - height is protected from resizing, False - height is not protected from

resizing.

Applies to: Shape object

Syntax
[[Let] lockHeightRet =] object.LockHeight

[Let] object.LockHeight = lockHeightSet

The LockHeight property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockHeightRet Optional. A Boolean type variable.

lockHeightSet Required. An expression that returns a Boolean value.

Remarks

The LockHeight property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockHeight as a table parameter, use the CDPT_LOCKHEIGHT

constant tag.

See Also

Height property (Shape object), LockAspect property, LockBegin property,

LockCalcWH property, LockDelete property, LockEnd property, LockFlipX

property, LockFlipY property, LockMoveX property, LockMoveY property,

LockRotate property, LockTextBound property, LockVertex property,

LockWidth property

ConceptDraw DIAGRAM Third Party Developer’s Guide

490

LockMoveX Property

LockMoveX Property

A Boolean type property. A flag that protects the shape from repositioning horizontally. True -

the shape can't be repositioned horizontally, False - horizontal repositioning is allowed.

Applies to: Shape object

Syntax
[[Let] lockMoveXRet =] object.LockMoveX

[Let] object.LockMoveX = lockMoveXSet

The LockMoveX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockMoveXRet Optional. A Boolean type variable.

lockMoveXSet Required. An expression that returns a Boolean value.

Remarks

The LockMoveX property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with LockMoveX as a table parameter, use the

CDPT_LOCKMOVEX constant tag.

See Also

GPinX property, LockAspect property, LockBegin property, LockCalcWH

property, LockDelete property, LockEnd property, LockFlipX property,

LockFlipY property, LockHeight property, LockMoveY property,

LockRotate property, LockTextBound property, LockVertex property,

LockWidth property

ConceptDraw DIAGRAM Third Party Developer’s Guide

491

LockMoveY Property

LockMoveY Property

A Boolean type property. A flag that protects the shape from repositioning vertically. True - the

shape can't be repositioned vertically, False - vertical repositioning is allowed.

Applies to: Shape object

Syntax
[[Let] lockMoveYRet =] object.LockMoveY

[Let] object.LockMoveY = lockMoveYSet

The LockMoveY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockMoveYRet Optional. A Boolean type variable.

lockMoveYSet Required. An expression that returns a Boolean value.

Remarks

The LockMoveY property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with LockMoveY as a table parameter, use the

CDPT_LOCKMOVEY constant tag.

See Also

GPinY property, LockAspect property, LockBegin property, LockCalcWH

property, LockDelete property, LockEnd property, LockFlipX property,

LockFlipY property, LockHeight property, LockMoveX property,

LockRotate property, LockTextBound property, LockVertex property,

LockWidth property

LockRotate Property

LockRotate Property

A Boolean type property. A flag that protects the shape from rotating. True - the shape can't be

rotated, False - rotation is allowed.

ConceptDraw DIAGRAM Third Party Developer’s Guide

492

Applies to: Shape object

Syntax
[[Let] lockRotateRet =] object.LockRotate

[Let] object.LockRotate = lockRotateSet

The LockRotate property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockRotateRet Optional. A Boolean type variable.

lockRotateSet Required. An expression that returns a Boolean value.

Remarks

The LockRotate property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockRotate as a table parameter, use the CDPT_LOCKROTATE

constant tag.

See Also

Angle property, LockAspect property, LockBegin property, LockCalcWH

property, LockDelete property, LockEnd property, LockFlipX property,

LockFlipY property, LockHeight property, LockMoveX property,

LockMoveY property, LockTextBound property, LockVertex property,

LockWidth property

LockTextBound Property

LockTextBound Property

A Boolean type property. Whether A flag that specifies can overstep the bounds of limit of the

text of object of object. True - limits of the text can't overstep the bounds of object. False - limits

of the text can overstep the bounds of object.

Applies to: Shape object

Syntax
[[Let] lockTextBoundRet =] object.LockTextBound

[Let] object.LockTextBound = lockTextBoundSet

The LockTextBound property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

493

object Required. An expression that returns a Shape object.

lockTextBound

Ret
Optional. A Boolean type variable.

lockTextBound

Set
Required. An expression that returns a Boolean value.

Remarks

The LockTextBound property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with LockTextBound as a table parameter, use the

CDPT_LOCKTEXTBOUND constant tag.

See Also

LockAspect property, LockBegin property, LockCalcWH property,

LockDelete property, LockEnd property, LockFlipX property, LockFlipY

property, LockHeight property, LockMoveX property, LockMoveY property,

LockRotate property, LockVertex property, LockWidth property

LockVertex Property

LockVertex Property

A Boolean type property. A flag that protects vertices from editing with the mouse.True -

protection is on, False - protection is off.

Applies to: Shape object

Syntax
[[Let] lockVertexRet =] object.LockVertex

[Let] object.LockVertex = lockVertexSet

The LockVertex property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockBeginRet Optional. A Boolean type variable.

lockBeginSet Required. An expression that returns a Boolean value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

494

Remarks

The LockVertex property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockVertex as a table parameter, use the CDPT_LOCKVERTEX

constant tag.

See Also

LockAspect property, LockBegin property, LockCalcWH property,

LockDelete property, LockEnd property, LockFlipX property, LockFlipY

property, LockHeight property, LockMoveX property, LockMoveY property,

LockRotate property, LockTextBound property, LockWidth property

LockWidth Property

LockWidth Property

A Boolean type property. A flag that specifies whether to allow changing the shape's width when

the shape is resized. True - width is protected from resizing, False - width is not protected from

resizing.

Applies to: Shape object

Syntax
[[Let] lockWidthRet =] object.LockWidth

[Let] object.LockWidth = lockWidthSet

The LockWidth property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lockBeginRet Optional. A Boolean type variable.

lockBeginSet Required. An expression that returns a Boolean value.

Remarks

The LockWidth property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with LockWidth as a table parameter, use the CDPT_LOCKWIDTH

constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

495

See Also

LockAspect property, LockBegin property, LockCalcWH property,

LockDelete property, LockEnd property, LockFlipX property, LockFlipY

property, LockHeight property, LockMoveX property, LockMoveY property,

LockRotate property, LockTextBound property, LockVertex property, Width

property (Shape object)

LPinX Property

LPinX Property

A Double type property. The X offset of the shape's rotation center from the center of the shape's

coordinate system.

Applies to: Shape object

Syntax
[[Let] lpinXRet =] object.LPinX

[Let] object.LPinX = lpinXSet

The LPinX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lpinXRet Optional. A Double type variable.

lpinXSet Required. An expression that returns a Double value.

Remarks

The LPinX property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with LPinX as a table parameter, use the CDPT_LPINX constant tag.

Note, that modifying the LPinX automatically changes the value of the GPinX property. The unit

of measure for the offset are internal ConceptDraw units (InternalUnit).

See Also GPinX property, GPinY property, LPinY property

ConceptDraw DIAGRAM Third Party Developer’s Guide

496

LPinY Property

LPinY Property

A Double type property. The Y offset of the shape's rotation center from the center of the shape's

coordinate system.

Applies to: Shape object

Syntax
[[Let] lpinYRet =] object.LPinY

[Let] object.LPinY = lpinYSet

The LPinY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

lpinYRet Optional. A Double type variable.

lpinYSet Required. An expression that returns a Double value.

Remarks

The LPinY property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with LPinY as a table parameter, use the CDPT_LPINY constant tag.

Note, that modifying the LPinY automatically changes the value of the GPinY property. The unit

of measure for the offset are internal ConceptDraw units (InternalUnit).

See Also GPinX property, GPinY property, LPinX property

ConceptDraw DIAGRAM Third Party Developer’s Guide

497

Magenta Property

Magenta Property

Gets or sets an Integer value, that represents the magenta component of CMYK color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] magentaRet =] object.Magenta

[Let] object.Magenta = magentaSet

The Magenta property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

magentaRet Optional. An Integer value.

magentaSet Required. An expression that returns an Integer value.

Remarks

The Magenta property is only effective if the color is a CMYK color (see the IsCMYK

property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

magenta component of the fill color (in CMYK format) of a Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsCMYK<> false Then ' A CMYK color?

 MsgBox(s.FillColor.Magenta) ' If yes, display the value of the magenta

component.

endif

See Also Cyan property, Yellow property, Black property, IsCMYK property

ConceptDraw DIAGRAM Third Party Developer’s Guide

498

MaxNumOfLegs Property

MaxNumOfLegs Property

A Long type property. Gets or sets the maximum possible number of legs for all smart connectors

of the document.

Applies to: Document object

Syntax
[[Let] numOfLegsRet =] object.MaxNumOfLegs

[Let] object.MaxNumOfLegs = numOfLegsSet

The MaxNumOfLegs property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

numOfLegsRet Optional. A Long type variable.

numOfLegsSet
Required. An expression that returns a Long value. The new maximum

number of legs for smart connectors of the document.

Remarks

If MaxNumOfLegs equals to 0, the number of legs for all smart connectors of the document is

unlimited. The minimal number of smart connector legs is 3, so any value of numOfLegsSet less

than 3 is equivalent to setting the unlimited number of legs. This property can also be changed

from within ConceptDraw, using the menu "File->Document Properties->Advanced->Connectors

And Routing".

See Also
FlowAroundObjects property, LineJumpOrient property, LineJumpSize

property, LineJumpType property, MinDistToShapes property,

PassThroughGroups property

Menu Property

Menu Property

A String value. Gets or sets a menu item name.

ConceptDraw DIAGRAM Third Party Developer’s Guide

499

Applies to objects: Action

Syntax
[Let] RetVal = object.Menu

[Let] object.Menu = SetVal

The Menu property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A String value that specifies the name of a menu item.

SetVal A String value that specifies the name of a menu item.

Example

This example demonstrates using the Menu property.
Dim s as Shape, MyAction as Action

' Assume Shape with ID 1 exists on the active page.

' Assume the Shape contains at least one Action

s = thisDoc.ActivePage.ShapeByID(1)

' Get reference to an instance of the Action object

Set MyAction = s.Action(1)

' Sets the name of the action in the menu

MyAction.Menu = "Hide Shape"

See Also
Action Object, Shape Object, SetPropertyFormula Method, ActionsNum

Method, AddAction Method, Action Method, RemoveAction Method

MinDistToShapes Property

MinDistToShapes Property

A Double type property. Sets the minimal distance between a smart connector and other shapes

on the same page. Applies to all smart connectors of the document.

Applies to: Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

500

Syntax
[[Let] minDistanceRet =] object.MinDistToShapes

[Let] object.MinDistToShapes = minDistanceSet

The MinDistToShapes property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

minDistanceRet Optional. A Double type variable.

minDistanceSet Required. An expression that returns a Double value.

Remarks

The minimal distance between smart connectors and shapes is specified in internal ConceptDraw

units (InternalUnit), and can be greater than or equal to 0. (any positive value). Any value of

minDistanceSet less than 0 is equivalent to setting the distance to 0. This property can also be

changed from within ConceptDraw, using the menu "File->Document Properties->Advanced-

>Connectors And Routing".

See Also
FlowAroundObjects property, LineJumpOrient property, LineJumpSize

property, LineJumpType property, MaxNumberOfLegs property,

PassThroughGroups property

Name Property

Name Property

A String type value. The name for the instance of an object in the Applies to list.

Applies to: DataSourceValue object, Document object, Layer object, Library object, Master

object, Page object, ServObj object, Shape object, Style object

Syntax
[[Let] nameRet =] object.Name

[Let] object.Name = nameSet

The Name property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

501

object Required. An expression that returns an object in the Applies to list.

nameRet Optional. A String type variable.

nameSet
Required. An expression that returns a String value. The new filename of

the document/library.

Remarks

Below is the meaning of the Name property for different objects:

Object Name property description

Document

Gets or sets the name of the document under which it will be saved. Don't

confuse Name with the FullName, Path or Title properties, as Name is

used only for working with filenames which don't include the full path. If

you change the Name property, the FullName property is changed as well

(FullName represents concatenated Name and Path strings.)

Library
Gets and sets the file name of the library. Has the same meaning and

function as the Name property of a document.

Master The name (title) of a master object (library object).

Page The name (title) of a document page.

ServObj The name (title) of a service object.

Style
The name (title) of a style in the style collection of a document. It is

unique within the scope of the style collection of the document.

Shape The name (title) of a shape.

Layer The name (title) of a layer.

DataSourceVal

ue
Data from the Name field of the object Data parameters table .

Example

This example contains an application-level script. It demonstrates using the Name property of

different objects.
TRACE thisDoc.Name

TRACE thisApp.Lib(1).Name

TRACE thisApp.Lib(1).Master(1).Name

TRACE thisPage.Name

TRACE thisPage.ServObj(1).Name

TRACE thisDoc.Style(1).Name

TRACE thisShape.Name

TRACE thisDoc.Layer(1).Name

TRACE thisShape.DSVALUE(1).Name

ConceptDraw DIAGRAM Third Party Developer’s Guide

502

See Also FullName property, Path property, Title property

NonPrinting Property

NonPrinting Property

A Boolean type property. A flag that specifies whether to print this shape or not. True - the shape

is non-printable, False - the shape is printable.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.NonPrinting

[Let] object.NonPrinting = booleanSet

The NonPrinting property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

booleanSet Required. An expression that returns a Boolean value.

Remarks

The NonPrinting property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with NonPrinting as a table parameter, use the

CDPT_NONPRINTING constant tag.

See Also
NonPrinting property, ResizeBehaviour property, ShowAlignBox property,

ShowControlHandles property, ShowShapeHandles property, ShowText

property

ConceptDraw DIAGRAM Third Party Developer’s Guide

503

ObjType Property

ObjType Property

Read-only. A Long type property, gets the type of the shape/service object.

Applies to: ServObj object, Shape object

Syntax
[[Let] shapeTypeRet =] object.ObjType

The ObjType property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

shapeTypeRet Optional. A Long type variable.

Remarks

The ObjType property can take one of the following values:

Constant Value Description

cdUnknown 0 Unknown object type .

cdShape 1 A simple ConceptDraw shape.

cdGroup 2 A group.

cdConnector 3 A connector.

cdSmartConnector 4 A smart connector.

cdVectorPicture 5 A ConceptDraw Vector Picture.

cdRasterPicture 6 An object that contains raster image.

cdMFPicture 7

cdPictPicture 8

cdOLEObject 9 An OLE-object.

cdGuide 10 A guide line.

To check, whether the shape is a 1D-shape or a 2D-shape, use the Is1D property.

See Also Is1D property

ConceptDraw DIAGRAM Third Party Developer’s Guide

504

OnCmdArgs Property

OnCmdArgs Property

A String value. Gets or sets the arguments string of a menu item.

Applies to: MenuItem object

Syntax
[[Let] argsRet =] object.OnCmdArgs

[Let] object.OnCmdArgs = argsSet

The OnCmdArgs property syntax has these Elements:

Element Description

object Required. An expression that returns an MenuItem object.

argsRet Optional. A String type variable.

argsSet Required. An expression that returns a String value.

OnCmdModule Property

OnCmdModule Property

A String value. Read-only. Returns the name of the external module with a processing procedure

to process menu item command.

Applies to: MenuItem object

Syntax
[[Let] moduleRet =] object.OnCmdModule

The OnCmdModule property syntax has these Elements:

Element Description

object Required. An expression that returns an MenuItem object.

moduleRet Optional. A String type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

505

OnCmdSub Property

OnCmdSub Property

A String value. Read-only. Returns the name of the processing procedure to process menu item

command.

Applies to: MenuItem object

Syntax
[[Let] procRet =] object.OnCmdSub

The OnCmdSub property syntax has these Elements:

Element Description

object Required. An expression that returns an MenuItem object.

procRet Optional. A String type variable.

PageID Property

PageID Property

Read-only. A Long value. An identifier (the ID property) of a page to which the hyperlink points.

Applies to: Hyperlink object

Syntax
[[Let] pageIDRet =] object.PageID

The PageID property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Hyperlink object.

pageIDRet Optional. A Long type variable.

Remarks

The PageID property is effective if the hyperlink points to a page in a ConceptDraw document

(the LinkType propery).

ConceptDraw DIAGRAM Third Party Developer’s Guide

506

See Also LinkType property, ID property, ShapeID property

PageSizeX Property

PageSizeX Property

A Double type property. Gets and sets the width (the horizontal size) of a document page.

Applies to: Document object

Syntax
[[Let] xSizeRet =] object.PageSizeX

[Let] object.PageSizeX = xSizeSet

The PageSizeX property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

xSizeRet Optional. A Double type variable.

xSizeSet
Required. An expression that returns a Double value. The new value for

the document page width.

Remarks

All pages of the document have the same width. The value of the page width is set in the internal

units of ConceptDraw (InternalUnit).

The PageSizeX property can take only positive values. Changing the value of PageSizeX re-

draws all pages of the document to reflect the new width. The value of the PageSizeX property

can be also viewed and changed in the following dialog in ConceptDraw: "File->Document

Properties->Page".

Example
thisDoc.PageSizeX = 700

ConceptDraw DIAGRAM Third Party Developer’s Guide

507

See Also PageSizeY property

PageSizeY Property

PageSizeY Property

A Double type property. Gets and sets the height (the vertical size) of a document page.

Applies to: Document object

Syntax
[[Let] ySizeRet =] object.PageSizeY

[Let] object.PageSizeY = ySizeSet

The PageSizeY property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

ySizeRet Optional. A Double type variable.

ySizeSet
Required. An expression that returns a Double value. The new value for

the document page height.

Remarks

All pages of the document have the same height. The value of the page height is set in the internal

units of ConceptDraw (InternalUnit).

The PageSizeY property can take only positive values. Changing the value of PageSizeY re-

draws all pages of the document to reflect the new height. The value of the PageSizeY property

can be also viewed and changed in the following dialog in ConceptDraw: "File->Document

Properties->Page".

Example
thisDoc.PageSizeY = 700

ConceptDraw DIAGRAM Third Party Developer’s Guide

508

See Also PageSizeX property

Page Property (ServObj, Shape objects)

Page Property (SerbObj, Shape objects)

Read-only. Gets a Page object corresponding to the page, which contains the object from the

Applies to list.

Applies to: SerbObj object, Shape object

Syntax
[[Set] pageRet =] object.Page

The Page property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

pageRet Optional. A Page type variable.

Remarks

For shapes inside a library this property always returns Nothing.

See Also Document property, Parent property, Page object

Page Property (Window object)

Page Property (Window object)

ConceptDraw DIAGRAM Third Party Developer’s Guide

509

Read-only. Gets a Page object for the page that is displayed in the window.

Applies to: Window object

Syntax
[[Set] pageRet =] object.Page

The Page property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

pageRet Optional. A Page type variable.

Remarks

If the window represents a document window (document view, see the Type property) the Page

property returns an instance of the Page object, corresponding to the page, displayed in the

window. For windows of all other types the Page property returns Nothing. If the window is an

Edit Group window, Page returns the page, to which the group belongs.

See Also Document property, Library property, Shape property, Page object

Paragraph Property

Paragraph Property

Read-only. Returns a Paragraph object that contains parameters of the paragraph's text for this

style.

Applies to: Style object

Syntax
[[Set] paragraphRet =] object.Paragraph

The Paragraph property syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

510

paragraphRet Optional. A Paragraph type variable.

Remarks

You can't modify the instance of the Paragraph object, stored in the Paragraph property of the

style. However, you can change parameters of this instance of the Paragraph object. When a

style is assigned to a shape, the parameters of the Paragraph property of the style are set to all

paragraphs of the shape's text. The Paragraph property is only effective when the HasParaAttr

property of this style is True.

See Also
Character property, HasParaAttr property, TextBlock property, Paragraph

object

Parent Property

Parent Property

Read-only. Returns an instance of the Menu object corresponding to the parent menu of the menu

or menu item.

Applies to: Menu object, MenuItem object

Syntax
[[Set] parentMenuRet =] object.Parent

The Enabled property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

parentMenuRet Optional. A Menu type variable.

Remarks

For a MenuItem object (a menu item) Parent returns the menu, which contains the given menu

item. For a Menu object (a menu) Parent returns the menu which contains a menu item

containing the given menu. For an application or document-level user-defined menu (see

ConceptDraw DIAGRAM Third Party Developer’s Guide

511

CustomMenu property), the Parent property returns Nothing as an upper-level menu doesn't

have a parent menu.

Parent Property (ServObj, Shape objects)

Parent Property (ServObj, Shape objects)

Read-only. Returns a Shape object that corresponds to the group (parent group) which owns this

shape / service object.

Applies to: ServObj object, Shape object

Syntax
[[Set] parentShapeRet =] object.Parent

The Parent property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

parentShapeRet Optional. A Shape type variable.

Remarks

If object is located on a document page, the Parent property returns Nothing as in this case the

parent object for this object is the page (the Page property). For shapes inside a library this

property always returns Nothing.

See Also Document property, Page property, Page object

PassThroughGroups Property

PassThroughGroups Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

512

A Boolean property. Gets or sets a flag, that specifies whether the smart connectors in the

document flow around the entire group (the False value), or pass through the group, flowing

around the shapes inside it (the True value). Applies to all smart connectors of the document.

Applies to: Document object

Syntax
[[Let] passThroughRet =] object.PassThroughGroups

[Let] object.PassThroughGroups = passThroughSet

The PassThroughGroups property syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

passThroughRe

t
Optional. A Boolean type variable.

passThroughSe

t
Required. An expression that returns a Boolean value.

Remarks

The PassThroughGroups property can also be viewed or modified by using the dialog in

ConceptDraw: "File->Document Properties->Advanced->Connectors And Routing".

See Also
FlowAroundObjects property, LineJumpOrient property, LineJumpSize

property, LineJumpType property, MaxNumberOfLegs property,

MinDistToShapes property

Path Property

Path Property

A String value. Gets or sets the path to the file for an object in the Applies to list.

Applies to: Document object, Library object

Syntax
[[Let] pathRet =] object.Path

ConceptDraw DIAGRAM Third Party Developer’s Guide

513

[Let] object.Path = pathSet

The Path property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

pathRet Optional. A String type variable.

pathSet
Required. An expression that returns a String value. The new path to the

document/library file.

Remarks

This property is modified automatically when the document or library are saved with a different

path. The Path property contains only the path to the file, without the filename. Use the Name

property to find out the name of the document/library. The full name with path is contained in the

FullName property.

See Also FullName property, Name property

PenColor Property

PenColor Property

Read-only. Returns an instance of the Color object, that contains information about the line color

of the shape.

Applies to: Shape object, Style object

Syntax
[[Set] colorRet =] object.PenColor

The PenColor property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

colorRet Optional. A Color type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

514

Remarks

Shape object:

The PenColor property is also a table parameter of the shape, that is, its value can be described

by a formula. The instance of the Color object, that contains the PenColor property is not

changed, instead, the color components contained in PenColor are changed. To work with the

PenColor property as with a table parameter, use the constant tag CDPT_LINECOLOR.

Style object:

When a style is assigned to a shape, the parameters of the PenColor property of the style are set

to the PenColor property of the shape. PenColor is only effective when the HasPenAttr

property of this style is True.

See Also
DefPenColor property, HasPenAttr property, PenPattern property,

PenWeight property, Color object

PenPattern Property

PenPattern Property

A Long type property. The line pattern type for the shape.

Applies to: Shape object, Style object

Syntax
[[Let] linePatternRet =] object.PenPattern

[Let] object.PenPattern = linePatternSet

The PenPattern property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

linePatternRet Optional. A Long type variable.

linePatternSet Required. An expression that returns a Long value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

515

The value of PenPattern can be in the range of 0 to 15.

Shape object:

The PenPattern property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with PenPattern as a table parameter, use the CDPT_PENPATTERN

constant tag.

Style object:

When a style is assigned to a shape, the parameters of the PenPattern property of the style are set

to the PenPattern property of the shape. PenPattern is only effective when the HasPenAttr

property of this style is True.

See Also
DefPenPattern property, HasPenAttr property, PenColor property,

PenWeight property

PenWeight Property

PenWeight Property

A Long type property. The width of the shape's lines.

Applies to: Shape object, Style object

Syntax
[[Let] longRet =] object.PenWeight

[Let] object.PenWeight = penWeightSet

The PenWeight property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

penWeightSet Required. An expression that returns a Long value.

Remarks

Line weight is set in points (1 pt = 1/72 inch).

ConceptDraw DIAGRAM Third Party Developer’s Guide

516

Shape object:

The PenWeight property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with PenWeight as a table parameter, use the CDPT_LINEWEIGHT

constant tag.

Style object:

When a style is assigned to a shape, the parameters of the PenWeight property of the style are set

to the PenWeight property of the shape. PenWeight is only effective when the HasPenAttr

property of this style is True.

See Also
DefPenWeight property, HasPenAttr property, PenPattern property,

PenColor property

Pos Property (Character object)

Pos Property (Character object)

A Byte type property. The position with respect to the text baseline (subscript, superscript) of this

character block.

Applies to: Character object

Syntax
[[Let] byteRet =] object.Pos

[Let] object.Pos = posSet

The Pos property syntax has these Elements:

Element Description

object Required. An expression that returns a Character object.

byteRet Optional. A Byte type variable.

posSet Required. An expression that returns a Byte value.

Remarks

The Pos property can take one of the following values:

Constant Value Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

517

cdPosNormal 0 Normal text size and position.

cdPosSuper 1 Superscript.

cdPosSub 2 Subscript.

The Pos property is also a table parameter of the shape which contains the object character block,

that is, its value can be described by a formula. To work with Pos as a table parameter, use the

CDPT_CHAR_POS constant tag.

Example
Dim MyShape As Shape

' Assume Shape with ID 1 is on the current page of the document

Set MyShape = thisDoc.ActivePage.ShapeByID(1)

' Change position of MyShape.Character(2) to subscript

' (assume such shape exists)

MyShape.Character(2).Pos = cdbPosSub

' Inform ConceptDraw Engine about the changes.

MyShape.PropertyChanged(CDPT_CHAR_POS)

See Also SetCharPos method

Pos Property (TabStop object)

Pos Property (TabStop object)

A Single type property. Specifies the interval between this tab stop and the left edge of the text

block which contains this tab stop.

Applies to: TabStop object

Syntax
[[Let] byteRet =] object.Pos

[Let] object.Pos = posSet

The Pos property syntax has these Elements:

Element Description

object Required. An expression that returns a TabStop object.

byteRet Optional. A Byte type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

518

posSet Required. An expression that returns a Byte value.

Remarks

The distance between the tab stop and the left edge of the text block is measured in internal

ConceptDraw units (InternalUnit).

The Pos property is also a table parameter of the shape which contains the text block including

the object tab stop, that is, its value can be described by a formula. To work with Pos as a table

parameter, use the CDPT_TABPOS constant tag.

See Also Align property, Shape object, TextBlock object

Printable Property

Printable Property

A Boolean value. Specifies whether the layer is printable.

Applies to objects: Layer

Syntax
[[Let] RetVal =] object.Printable

[Let] object.Printable = SetVal

The Printable property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

SetVal A Boolean value.

Remarks

If Printable property is FALSE, the shapes on the layer won't be printed. You can set the

Printable property to FALSE only when the layer is not active.

ConceptDraw DIAGRAM Third Party Developer’s Guide

519

Example
Dim MyLayer as Layer

' Get second Layer of thisDoc

set MyLayer = thisDoc.Layer(2)

' Make it non-printable

' (assume MyLayer is not active layer)

MyLayer.Printable = FALSE

See Also Layer Object, Document Object

Prompt Property

Prompt Property

A String type property. Represents the prompt for an object from the Applies to list.

Applies to: Action object, CustomProp object, Menu object, MenuItem object

Syntax
[[Let] promptRet =] object.Prompt

[Let] object.Prompt = promptSet

The Prompt property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

promptRet Optional. A String type variable.

promptSet Required. An expression that returns a String value.

Remarks

For the Menu and MenuItem objects the Prompt property specifies the prompt that appears

when you position the pointer over the menu or the menu item.

Example
Dim s as Shape, MyAction as Action

' Assume there is a shape with ID 1 on the active page.

' Assume the shape contains at least one action

s = thisDoc.ActivePage.ShapeByID(1)

' Get the reference to an Action object

Set MyAction = s.Action(1)

ConceptDraw DIAGRAM Third Party Developer’s Guide

520

' Set the prompt for the action in the menu

MyAction.Prompt = "Hide Shape"

See Also Desc property, Name property, Title property

Red Property

Red Property

Gets or sets an Integer value, that represents the red component of an RGB color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] redRet =] object.Red

[Let] object.Red = redSet

The Red property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

redRet Optional. An Integer type variable.

redSet Required. An expression that returns an Integer value.

Remarks

The Red property is only effective if the color is an RGB color (see the IsRGB property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

red component of the fill color (in RGB format) of a Shape object.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsRGB <> false Then ' An RGB color ?

 MsgBox(s.FillColor.Red) ' If yes, display the value of the red component.

endif

ConceptDraw DIAGRAM Third Party Developer’s Guide

521

See Also Blue property, Green property, Red property, IsRGB Property

Refresh Property

Refresh Property

A Long type property. Time interval in seconds through which occurs updatings of data from a

source. By default Refresh property is equal 1 second.

Applies to: DataSource object

Syntax
[[Let] RefreshRet =] object.Refresh

[Let] object.Refresh = RefreshSet

The Refresh property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

RefreshRet Optional. A Long type variable.

RefreshSet Required. An expression that returns a Long value.

Remarks

The Refresh property is also a table parameter of the DataSource, that is, its value can be

described by a formula. To work with Refresh as a table parameter, use the

CDPT_DS_REFRESH_TIME constant tag.

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.Refresh

ds.Refresh = 45

trace ds.Refresh

or

thisShape.SetPropertyFormula("25", CDPT_DS_REFRESH_TIME, 1)

trace ds.Refresh

ConceptDraw DIAGRAM Third Party Developer’s Guide

522

See Also
DataSource object, Action property, Active property, DataSource property,

ShowErrors property, ShowWarnings property, Timeout property

ResizeBehaviour Property

ResizeBehaviour Property

A Byte type property. Determines how the shape behaves when its parent group is being resized.

Applies to: Shape object

Syntax
[[Let] rbehRet =] object.ResizeBehaviour

[Let] object.ResizeBehaviour = rbehSet

The ResizeBehaviour property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

rbehRet Optional. A Byte type variable.

rbehSet Required. An expression that returns a Byte value.

Remarks

The ResizeBehaviour property can take the following values:

Constant Value Description

cdRBScaleWithGrou

p
0

The shape moves and changes its dimensions

together with its parent group.

cdRBRepositionOnly 1
The shape moves together with the parent group, but

its size doesn't change.

cdRBUseGroupSettin

gs
2

The shape behaves according to the Resize Behavior

settings of the parent group.

The ResizeBehaviour property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with ResizeBehaviour as a table parameter, use the

CDPT_RESIZEBEHAVIOUR constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

523

See Also
NonPrinting property, ShowAlignBox property, ShowControlHandles

property, ShowShapeHandles property, ShowText property

RightInd Property

RightInd Property

A Singe type property. The distance all lines of text in a paragraph are indented from the right

margin of the text block.

Applies to: Paragraph object

Syntax
[Let] singleRet = object.RightInd

[Let] object.RightInd = rightIndSet

The RightInd property syntax has these Elements:

Element Description

object Required. An expression that returns a Paragraph object.

singleRet Optional. A Single type variable.

rightIndSet Required. An expression that returns a Single value.

Remarks

Indents are specified in internal ConceptDraw units (InternalUnit).

The RightInd property is also a table parameter of the shape that contains the object paragraph,

that is, its value can be described by a formula. To work with RightInd as a table parameter, use

the CDPT_PARA_RIGHTIND constant tag.

Example

This example demonstrates how to set a right indent for the second paragraph of a shape. It

assumes there is a shape on the current page, and its text contains at least two paragraphs.
Dim s as Shape

ConceptDraw DIAGRAM Third Party Developer’s Guide

524

s = thisDoc.ActivePage.ShapeByID(1)

' Move the second paragraph of by 100 points left from the right border of the

text block.

s.Paragraph(2).RightInd = 100

' Inform ConceptDraw Engine about the changes for re-drawing.

s.PropertyChanged(CDPT_PARA_RIGHTIND)

See Also SetParaRightInd method

RightMargin Property

RightMargin Property

A Single type property. The distance the text inside the text block is offset from the right border

of the text box.

Applies to: TextBlock object

Syntax
[[Let] sinleRet =] object.RightMargin

[Let] object.RightMargin = rightMarginSet

The RightMargin property syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

sinleRet Optional. A Single type variable.

rightMarginSe

t
Required. An expression that returns a Single value.

Remarks

The unit of measure for the RightMargin property are internal ConceptDraw units

(InternalUnit).

The RightMargin property is also a table parameter of the shape which contains the object text

block, that is, its value can be described by a formula. To work with RightMargin as a table

parameter, use the CDPT_RIGHTMARGIN constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

525

Example

This example demonstrates how to increase the distance between the text and right border of the

text block of an existing shape.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Increase the distance between the text and the right border of the text box

by 20 points.

s.TextBlock.RightMargin = 20

' Inform ConceptDraw Engine about the changes for re-drawing.

s.PropertyChanged(CDPT_RIGHTMARGIN)

Right Property

Right Property

Gets or sets a Double value, representing the coordinate of the rightmost point of an instance of

the object.

Applies to objects: DRect

Syntax
[Let] RetVal = object.Right

[Let] object.Right = SetVal

Element Description

object A reference to an instance of the object.

RetVal A Double type variable.

SetVal A Double value.

Example
Dim MyObject as new DRect ' Create an instance of the object

MyObject.Right = 200

See Also DRect Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

526

RoundCorners Property

RoundCorners Property

A Double type property. The corner radius of the shape.

Applies to: Shape object

Syntax
[[Let] doubleRet =] object.RoundCorners

[Let] object.RoundCorners = roundCornerSet

The RoundCorners property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

roundCornerSe

t
Required. An expression that returns a Double value.

Remarks

The RoundCorners property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with RoundCorners as a table parameter, use the

CDPT_ROUNDCORNERS constant tag.

Scale Property

Scale Property

A Double type property. Gets or sets the drawing scale in the document. The drawing scale is the

ratio of the dimensions in the drawing to the actual size of the objects represented by shapes in a

ConceptDraw drawing.

Applies to: Document object

Syntax
[[Let] scaleRet =] object.Scale

ConceptDraw DIAGRAM Third Party Developer’s Guide

527

[Let] object.Scale = scaleSet

The Scale property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

scaleRet Optional. A Double type variable.

scaleSet Required. An expression that returns a Double value.

Remarks

The Scale property can only have positive values, because a drawing scale can't be negative or

zero. You can also modify Scale from within ConceptDraw, using the "File->Document

Properties->Settings" dialog. Note, that modifying the Scale property sets the document scale

"Custom Scale" and automatically re-calculates the two components of the document scale: the

ConceptDraw units of measure and the real units of measure of the shapes in the document.

Example

This example contains an application-level script. It draws a rectangle, which has a formula

associated with Scale property of the document. Then Scale is changed from 0.001 to 1.000. The

changes are immediately reflected in the shape.
' Declare variables

Dim shp As Shape

' Draw a rectangle

Set shp = thisDoc.ActivePage.DrawRect(100,100,1000,500)

' Assign text to rectangle

shp.Text = " "

' Set font size for rectangle's text

shp.SetCharSize(1,1,22)

' Set the DocScale formula

' for the Text property of the rectangle

shp.SetPropertyFormula("DocScale", CDPT_TEXT)

MsgBox("Let's Start!")

' Change the document scale from 0.001 to 1.000

for i=0.001 to 1.001 Step 0.001

 thisDoc.Scale = i

next i

See Also SnapSensitivity property, SplineSmooth property

ConceptDraw DIAGRAM Third Party Developer’s Guide

528

ShadowColor Property

ShadowColor Property

Read-only. Returns an instance of the Color object that corresponds to the shadow color of the

shape.

Applies to: Shape object, Style object

Syntax
[[Set] colorRet =] object.ShadowColor

The ShadowColor property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

colorRet Optional. A Color type variable.

Remarks

Shape object:

The ShadowColor property is also a table parameter of the shape, that is, its value can be

described by a formula. The instance of the Color object, that contains the ShadowColor

property is not changed, instead, the color components contained in ShadowColor are changed.

To work with the ShadowColor property as with a table parameter, use the constant tag

CDPT_SHADOWCOLOR.

Style object:

When a style is assigned to a shape, the parameters of the ShadowColor property of the style are

set to the ShadowColor property of the shape. ShadowColor is only effective when the

HasShadowAttr property of this style is True.

See Also
DefShadowColor property, HasShadowAttr property, ShadowPatColor

property, ShadowPattern property, Color object

ShadowOffsetX Property

ShadowOffsetX Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

529

A Double type property. Gets or sets the horizontal shadow offset for the shapes of the document.

Applies to all shapes in the document, that have shadow.

Applies to: Document object

Syntax
[[Let] xOffsetRet =] object.ShadowOffsetX

[Let] object.ShadowOffsetX = xOffsetSet

The ShadowOffsetX property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

xOffsetRet Optional. A Double type variable.

xOffsetSet
Required. An expression that returns a Double value. The new value for

the horizontal shadow offset.

Remarks

The shadow offset is specified in the internal units of ConceptDraw (InternalUnit). The range of

valid values is not limited. When ShadowOffsetX is modified, all shapes in the document that

have shadow are redrawn to reflect the new value. You can also modify the ShadowOffsetX

property from within ConceptDraw in the "File->Document Properties->Settings" dialog.

See Also ShadowOffsetY property

ShadowOffsetY Property

ShadowOffsetY Property

A Double type property. Gets or sets the vertical shadow offset for the shapes of the document.

Applies to all shapes in the document, that have shadow.

Applies to: Document object

Syntax
[[Let] yOffsetRet =] object.ShadowOffsetY

ConceptDraw DIAGRAM Third Party Developer’s Guide

530

[Let] object.ShadowOffsetY = yOffsetSet

The ShadowOffsetY property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

yOffsetRet Optional. A Double type variable.

yOffsetSet
Required. An expression that returns a Double value. The new value for

the vertical shadow offset.

Remarks

The shadow offset is specified in the internal units of ConceptDraw (InternalUnit). The range of

valid values is not limited. When ShadowOffsetY is modified, all shapes in the document that

have shadow are redrawn to reflect the new value. You can also modify the ShadowOffsetY

property from within ConceptDraw in the "File->Document Properties->Settings" dialog.

See Also ShadowOffsetX property

ShadowPatColor Property

ShadowPatColor Property

Read-only. Returns an instance of the Color object that corresponds to the shadow pattern color

of the shape.

Applies to: Shape object, Style object

Syntax
[[Set] colorRet =] object.ShadowPatColor

The ShadowPatColor property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

colorRet Optional. A Color type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

531

Remarks

Shape object:

The ShadowPatColor property is also a table parameter of the shape, that is, its value can be

described by a formula. The instance of the Color object, that contains the ShadowPatColor

property is not changed, instead, the color components contained in ShadowPatColor are

changed. To work with the ShadowPatColor property as with a table parameter, use the constant

tag CDPT_SHADOWPATCOLOR.

Style object:

When a style is assigned to a shape, the parameters of the ShadowPatColor property of the style

are set to the ShadowPatColor property of the shape. ShadowPatColor is only effective when

the HasShadowAttr property of this style is True.

See Also
DefShadowPatColor property, HasShadowAttr property, ShadowColor

property, ShadowPattern property, Color object

ShadowPattern Property

ShadowPattern Property

A Long type property. Gets and sets the shadow pattern of the shape.

Applies to: Shape object, Style object

Syntax
[[Let] longRet =] object.ShadowPattern

[Let] object.ShadowPattern = patternSet

The ShadowPattern property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

longRet Optional. A Long type variable.

patternSet Required. An expression that returns a Long value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

532

Shape object:

The ShadowPattern property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with ShadowPattern as a table parameter, use the

CDPT_SHADOWPATTERN constant tag.

Style object:

When a style is assigned to a shape, the parameters of the ShadowPattern property of the style

are set to the ShadowPattern property of the shape. ShadowPattern is only effective when the

HasShadowAttr property of this style is True.

See Also
DefShadowPattern property, HasShadowAttr property, ShadowColor

property, ShadowPatColor property

ShapeID Property

ShapeID Property

Read-only. A Long value. The indentifier (the ID property) of the shape, to which the hyperlink

points.

Applies to: Hyperlink object

Syntax
[[Let] shapeIDRet =] object.ShapeID

The ShapeID property syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Hyperlink object.

shapeIDRet Optional. A Long type variable.

Remarks

The ShapeID property is effective if the hyperlink points to an object inside the ConceptDraw

document (the LinkType property).

ConceptDraw DIAGRAM Third Party Developer’s Guide

533

See Also LinkType property, ID property, PageID property

Shape Property

Shape Property

Read-only. Returns an instance of the Shape object, that represents a shape, associated with an

instance of an object from the Applies to list.

Applies to: Master object, Window object

Syntax
[[Set] shapeRet =] object.Shape

The Shape property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

shapeRet Optional. A Shape type variable.

Remarks

Master object:

Returns the shape, contained in the library object (master object).

Window object:

If the window is a document window (document view, see the Type property) and is a Group Edit

window at the same time, the Shape property returns an instance of the Shape object, that

corresponds to the group displayed in the window. In all other cases the Shape property returns

Nothing.

See Also Document property, Library property, Page property, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

534

ShowAlignBox Property

ShowAlignBox Property

A Boolean type property. A flag that specifies whether to show the shape's alignment box. True -

the alignment box is visible. False - the alignment box is not visible.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.ShowAlignBox

[Let] object.ShowAlignBox = booleanSet

The ShowAlignBox property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

booleanSet Required. An expression that returns a Boolean value.

Remarks

The ShowAlignBox property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with ShowAlignBox as a table parameter, use the

CDPT_SHOWALIGNBOX constant tag.

See Also
NonPrinting property, ResizeBehaviour property, ShowControlHandles

property, ShowShapeHandles property, ShowText property

ShowControlHandles Property

ShowControlHandles Property

A Boolean type property. A flag that specifies whether to show the shape's control handles. True

- the control handles are visible. False - the control handles are not visible.

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

535

Syntax
[[Let] booleanRet =] object.ShowControlHandles

[Let] object.ShowControlHandles = booleanSet

The ShowControlHandles property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

booleanSet Required. An expression that returns a Boolean value.

Remarks

The ShowControlHandles property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with ShowControlHandles as a table parameter, use the

CDPT_SHOWCONTROLHANDLES constant tag.

See Also
NonPrinting property, ResizeBehaviour property, ShowAlignBox property,

ShowShapeHandles property, ShowText property

ShowErrors Property

ShowErrors Property

A Boolean type property. Defines, whether it is necessary to display the corresponding icon at

mistake emergence in the course of work with a source of data. True - inclusion of display of an

icon. False - shutdown of display of an icon. By default ShowErrors property is equal to True.

Applies to: DataSource object

Syntax
[[Let] ShowErrorsRet =] object.ShowErrors

[Let] object.ShowErrors = ShowErrorsSet

The ShowErrors property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

536

object Required. An expression that returns a DataSource object.

ShowErrorsRet Optional. A Boolean type variable.

ShowErrorsSet Required. An expression that returns a Boolean value.

Remarks

The ShowErrors property is also a table parameter of the DataSource, that is, its value can be

described by a formula. To work with ShowErrors as a table parameter, use the

CDPT_DS_SHOW_ERRORS constant tag.

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.ShowErrors

ds.ShowErrors = False

trace ds.ShowErrors

or

thisShape.SetPropertyFormula("True",CDPT_DS_SHOW_ERRORS, 1)

trace ds.ShowErrors

See Also
DataSource object, Action property, Active property, DataSource property,

Refresh property, ShowWarnings property, Timeout property

ShowShapeHandles Property

ShowShapeHandles Property

A Boolean type property. A flag that specifies whether to show the shape's resize and rotation

handles. True - the handles are visible. False - the handles are not visible.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.ShowShapeHandles

[Let] object.ShowShapeHandles = booleanSet

The ShowShapeHandles property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

537

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

booleanSet Required. An expression that returns a Boolean value.

Remarks

The ShowShapeHandles property is also a table parameter of the shape, that is, its value can be

described by a formula. To work with ShowShapeHandles as a table parameter, use the

CDPT_SHOWSHAPEHANDLES constant tag.

See Also
NonPrinting property, ResizeBehaviour property, ShowAlignBox property,

ShowControlHandles property, ShowText property

ShowText Property

ShowText Property

A Boolean type property. A flag that specifies whether to show the shape's text. True - the text is

visible. False - the text is not visible.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.ShowText

[Let] object.ShowText = showTextSet

The ShowText property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

showTextSet Required. An expression that returns a Boolean value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

538

The ShowText property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with ShowText as a table parameter, use the CDPT_SHOWTEXT

constant tag.

See Also
Text property, NonPrinting property, ResizeBehaviour property,

ShowAlignBox property, ShowControlHandles property,

ShowShapeHandles property

ShowWarnings Property

ShowWarnings Property

A Boolean type property. Defines, whether it is necessary to display the corresponding icon at

emergence of remarks in the course of work with a source of data. True - inclusion of display of

an icon. False - shutdown of display of an icon. By default ShowWarnings property is equal to

True.

Applies to: DataSource object

Syntax
[[Let] ShowWarningsRet =] object.ShowWarnings

[Let] object.ShowWarnings = ShowWarningsSet

The ShowWarnings property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

ShowWarnings

Ret
Optional. A Boolean type variable.

ShowWarnings

Set
Required. An expression that returns a Boolean value.

Remarks

The ShowWarnings property is also a table parameter of the DataSource, that is, its value can be

described by a formula. To work with ShowWarnings as a table parameter, use the

CDPT_DS_SHOW_WARNINGS constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

539

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.ShowWarnings

ds.ShowWarnings = False

trace ds.ShowWarnings

or

thisShape.SetPropertyFormula("False",CDPT_DS_SHOW_WARNINGS, 1)

trace ds.ShowWarnings

See Also
DataSource object, Action property, Active property, DataSource property,

Refresh property, ShowErrors property, Timeout property

Size Property

Size Property

An Integer type property. The font size of the character block.

Applies to: Character object

Syntax
[[Let] integerRet =] object.Size

[Let] object.Size = sizeSet

The Size property syntax has these Elements:

Element Description

object Required. An expression that returns a Character object.

integerRet Optional. A Integer type variable.

sizeSet Required. An expression that returns a Integer value.

Remarks

The Size property cannot take negative values. The font size is specified in points (1 pt = 1/72

inch).

ConceptDraw DIAGRAM Third Party Developer’s Guide

540

The Size property is also a table parameter of the shape which contains the object character block,

that is, its value can be described by a formula. To work with Size as a table parameter, use the

CDPT_CHAR_SIZE constant tag.

See Also SetCharSize method

SnapSensitive Property

SnapSensitivity Property

An Integer type property. Gets or sets the snap sensitivity value for a document.

Applies to: Document object

Syntax
[[Let] snapSensRet =] object.SnapSensitivity

[Let] object.SnapSensitivity = snapSensSet

The SnapSensitivity property syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

snapSensRet Optional. A Integer type variable.

snapSensSet Required. An expression that returns a Integer value.

Remarks

Snap sensitivity is set in screen pixels. The SnapSensitivity property can only have positive or

zero values. An attempt to assign a negative value won't modify SnapSensitivity. You can also

change snap sensitivity for a document from within ConceptDraw using the "File->Document

Properties->Settings" dialog.

Example

This example contains an application-level script. It increases the snap sensitivity value for all

open documents by 20%.
' Declare variable

ConceptDraw DIAGRAM Third Party Developer’s Guide

541

Dim cur_doc As Document

' Get the first document

Set cur_doc = thisApp.FirstDoc()

While cur_doc <> Null

 ' Set snap sensitivity

 cur_doc.SnapSensitivity = cur_doc.SnapSensitivity * 1.2

 ' Get next document

 Set cur_doc = thisApp.NextDoc()

Wend

See Also Scale property, SplineSmooth property

Spacing Property

Spacing Property

A Single type property. The spacing between characters for this character block.

Applies to: Character object

Syntax
[[Let] singleRet =] object.Spacing

[Let] object.Spacing = spacingSet

The Spacing property syntax has these Elements:

Element Description

object Required. An expression that returns a Character object.

singleRet Optional. A Single type variable.

spacingSet Required. An expression that returns a Single value.

Remarks

The Spacing property can take any positive or zero values.

The Spacing property is also a table parameter of the shape which contains the object character

block, that is, its value can be described by a formula. To work with Spacing as a table parameter,

use the CDPT_CHAR_SPACING constant tag.

ConceptDraw DIAGRAM Third Party Developer’s Guide

542

Example
Dim MyShape As Shape

' Shape with ID 1 must exist on the current page

Set MyShape = thisDoc.ActivePage.ShapeByID(1)

' Change character spacing for MyShape.Character(2)

' (assume Character(2) exists in MyShape)

MyShape.Character(2).Pos = 20 'change spacing property

' Inform ConceptDraw Engine about the changes

MyShape.PropertyChanged(CDPT_CHAR_SPACING)

See Also SetCharSpacing method

SplineSmooth Property

SplineSmooth Property

A Long type property. Gets and sets the spline smoothness value for shapes of the document. It's

set as the default value for new shapes, that contain spline segments.

Applies to: Document object

Syntax
[[Let] splineSmoothRet =] object.SplineSmooth

[Let] object.SplineSmooth = splineSmoothSet

The SplineSmooth property syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

snapSensRet Optional. A Long type variable.

snapSensSet Required. An expression that returns a Long value.

Remarks

The spline smoothness value is specified in percent, that is, the value of the SplineSmooth

property may range from 0 to 100. An attempt to set any other value is ignored.

ConceptDraw DIAGRAM Third Party Developer’s Guide

543

See Also Scale property, SnapSensitivity property, SplineSmooth property

State Property

State Property

Read-only. A Long type property. Returns the state of the window.

Applies to: Window object

Syntax
[[Let] stateRet =] object.State

The State property syntax has these Elements:

Element Description

object Required. An expression, that returns a Window object.

stateRet Optional. A Long type variable.

Remarks

The State property can take the following values:

Value Constant Description

0 cdNormal This window has the normal position and size.

1 cdMaximized The window is maximized to full screen.

2 cdMinimized The window is minimized.

The state of the window and the value of the State property can be modified by using the

following methods: Maximize, Minimize and Restore.

Example

This example contains a document-level script. It demonstrates how the value of the State

property is changed by using the Maximize, Minimize and Restore methods.
' Declare variables

Dim state As Integer

' Remember the state of the document window

state = thisDoc.FirstView().State

ConceptDraw DIAGRAM Third Party Developer’s Guide

544

' Display the current state

TRACE state

' Maximize the window

thisDoc.FirstView().Maximize()

MsgBox("State = " & thisDoc.FirstView().State)

' Minimize the window

thisDoc.FirstView().Minimize()

MsgBox("State = " & thisDoc.FirstView().State)

' Set the normal state of the window

thisDoc.FirstView().Restore()

MsgBox("State = " & thisDoc.FirstView().State)

' Restore the original state of the window

If state = 0 Then

 thisDoc.FirstView().Restore()

Else If state = 1 Then

 thisDoc.FirstView().Maximize()

Else If state = 2 Then

 thisDoc.FirstView().Minimize()

End If

See Also Type property, Maximize method, Minimize method, Restore method

Style Property

Style Property

A Byte type property. Specifies the font style (bold, italic, underline, etc.) for this character

block.

Applies to: Character object

Syntax
[[Let] byteRet =] object.Style

[Let] object.Style = styleSet

The Style property syntax has these Elements:

Element Description

object Required. An expression that returns a Character object.

byteRet Optional. A Byte type variable.

styleSet Required. An expression that returns a Byte value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

545

Remarks

The Style property can take any combination of the values listed below:

Constant Value Description

cdFSNormal 0 Normal.

cdFSBold 1 Bold.

cdFSItalic 2 Italic.

cdFSUnderline 4 Underline.

cdFSStrikeTrough 8 Strikethrough.

The Style property is also a table parameter of the shape which contains the object character

block, that is, its value can be described by a formula. To work with Style as a table parameter,

use the CDPT_CHAR_STYLE constant tag.

See Also SetCharStyle method

SubID Property

SubID Property

Read-only. A Long type property. Returns the sub ID of the shape/service object, which is an

unique integer number within the scope of the shape's parent object (group or page).

Applies to: Shape object, ServObj object

Syntax
[[Let] subIDRet =] object.SubID

The SubID property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

subIDRet Optional. A Long type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

546

Note that the SubID property of the object is unique only within the scope of the object's parent

object. That is, the objects in different groups or on different pages can have the same SubIDs. In

order to identify an object within one document, use the ID property.

See Also ID property, Page property, Parent property

Subj Property

Subj Property

A String value. Gets or sets a string that contains a brief description (subject) of a

document/library.

Applies to: Document object, Library object

Syntax
[[Let] subjRet =] object.Subj

[Let] object.Subj = subjSet

The Subj property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

subjRet Optional. A String type variable.

subjSet Required. An expression that returns a String value.

Remarks

The Subj property contains an empty string for any new document or library. The Subj property

can also be changed in the dialogs in ConceptDraw: "File->Document Properties->General" for a

document, "Library->Library Properties" - for a library.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

547

This example contains an application-level script. It closes all open documents for which the Subj

property contains an empty string.
' Loop that goes through all open documents

' starting from the end.

For i=thisApp.DocsNum() To 1 Step -1

 ' If the document has no subject, close it.

 if thisApp.Doc(i).Subj = "" OR thisApp.Doc(i).Subj = Null Then

 thisApp.CloseDoc(thisApp.Doc(i))

 End If

Next i

See Also Title property, Author property, Company property, Desc property

SubMenu Property

SubMenu Property

Read-only. Returns the submenu of the specified menu item.

Applies to: MenuItem object

Syntax
[[Set] subMenuRet =] object.SubMenu

The SubMenu property syntax has these Elements:

Element Description

object Required. An expression that returns a MenuItem object.

subMenuRet Optional. A Boolean type variable.

Remarks

This property is only effective for the menu items of the cdMenuItemPopup type (the Type

property), that is, those containing a submenu. For menu items of other types this property returns

Nothing.

ConceptDraw DIAGRAM Third Party Developer’s Guide

548

See Also Type property (MenuItem object), Menu object

TemplatesPath Property

TemplatesPath Property

Read-only. A String value. Returns the full way to files which are on the way, adjusted in

Preferences appendix dialogue in the Paths tab in the field of Templates.

Applies to: Application object

Syntax
[[Let] TemplatesPathRet =] object.TemplatesPath

The TemplatesPath property syntax has these Elements:

Element Description

object Required. An expression that returns a Application object.

TemplatesPathR

et
Optional. A String type variable.

Remarks

The TemplatesPath property by default matters: "personal folder of the user

/AppData/Local/CS Odessa/ConceptDraw Office/ConceptDraw DIAGRAM

DIAGRAM/Templates".

See Also
Application object, DocumentsPath property, HelpPath property,

LibrariesPath property

ConceptDraw DIAGRAM Third Party Developer’s Guide

549

TextAngle Property

TextAngle Property

A Double type property. Represents the angle to which the shape's text box is rotated

counterclockwise around the shape's rotation center. The angle is measured with respect to the

horizontal (X) axis.

Applies to: Shape object

Syntax
[[Let] textAngleRet =] object.TextAngle

[Let] object.TextAngle = textAngleSet

The TextAngle property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

textAngleRet Optional. A Double type variable.

textAngleSet Required. An expression that returns a Double value.

Remarks

The TextAngle property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextAngle as a table parameter, use the CDPT_TEXTANGLE

constant tag.

The angle values are specified in radians.

See Also
Text property, TextBlock property, TextFlipX property, TextFlipY property,

TextGPinX property, TextGPinY property, TextHeight property, TextLPinX

property, TextLPinY property TextWidth property

TextBkgnd Property

TextBkgnd Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

550

Read only. Returns a Color object that contains information about the background color of this

text block.

Applies to: TextBlock object

Syntax
[[Set] colorRet =] object.TextBkgnd

The TextBkgnd property syntax has these Elements:

Element Description

object

colorRet

Remarks

The TextBkgnd property is also a table parameter of the shape which contains the object text

block, that is, its value can be described by a formula. To work with TextBkgnd as a table

parameter, use the CDPT_TEXTBKGND constant tag.

Example

This example demonstrates how to change background color of a text block in an existing shape.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Change text background color

s.TextBlock.TextBkgnd.Index = 2

' Inform ConceptDraw Engine about changes for re-drawing

s.PropertyChanged(CDPT_TEXTBKGND)

See Also Color object, Shape object

TextBlock Property

TextBlock Property

Read-only. Returns a TextBlock object that corresponds to the text block of the shape.

Applies to: Shape object, Style object

ConceptDraw DIAGRAM Third Party Developer’s Guide

551

Syntax
[[Set] textBlockRet =] object.TextBlock

The TextBlock property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

textBlockRet Optional. A TextBlock type variable.

Remarks

Shape object:

A text block describes the region where the shape's text is displayed. Text block settings can be

modified even if the shape doesn't contain text.

Style object:

When a style is assigned to a shape, the parameters of the TextBlock property of the style are set

to the TextBlock property of the shape. TextBlock is only effective when the HasTxtblockAttr

property of this style is True.

See Also

Character property, HasTxtblockAttr property, Paragraph property, Text

property, TextAngle property, TextFlipX property, TextFlipY property,

TextGPinX property, TextGPinY property, TextHeight property, TextLPinX

property, TextLPinY property TextWidth property, TextBlock object

TextFlipX Property

TextFlipX Property

A Boolean type property. Specifies whether or not the shape's text is flipped horizontally. False -

the text is not flipped. True - the text is flipped horizontally.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.TextFlipX

[Let] object.TextFlipX = textFlipXSet

The TextFlipX property syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

552

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

textFlipXSet Required. An expression that returns a Boolean value.

Remarks

The TextFlipX property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextFlipX as a table parameter, use the CDPT_TEXTFLIPX

constant tag.

See Also
Text property, TextAngle property, TextBlock property, TextFlipY property,

TextGPinX property, TextGPinY property, TextHeight property, TextLPinX

property, TextLPinY property TextWidth property

TextFlipY Property

TextFlipY Property

A Boolean type property. Specifies whether or not the shape's text is flipped vertically. False -

the text is not flipped. True - the text is flipped vertically.

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.TextFlipY

[Let] object.TextFlipY = textFlipYSet

The TextFlipY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

booleanRet Optional. A Boolean type variable.

textFlipYSet Required. An expression that returns a Boolean value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

553

The TextFlipY property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextFlipY as a table parameter, use the CDPT_TEXTFLIPY

constant tag.

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextGPinX property, TextGPinY property, TextHeight property, TextLPinX

property, TextLPinY property TextWidth property

TextGPinX Property

TextGPinX Property

A Double type property. The X-coordinate of the rotation center of the shape's text box in the

coordinate system of the shape.

Applies to: Shape object

Syntax
[[Let] doubleRet =] object.TextGPinX

[Let] object.TextGPinX = textGPinXSet

The TextGPinX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

textGPinXSet Required. An expression that returns a Double value.

Remarks

The TextGPinX property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextGPinX as a table parameter, use the CDPT_TEXTGPINX

constant tag.

The unit of measure for the coordinates are the internal ConceptDraw units (InternalUnit).

ConceptDraw DIAGRAM Third Party Developer’s Guide

554

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextFlipY property, TextGPinY property, TextHeight property, TextLPinX

property, TextLPinY property TextWidth property

TextGPinY Property

TextGPinY Property

A Double type property. The Y-coordinate of the rotation center of the shape's text box in the

coordinate system of the shape.

Applies to: Shape object

Syntax
[[Let] doubleRet =] object.TextGPinY

[Let] object.TextGPinY = textGPinYSet

The TextGPinY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

textGPinYSet Required. An expression that returns a Double value.

Remarks

The TextGPinY property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextGPinY as a table parameter, use the CDPT_TEXTGPINY

constant tag.

The unit of measure for the coordinates are the internal ConceptDraw units (InternalUnit).

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextFlipY property, TextGPinX property, TextHeight property, TextLPinX

property, TextLPinY property TextWidth property

ConceptDraw DIAGRAM Third Party Developer’s Guide

555

TextHeight Property

TextHeight Property

A Double type property. The height of the shape's text box.

Applies to: Shape object

Syntax
[[Let] doubleRet =] object.TextHeight

[Let] object.TextHeight = textHeightSet

The TextHeight property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

textHeightSet Required. An expression that returns a Double value.

Remarks

The TextHeight property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextHeight as a table parameter, use the CDPT_TEXTHEIGHT

constant tag.

The unit of measure for the shape's text box height set by TextHeight is the internal

ConceptDraw unit (InternalUnit).

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextFlipY property, TextGPinX property, TextGPinY property, TextLPinX

property, TextLPinY property TextWidth property

TextLPinX Property

TextLPinX Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

556

A Double type property. The X offset of the shape's text box rotation center from the center of the

shape's coordinate system.

Applies to: Shape object

Syntax
[[Let] doubleRet =] object.TextLPinX

[Let] object.TextLPinX = textLPinXSet

The TextLPinX property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

textLPinXSet Required. An expression that returns a Double value.

Remarks

The TextLPinX property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextLPinX as a table parameter, use the CDPT_TEXTPINX

constant tag.

Note, that modifying the TextLPinX automatically changes the value of the TextGPinX

property. The unit of measure for the offset are internal ConceptDraw units (InternalUnit).

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextFlipY property, TextGPinX property, TextGPinY property, TextHeight

property, TextLPinY property TextWidth property

TextLPinY Property

TextLPinY Property

A Double type property. The Y offset of the shape's text box rotation center from the center of the

shape's coordinate system.

Applies to: Shape object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

557

[[Let] doubelRet =] object.TextLPinY

object.TextLPinY = textLPinYSet

The TextLPinY property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

textLPinYSet Required. An expression that returns a Double value.

Remarks

The TextLPinY property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextLPinY as a table parameter, use the CDPT_TEXTPINY

constant tag.

Note, that modifying the TextLPinY automatically changes the value of the TextGPinY

property. The unit of measure for the offset are internal ConceptDraw units (InternalUnit).

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextFlipY property, TextGPinX property, TextGPinY property, TextHeight

property, TextLPinX property, TextWidth property

TextWidth Property

TextWidth Property

A Double type property. The width of the shape's text box.

Applies to: Shape object

Syntax
[[Let] doubleRet =] object.TextWidth

[Let] object.TextWidth = textWidthSet

The TextWidth property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

558

object Required. An expression that returns a Shape object.

doubleRet Optional. A Double type variable.

textWidthSet Required. An expression that returns a Double value.

Remarks

The TextWidth property is also a table parameter of the shape, that is, its value can be described

by a formula. To work with TextWidth as a table parameter, use the CDPT_TEXTWIDTH

constant tag.

The unit of measure for the shape's text box height set by TextWidth is the internal ConceptDraw

unit (InternalUnit).

See Also
Text property, TextAngle property, TextBlock property, TextFlipX property,

TextFlipY property, TextGPinX property, TextGPinY property, TextHeight

property, TextLPinX property, TextLPinY property

Text Property

Text Property

A String type property. A string that contains the text of the shape.

Applies to: Shape object

Syntax
[[Let] textStrRet =] object.Text

[Let] object.Text = textStrSet

The Text property syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

textStrRet Optional. A String type variable.

textStrSet Required. An expression that returns a String value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

559

The Text property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with Text as a table parameter, use the CDPT_TEXT constant tag.

See Also
TextAngle property, TextBlock property, TextFlipX property, TextFlipY

property, TextGPinX property, TextGPinY property, TextHeight property,

TextLPinX property, TextLPinY property TextWidth property

Timeout Property

Timeout Property

A Long type property. Time interval in seconds through which there will be the corresponding

icon in case of mistake emergence when updating data from a source. By default Timeout

property is equal 60 seconds.

Applies to: DataSource object

Syntax
[[Let] TimeoutRet =] object.Timeout

[Let] object.Timeout = TimeoutSet

The Timeout property syntax has these Elements:

Element Description

object Required. An expression that returns a DataSource object.

TimeoutRet Optional. A Long type variable.

TimeoutSet Required. An expression that returns a Long value.

Remarks

The Timeout property is also a table parameter of the DataSource, that is, its value can be

described by a formula. To work with Timeout as a table parameter, use the

CDPT_DS_RELIABILITY constant tag.

Example
dim ds as DATASOURCE

ds = thisShape.DATASOURCE(1)

trace ds.Timeout

ds.Timeout = 15

ConceptDraw DIAGRAM Third Party Developer’s Guide

560

trace ds.Timeout

or

thisShape.SetPropertyFormula("80", CDPT_DS_RELIABILITY, 1)

trace ds.Timeout

See Also
DataSource object, Action property, Active property, DataSource property,

Refresh property, ShowErrors property, ShowWarnings property

Title Property

Title Property

A String value. Gets or sets the title of a document / library.

Applies to: Document object, Library object

Syntax
[[Let] titleRet =] object.Title

[Let] object.Title = titleSet

The Title property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

titleRet Optional. A String type variable.

titleSet Required. An expression that returns a String value.

Remarks

When object is a document, don't confuse the Title property with the title, displayed in the

window title bar of the document. The name in the window title bar is taken from the filename of

the document (Name property). When object is a library, the Title property corresponds to the

name, displayed in the title bar of the library and is not related to the filename of the library. You

can change the Title property from within ConceptDraw in these dialogs: "File->Document

Properties->General" for a document, "Library->Library Properties" - for a library.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

561

The example below contains an document level script. It demonstrates how to view the title of the

document by creating a shape with the Text property which has the "DocTitle" formula.
Dim shp as Shape

' Set the Title property for the document

thisDoc.Title = "OLD document title"

' Draw a shape

Set shp = thisDoc.Page(1).DrawRect(100,100,700,400)

' Set formula for Text property of shape

shp.Text= ""

shp.SetPropertyFormula("DocTitle", CDPT_TEXT)

shp.RecalcProperty(CDPT_TEXT)

' Change the Title property of the document

MsgBox("Changing the Title property of the document")

thisDoc.Title = "NEW document title"

See Also
Name property, Author property, Subj property, Company property, Desc

property

TopMargin Property

TopMargin Property

A Single type property. Specifies the distance between the top border of the text box and the first

line of text it contains.

Applies to: TextBlock object

Syntax
[[Let] singleRet =] object.TopMargin

[Let] object.TopMargin = topMarginSet

The TopMargin property syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

singleRet Optional. A Single type variable.

topMarginSet Required. An expression that returns a Single value.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

562

The unit of measure for the TopMargin property is InternalUnit.

The TopMargin property is also a table parameter of the shape, to which the object text block

belongs - that is, its value can be described by a formula. To work with TopMargin as a table

parameter, use the CDPT_TOPMARGIN constant tag.

Example

This example shows how to increase the distance between the top border of the text box and the

first line of text it contains. It assumes the shape exists and contains text.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Increase the distance between the top border of the text box and the text by

20 points.

s.TextBlock.TopMargin = 20

' Inform ConceptDraw Engine about the changes to recalculate and redraw the

document

s.PropertyChanged(CDPT_TOPMARGIN)

Top Property

Top Property

Gets or sets a Double value, that represents the coordinate of the top point of a rectangle.

Applies to objects: DRect

Syntax
[[Let] RetVal =] object.Top

[Let] object.Top = SetVal

Element Description

object A reference to an instance of the object.

RetVal A Double type variable.

SetVal A Double type value.

Example
Dim MyObject as new DRect ' Create an instance of the object

MyObject.Top = 100

ConceptDraw DIAGRAM Third Party Developer’s Guide

563

Top Property (Window object)

Top Property (Window object)

Read-only. A Long type property. Returns the Y-coordinate of the top left corner of the window.

Applies to: Window object

Syntax
[[Let] topRet =] object.Top

The Top property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

topRet Optional. A Long type variable.

Remarks

Note, that the coordinates of the window position are specified in screen pixels, and the

coordinate origin is in the left top corner of the parent window frame. To change the dimensions

and position of the window, use the SetWindowRect method.

Example
.......

See Also Left property, Height property, Width property, SetWindowRect method

Type Property

Type Property (CustomProp object)

An Byte value. Returns the type of a custom property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

564

Applies to: CustomProp object

Syntax
[[Let] type =] object.Type

[[Let] object.Type = type

The Type property syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the CustomProp

object.

type Optional. An Byte type value.

Remarks

The Type property can have the following values:

Value Constant Description

0
cdStringCustom

Prop
Then the Value property represent string data

1
cdNumberCusto

mProp
Then the Value property represent numeric data

2
cdFixedListCust

omProp

Then the Value property represent string from Format

property list

3
cdVariableListC

ustomProp

Then the Value property represent string from Format

property list or any other string

4
cdBooleanCusto

mProp
Then the Value property represent boolean data

Type Property (DataSourceValue Object)

Type Property (DataSourceValue object)

An Byte type property. Type of data which are in the section Value of the table Data of

parameters of object.

Applies to: DataSourceValue object

Syntax
[[Let] typeRet =] object.Type

ConceptDraw DIAGRAM Third Party Developer’s Guide

565

[Let] object.Type = typeSet

The Type property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

typeRet Optional. A Byte type variable.

typeSet
Required. An expression that returns a Byte value. Sets the new data types

from the Value table of the object Data parameters.

Remarks

The Type property can take the following values

Type Property (MenuItem property)

Type Property (MenuItem object)

Read-only. An Integer type property. Returns the type of the menu item.

Applies to: MenuItem object

Syntax
[[Let] typeRet =] object.Type

The Type property syntax has these Elements:

Element Description

object Required. An expression that returns a MenuItem object.

typeRet Optional. An Integer type value.

Remarks

The menu item type is set only once when the menu item is created. The Type property can take

the following values:

Value Constant Description

0
cdMenuItemNor

mal

A normal menu item, which doesn't contain a submenu and

is not a separator.

ConceptDraw DIAGRAM Third Party Developer’s Guide

566

1
cdMenuItemSep

arator

A separator - the line that separates two menu items. For this

type of menu item the Caption property doesn't matter

because the menu item is displayed as a line.

2
cdMenuItemPop

up
A menu item that contains a submenu.

Type Property (Window object)

Type Property (Window object)

Read-only. Returns the window type.

Applies to: Window object

Syntax
[[Let] typeRet =] object.Type

The Type property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

typeRetVal Optional. An Integer type variable.

Remarks

The Type determines the type of the window contents and respectively defines which properties

and methods of the Window object are supported in the given instance of the Window object.

The Type property for the Window object can take the following values:

Constant Value Description

cdDocView 1 The document editing window (document view).

cdTableView 2 The shape parameter table (table view).

cdLibView 3 The library window (library view).

cdBasicView 4
The ConceptDraw Basic script editor (basic

editor view).

ConceptDraw DIAGRAM Third Party Developer’s Guide

567

See Also State property

UnitIndex Property

UnitIndex Property

A Long value. Specifies the units of measure used in the document.

Applies to: Document object

Syntax
[[Let] unitIndexRet =] object.UnitIndex

[Let] object.UnitIndex = unitIndexSet

The UnitIndex property syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

unitIndexRet Optional. A Long type variable.

unitIndexSet Required. An expression that returns a Long value.

Remarks

You can also change the UnitIndex property from within ConceptDraw in the "File->Document

Properties->Settings" dialog. ConceptDraw Basic has pre-defined constants, which correspond to

various units of measure. The UnitIndex can take only one of these values. Below is the table

which lists the constants:

Constant Value Description

cdYard 0 Yards, decimal.

cdFoot 1 Feet, decimal.

cdFootInch 2 Feet, decimal inches.

cdFootFractInch 3 Feet, fractional inches

cdInch 4 Decimal inches.

ConceptDraw DIAGRAM Third Party Developer’s Guide

568

cdFractInch 5 Fractional inches.

cdMeter 6 Meters.

cdCm 7 Centimeters.

cdMm 8 Millimeters.

cdKm 9 Kilometers.

cdMile 10 Miles.

Example

This example contains a document-level script. It switches between various units of measure:

yards, feet, meters, centimeters, kilometers and miles.
thisDoc.UnitIndex = cdYard ' yards

MsgBox("Units of measure: " & "Yards")

thisDoc.UnitIndex = cdFoot ' foots

MsgBox("Units of measure: " & "Foots")

thisDoc.UnitIndex = cdInch ' inches

MsgBox("Units of measure: " & "Inches")

thisDoc.UnitIndex = cdMeter ' meters

MsgBox("Units of measure: " & "Meters")

thisDoc.UnitIndex = cdCm ' centimeters

MsgBox("Units of measure: " & "Centimeters")

thisDoc.UnitIndex = cdKm ' kilometers

MsgBox("Units of measure: " & "Kilometers")

thisDoc.UnitIndex = cdMile ' miles

MsgBox("Units of measure: " & "Miles")

VAlign Property

VAlign Property

A Byte type property. Specifies vertical alignment of the text inside this text box.

Applies to: TextBlock object

Syntax
[Let] byteRet = object.VAlign

[Let] object.VAlign = vAlignSet

The VAlign property syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

569

Element Description

object Required. An expression that returns a TextBlock object.

byteRet Optional. A Byte type variable.

vAlignSet Required. An expression that returns a Byte value.

Remarks

The VAlign property can take one of these values:

Constant Value Description

cdbVertTop 0 Align to the top border.

cdbVertMiddle 1 Align to the center.

cdbVertBottom 2 Align to the bottom border.

The VAlign property is also a table parameter of the shape, which contains the object text box,

that is, its value can be described by a formula. To work with VAlign as a table parameter, use the

CDPT_VALIGN constant tag.

Example

This example demonstrates how to align the shape's text to the top border. It assumes a shape that

contains text exists in the document.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Sets alignment to the top border.

s.TextBlock.VAlign = cdbVertTop

' Informs ConceptDraw Engine about the changes for re-drawing

s.PropertyChanged(CDPT_VALIGN)

See Also Shape object

Value Property

Value Property

A String value. Gets or sets the default value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

570

Applies to objects: CustomProp, DataSourceValue

Syntax
[[Let] RetVal =] object.Value

[Let] object.Value = SetVal

The Value property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A String type variable.

SetVal A String value.

Remarks

Below is the meaning of the Value property for different objects:

CustomProp Default Value.

DataSourceVal

ue
Values from the Value table of the object Data parameters

Example
This example demonstrates working with the CustomProp object.

Dim MyShape As Shape, MyProperty as CustomProp

' Create a Shape

MyShape = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

' Create custom properties for MyShape

MyProperty = MyShape.AddCustomProp()

' Working with the properties of MyProperty

MyProperty.Label = "IP"

MyProperty.Prompt = "TCP/IP address"

MyProperty.Type = 3

MyProperty.Format = "192.168.0.1;192.168.0.2;192.168.0.3"

MyProperty.Value = "192.168.0.1"

MyProperty.Invisible = FALSE

MyProperty.Verify = TRUE

This example demonstrates working with the DataSourceValue object.

dim ds as DATASOURCEVALUE

ds = thisShape.DSVALUE(1)

trace ds.value

ConceptDraw DIAGRAM Third Party Developer’s Guide

571

See Also CustomProp Object, DataSourceValue object, Document Object

Verify Property

Verify Property

A Boolean value. Gets or sets the Verify / Not Verify state.

Applies to objects: CustomProp

Syntax
[[Let] RetVal =] object.Verify

[Let] object.Verify = SetVal

The Verify property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Boolean type variable.

SetVal A Boolean value.

Remarks

If Verify is TRUE and the Value property is not initialized when a new instance of the Shape

property is created, the user will be asked to set the Value property. If Verify is FALSE the Value

property will not be requested.

Example

This example demonstrates working with the CustomProp object.
Dim MyShape As Shape, MyProperty as CustomProp

' Create a Shape

MyShape = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

' Create custom properties for MyShape

MyProperty = MyShape.AddCustomProp()

' Working with the properties of MyProperty

MyProperty.Label = "IP"

ConceptDraw DIAGRAM Third Party Developer’s Guide

572

MyProperty.Prompt = "TCP/IP address"

MyProperty.Type = 3

MyProperty.Format = "192.168.0.1;192.168.0.2;192.168.0.3"

MyProperty.Value = "192.168.0.1"

MyProperty.Invisible = FALSE

MyProperty.Verify = TRUE

See Also CustomProp Object, Document Object

ViewCenterX Property

ViewCenterX Property

Read-only. A Double value. Returns the X-coordinate of the point in the center of the window in

the coordinate system of the shape or the page, displayed in the window.

Applies to: Window object

Syntax
[[Let] viewCenterXRet =] object.ViewCenterX

The ViewCenterX property syntax has these Elements:

Element Description

object Required. An expression, that returns a Window object.

viewCenterXRe

t
Optional. A Double type variable.

Remarks

The unit of measure for the ViewCenterX property are the internal ConceptDraw units

(InternalUnit). To scroll the window to a specified position you can use the ScrollViewTo

method.

See Also ViewZoom property, ViewCenterY property, ScrollViewTo method

ConceptDraw DIAGRAM Third Party Developer’s Guide

573

ViewCenterY Property

ViewCenterY Property

Read-only. A Double value. Returns the Y-coordinate of the point in the center of the window in

the coordinate system of the shape or the page, displayed in the window.

Applies to: Window object

Syntax
[[Let] viewCenterYRet =] object.ViewCenterY

The ViewCenterY property syntax has these Elements:

Element Description

object Required. An expression, that returns a Window object.

viewCenterYRe

t
Optional. A Double type variable.

Remarks

The unit of measure for the ViewCenterY property are the internal ConceptDraw units

(InternalUnit). To scroll the window to a specified position you can use the ScrollViewTo

method.

See Also ViewZoom property, ViewCenterX property, ScrollViewTo method

ViewZoom Property

ViewZoom Property

A Double type property. Gets or sets the zoom level for the window.

Applies to: Window object

ConceptDraw DIAGRAM Third Party Developer’s Guide

574

Syntax
[[Let] viewZoomRet =] object.ViewZoom

[Let] object.ViewZoom = viewZoomSet

The ViewZoom property syntax has these Elements:

Element Description

object An expression, that returns a Window object.

viewZoomRet A Long type variable.

viewZoomSet An expression that returns a Long value.

Remarks

The ViewZoom property can have only values greater than 0. It specifies the ratio of the real and

displayed size of the drawing being edited in the active window. When the value equals to 1, the

drawing is displayed in its real size. Note, that the view is magnified relative to the center of the

window (see the ViewCenterX, ViewCenterY properties). You can also modify the zoom level

using the interface of ConceptDraw.

See Also ViewCenterX property, ViewCenterY property

Visible Property

Visible Property

A Boolean type property. Gets or sets the flag that specifies whether the object from the Applies

to list is visible (True) or invisible (False).

Applies to: DataSourceValue object, Geometry object, Layer object

Syntax
[[Let] visibleRet =] object.Visible

[Let] object.Visible = visibleSet

The Visible property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

575

object Required. An expression that returns an object in the Applies to list.

visibleRet Optional. A Boolean type variable.

visibleSet Required. An expression that returns a Boolean value.

Remarks

Geometry object:

If object is a geometry, the Visible property determines whether to display this geometry of

shape. You can also make the geometry visible or invisible by using the shape parameter table.

The Visible property is also a table parameter of the shape which owns the object geometry, that

is, its value can be described by a formula. To work with Visible as a table parameter, use the

CDPT_GEOMETRY_VISIBLE constant tag.

Layer object:

If object is a layer, the value of Visible determines whether to display all shapes on that layer of

the document. You can also make the layer visible or invisible by using the ConceptDraw dialog

"View->Floating Dialogs->Layers".

DataSourceValue object:

Values from the Value table of the object Data parameters. It is responsible for the displaying

Values from the Value table of the object Data parameters in the corresponding dialog.

See Also Filled property, Shape object

Width Property

Width Property

Read-only. A Double type property. The shape's width.

Applies to: Shape object

Syntax
[[Let] widthRet =] object.Width

[Let] object.Width = widthSet

ConceptDraw DIAGRAM Third Party Developer’s Guide

576

The Width property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

heightRet Optional. A Double type variable.

heightSet Required. An expression that returns a Double value.

Remarks

The Width property is also a table parameter of the shape, that is, its value can be described by a

formula. To work with Width as a table parameter, use the CDPT_WIDTH constant tag.

The unit of measure for the shape's width set by Width is the internal ConceptDraw unit

(InternalUnit).

See Also
Angle property, GPinX property, GPinY property, FlipX property, FlipY

property, Height property, LPinX property, LPinY property, Width property

Width Property (Window object)

Width Property (Window object)

Read-only. A Long type property. Returns the width of the window in pixels.

Applies to: Window object

Syntax
[[Let] widthRet =] object.Width

The Width property syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

widthRet Optional. A Long type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

577

Note, that window coordinates and dimensions are measured in screen pixels. To change the

position and dimensions of a window, use the SetWindowRect method.

See Also Left property, Top property, Height property, SetWindowRect method

XBehaviour Property

XBehaviour Property

This property controls the behavior of the ControlDot object. Controls the type of behavior the x-

coordinate of the control handle will exhibit after the handle is moved. Gets or sets a Byte value.

Applies to objects: ControlDot

Syntax
[Let] RetVal = object.XBehaviour

[Let] object.XBehaviour = SetVal

The XBehaviour property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Byte type variable.

SetVal A Byte value.

The possible values of the property are described in the table below:

Constant Value Behavior Definition

cdbCtlProportional 0 Proportional

The control handle can be moved, and

it also moves in proportion with the

shape when it is stretched.

cdbCtlLocked 1
Proportional

locked

The control handle moves in

proportion with the shape but the

control handle itself cannot be moved.

cdbCtlOffsetMin 2
Offset from left

edge

The control handle is offset a constant

distance from the left side of the

shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

578

cdbCtlOffsetMid 3 Offset from center
The control handle is offset a constant

distance from the center of the shape.

cdbCtlOffsetMax 4
Offset from right

edge

The control handle is offset a constant

distance from the right side of the

shape.

cdbCtlProportionalHid

den
5

Proportional,

hidden

Same as 0, but the control handle is

not visible.

cdbCtlLockedHidden 6
Proportional

locked, hidden

Same as 1, but the control handle is

not visible.

cdbCtlOffsetMinHidde

n
7

Offset from left

edge, hidden

Same as 2, but the control handle is

not visible.

cdbCtlOffsetMidHidde

n
8

Offset from center,

hidden

Same as 3, but the control handle is

not visible.

cdbCtlOffsetMaxHidde

n
9

Offset from right

edge, hidden

Same as 4, but the control handle is

not visible.

Example

This example demonstrates using the XBehaviour property.
Dim MyControlDot as ControlDot, MyShape As Shape

MyShape = thisDoc.ActivePage.DrawRect(50,50,500,500) ' Create a Shape

object

MyControlDot = MyShape.AddControlDot()

MyControlDot.X = 100 ' Set ControlDot to specified coordinates

MyControlDot.Y = 150

MyControlDot.XBehaviour = cdbCtlOffsetMin ' Set XBehaviour type

' Inform ConceptDraw engine about the changes

MyShape.PropertyChanged(CDPT_CONTROL_X)

MyShape.PropertyChanged(CDPT_CONTROL_Y)

MyShape.PropertyChanged(CDPT_CONTROL_XBEHAVIOUR)

See Also ControlDot Object, YBehaviour Property, PropertyChanged Method

XDyn Property

XDyn Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

579

Gets or sets a Double value that represents the x-coordinate for a control handle's anchor point in

local coordinates.

Applies to objects: ControlDot

Syntax
[Let] RetVal = object.XDyn

[Let] object.XDyn = SetVal

The XDyn property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Double type variable.

SetVal A Double value.

Example

This example demonstrates using the XDyn property.
Dim MyControlDot as ControlDot, MyShape As Shape

' Create a Shape object

MyShape = thisDoc.ActivePage.DrawRect(50,50,500,500)

MyControlDot = MyShape.AddControlDot()

MyControlDot.X = 100 ' Set ControlDot to specified coordinates

MyControlDot.Y = 150

MyControlDot.XDyn = 110

MyControlDot.YDyn = 150

' Inform ConceptDraw engine about the changes

MyShape.PropertyChanged(CDPT_CONTROL_X)

MyShape.PropertyChanged(CDPT_CONTROL_Y)

MyShape.PropertyChanged(CDPT_CONTROL_XDYN)

MyShape.PropertyChanged(CDPT_CONTROL_YDYN)

See Also ControlDot Object, YDyn Property, PropertyChanged Method

X Property

X Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

580

A Double type property. The X-coordinate of the point.

Applies to: ConnectDot object, ControlDot object, DPoint object, Variable object

Syntax
[[Let] xCoordinateRet =] object.X

[Let] object.X = xCoordinateSet

The X property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

xCoordinateRet Optional. A Double type variable.

xCoordinateSet Required. A expression that returns a Double value.

See Also LPtoWP method, LPtoGP method, WPtoLP method

YBehaviour Property

YBehaviour Property

This property controls the behavior of the ControlDot object. Controls the type of behavior the x-

coordinate of the control handle will exhibit after the handle is moved. Gets or sets a Byte value.

Applies to objects: ControlDot

Syntax
[Let] RetVal = object.YBehaviour

[Let] object.YBehaviour = SetVal

The YBehaviour property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Byte type variable.

SetVal A Byte value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

581

The possible values of the property are described in the table below:

Constant Value Behavior Definition

cdbCtlProportional 0 Proportional

The control handle can be moved,

and it also moves in proportion with

the

shape when it is stretched.

cdbCtlLocked 1
Proportional

locked

The control handle moves in

proportion with the shape but the

control handle itself cannot be

moved.

cdbCtlOffsetMin 2
Offset from

bottom edge

The control handle is offset a

constant distance from the bottom of

the shape.

cdbCtlOffsetMid 3
Offset from

center

The control handle is offset a

constant distance from the center of

the shape.

cdbCtlOffsetMax 4
Offset from top

edge

The control handle is offset a

constant distance from the top of the

shape.

cdbCtlProportionalHidden 5
Proportional,

hidden

Same as 0, but the control handle is

not visible.

cdbCtlLockedHidden 6
Proportional

locked, hidden

Same as 1, but the control handle is

not visible.

cdbCtlOffsetMinHidden 7

Offset from

bottom edge,

hidden

Same as 2, but the control handle is

not visible.

cdbCtlOffsetMidHidden 8
Offset from

center, hidden

Same as 3, but the control handle is

not visible.

cdbCtlOffsetMaxHidden 9
Offset from top

edge, hidden

Same as 4, but the control handle is

not visible.

Example

This example demonstrates using the YBehaviour property.
Dim MyControlDot as ControlDot, MyShape As Shape

MyShape = thisDoc.ActivePage.DrawRect(50,50,500,500) ' Create a Shape

object

MyControlDot = MyShape.AddControlDot()

MyControlDot.X = 100 ' Set ControlDot to specified coordinates

MyControlDot.Y = 150

MyControlDot.YBehaviour = cdbCtlOffsetMid ' Set YBehaviour type

' Inform ConceptDraw engine about the changes

ConceptDraw DIAGRAM Third Party Developer’s Guide

582

MyShape.PropertyChanged(CDPT_CONTROL_X)

MyShape.PropertyChanged(CDPT_CONTROL_Y)

MyShape.PropertyChanged(CDPT_CONTROL_YBEHAVIOUR)

See Also ControlDot Object, XBehaviour Property, PropertyChanged Method

YDyn Property

YDyn Property

Gets or sets a Double value that represents the Y-coordinate for a control handle's anchor point in

local coordinates.

Applies to objects: ControlDot

Syntax
[Let] RetVal = object.YDyn

[Let] object.YDyn = SetVal

The YDyn property syntax has these Elements:

Element Description

object A reference to an instance of the object.

RetVal A Double type variable.

SetVal A Double value.

Example

This example demonstrates using the YDyn property.
Dim MyControlDot as ControlDot, MyShape As Shape

' Create a Shape object

MyShape = thisDoc.ActivePage.DrawRect(50,50,500,500)

MyControlDot = MyShape.AddControlDot()

MyControlDot.X = 100 ' Set ControlDot to specified coordinates

MyControlDot.Y = 150

MyControlDot.XDyn = 110

MyControlDot.YDyn = 150

' Inform ConceptDraw engine about the changes

MyShape.PropertyChanged(CDPT_CONTROL_X)

MyShape.PropertyChanged(CDPT_CONTROL_Y)

MyShape.PropertyChanged(CDPT_CONTROL_XDYN)

MyShape.PropertyChanged(CDPT_CONTROL_YDYN)

ConceptDraw DIAGRAM Third Party Developer’s Guide

583

See Also ControlDot Object, XDyn Property, PropertyChanged Method

Yellow Property

Yellow Property

Gets or sets an Integer value, that represents the yellow component of CMYK color.

Applies to: Color object, ColorEntry object

Syntax
[[Let] yellowRet =] object.Yellow

[Let] object.Yellow = yellowSet

The Yellow property syntax has these Elements:

Element Description

object Required. An expression that returns an object from the Applies to list.

yellowRet Optional. An Integer type variable.

yellowSet Required. An expression that returns an Integer value.

Remarks

The Yellow property is only effective if the color is a CMYK color (see the IsCMYK property).

Example

This example contains a document-level script. It demonstrates how to find out the value of the

yellow component of the fill color (in CMYK format) of a Shape object.
dim s as shape

' ShapeObject creation

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

If s.FillColor.IsCMYK<> false Then ' A CMYK color?

 MsgBox(s.FillColor.Yellow) ' If yes, display the value of the cyan

component.

endif

ConceptDraw DIAGRAM Third Party Developer’s Guide

584

See Also Cyan property, Magenta property, Black property, IsCMYK property

Y Property

Y Property

A Double type property. The Y-coordinate of the point.

Applies to: ConnectDot object, ControlDot object, DPoint object, Variable object

Syntax
[[Let] yCoordinateRet =] object.Y

[Let] object.Y = yCoordinateSet

The X property syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

xCoordinateRet Optional. A Double type variable.

xCoordinateSet Required. A expression that returns a Double value.

See Also LPtoWP method, LPtoGP method, WPtoLP method

ConceptDraw access Objects methods

ActionsNum Method

ActionsNum Method

Returns the number of user-defined actions of the shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

585

Applies to: Shape object

Syntax
[[Let] countRet =] object.ActionsNum ()

The ActionsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

Remarks

If the shape doesn't contain any user-defined actions, the ActionsNum method returns 0.

See Also
Action method, ActionsNum method, AddAction method, RemoveAction

method

Action Method

Action Method

Returns an instance of the Action object that corresponds to the user-defined action and the

associated menu item by its index in the user-defined action collection of the shape.

Applies to: Shape object

Syntax
[[Set] actionRet =] object.Action (index)

The Action method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the user-

defined action in the user-defined action collection of the shape.

actionRet Optional. An Action type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

586

Remarks

If index is less than 1 or greater than the number of user-defined actions of the shape, the Action

method returns Nothing. To find out the number of user-defined actions of the shape, use the

ActionsNum method.

See Also
Action method, ActionsNum method, AddAction method, RemoveAction

method, Action object

AddAction Method

AddAction Method

Adds a new user-defined action to the user-defined action collection of the shape.

Applies to: Shape object

Syntax
[[Let] actionRet =] object.AddAction ()

The AddAction method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

actionRet Optional. An Action type variable.

Remarks

If the action was added successfully, the AddAction method returns the Action object that

corresponds to the added user-defined action. Otherwise the method returns Nothing.

See Also
Action method, ActionsNum method, AddAction method, RemoveAction

method, Action object

ConceptDraw DIAGRAM Third Party Developer’s Guide

587

AddConnectDot Method

AddConnectDot Method

Adds a new connection point to the connection point collection of the shape. Returns the

ConnectDot object that corresponds to the added connection point.

Applies to: Shape object

Syntax
[[Set] connectDotRet =] object.AddConnectDot ()

The AddConnectDot method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

connectDotRet Optional. A ConnectDot type variable.

Remarks

Note that by default a new connection point is located in the point with (0,0) coordinates in the

coordinate system of the object shape, to which this connection point is added. To change the

position of the connection point use the X and Y properties of the ConnectDot object.

See Also
ConnectDot method, ConnectDotsNum method, RemoveConnectDot

method, ConnectDot object

AddControlDot Method

AddControlDot Method

Adds a new control handle to the control handle collection of the shape. Returns a ControlDot

object that corresponds to the added control handle.

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

588

Syntax
[[Set] controlDotRet =] object.AddControlDot ()

The AddControlDot method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

controlDotRet Optional. A ControlDot type variable.

Remarks

Note that by default a new control handle is located in the point with (0,0) coordinates in the

coordinate system of the object shape, to which this control handle is added. To change the

position of the control handle use the X and Y properties of the ControlDot object.

See Also
ControlDot method, ControlDotsNum method, RemoveControlDot method,

ControlDot object

AddCustomProp Method

AddCustomProp Method

Adds a new custom property of the shape to the custom property collection of the shape. Returns

a CustomProp object that corresponds to the added custom property.

Applies to: Shape object

Syntax
[[Set] customPropRet =] object.AddCustomProp ()

The AddCustomProp method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

customPropRet Optional. A CustomProp type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

589

If the custom property couldn't be added, the AddCustomProp method returns Nothing.

See Also
AddCustomProp method, CustomProp method, CustomPropByLabel,

CustomPropsNum method, RemoveCustomProp method, CustomProp object

AddDataSource Method

AddDataSource Method

Adds a new data source to the collection of data source object (shape). Returns an instance of

DataSource, corresponding to the new you added the source.

Applies to: Shape object

Syntax
[[Set] dataSourceRet =] object.AddDataSource()

The AddDataSource method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dataSourceRet Optional. A DataSource type variable.

Remarks

AddDataSource method in case of failure returns.

Example
dim num as Integer

dim ds as DataSource

num = thisShape.DataSourcesNum()

trace num

ds = thisShape.AddDataSource()

trace ds.Refresh

num = thisShape.DataSourcesNum()

trace num

ConceptDraw DIAGRAM Third Party Developer’s Guide

590

See Also
DataSource object, DataSource method, DataSourcesNum method,

RemoveDataSource method

AddDSValue Method

AddDSValue Method

Adds a new row containing the field Value, in the Data Table parameters of the object (shape).

Returns an instance of an object DataSourceValue, containing data in the inserted rows.

Applies to: Shape object

Syntax
[[Set] dataSourceValueRet =] object.AddDSValue()

The AddDSValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dataSourceVal

ueRet
Optional. A DataSourceValue type variable.

Remarks

AddDataSource method in case of failure returns 0.

Example
dim num as Integer

dim ds as DataSourceValue

num = thisShape.DSValuesNum()

trace num

ds = thisShape.AddDSValue()

num = thisShape.DSValuesNum()

trace num

See Also
DataSourceValue object, DSValue method, DSValueEl method,

DSValuesNum method, RemoveDSValue method

ConceptDraw DIAGRAM Third Party Developer’s Guide

591

AddGeometry Method

AddGeometry Method

Adds a new geometry to the geometry collection of the shape. Returns a Geometry object that

corresponds to the added geometry.

Applies to: Shape object

Syntax
[[Set] geometryRet =] object.AddGeometry (xStart, yStart)

The AddGeometry method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

xStart
Required. An expression that returns a Double value. The X-coordinate of

the start segment of the geometry.

yStart
Required. An expression that returns a Double value. The Y-coordinate of

the start segment of the geometry.

customPropRet Optional. A CustomProp type variable.

Remarks

The AddGeometry method adds a new geometry that contains the start segment in the point with

the xStart and yStart coordinates in the coordinate system of object. In case the new geometry

couldn't be added, the AddGeometry method returns Nothing.

See Also
GeometriesNum method, Geometry method, RemoveGeometry method,

Geometry object

AddHyperlinkToDocument Method

AddHyperlinkToDocument Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

592

Adds a hyperlink pointing to a ConceptDraw to the hyperlink collection of the document. Returns

the ID (the ID property) of the added hyperlink.

Applies to: Document object

Syntax
[[Let] linkIDRet =] object.AddHyperlinkToDocument (fileName, [localPath], [pageID],

[shapeID])

The AddHyperlinkToDocument method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

fileName

Required. An expression that returns a String value. Specifies the

filename (with the full or relative path) to which the added hyperlink will

point.

localPath

Optional. An expression that returns a Boolean value. If localPath is

True, then the fileName represents a relative path (with respect to the

folder, in which the document is located). Otherwise fileName contains the

full path to the file. The default value is False.

pageID

Optional. An expression that returns a Long value. Represents the ID of

the document page to which the added hyperlink will point. The default

value is 0, which means the hyperlink doesn't point to any specific page.

shapeID

Optional. An expression that returns a Long value. Represents the ID of

the shape to which the added hyperlink will point. The default value is 0,

which means the hyperlink doesn't point to any specific shape.

linkIDRet Optional. A Long type variable.

Remarks

If the hyperlink was added successfully, the AddHyperlinkToDocument method returns the ID

of the added hyperlink. If the hyperlink collection of the document already contains a hyperlink

with the same properties, the method doesn't create a new hyperlink, but returns the ID of the

identical hyperlink. In all other cases the method returns 0.

Note, that the method can't add a hyperlink with no filename. That is, fileName must contain at

least one character.

A hyperlink created with the AddHyperlinkToDocument method has the cdLinkToFile type

(see the LinkType property).

Example

This example contains a document-level script. The program creates a rectangle that contains a

hyperlink pointing to a ConceptDraw document, chosen by the user. The hyperlink is added by

ConceptDraw DIAGRAM Third Party Developer’s Guide

593

using the AddHyperlinkToDocument method. In order to see the result of this example, the user

needs to point the hyperlink to a ConceptDraw document file, and specify the page and shape IDs

to which the hyperlink will point.
' Declare variables

Dim shp As Shape

Dim linkID As Long

Dim pageID As Long

Dim shapeID As Long

Dim fileName As String

' Get the attributes needed to create hyperlink:

 ' Get file name

 fileName = GetOpenFileName("cdd", ,"Choose file!")

if fileName <> "" AND fileName <> Null Then

 ' Get page ID

 pageID = InputBox("Enter page ID:")

 ' Get shape ID

 shapeID= InputBox("Enter shape ID:")

 ' Add hyperlink using the provided filename

 Let linkID = thisDoc.AddHyperlinkToDocument(fileName, True, pageID,

shapeID)

 ' Draw rectangle

 Set shp = thisDoc.ActivePage.DrawRect(100,100,700,500)

 ' Assign text to rectangle

 shp.Text = fileName

 ' Assign hyperlink to rectangle

 shp.Hyperlink = linkID

 ' Set double-click action to open hyperlink

 shp.DblClick = 4

Else

 MsgBox("You did not choose any file!")

End If

See Also

ID property, LinkType property, AddHyperlinkToFile method,

AddHyperlinkToPageShape method, AddHyperlinkToURL method,

Hyperlink method, HyperlinkByID method, HyperlinksNum method,

RemoveUnusedHyperlinks method, Hyperlink object

AddHyperlinkToFile Method

AddHyperlinkToFile Method

Adds a hyperlink pointing to a file to the hyperlink collection of the document. Returns the ID

(ID property) of the added hyperlink.

Applies to: Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

594

Syntax
[[Let] linkIDRet =] object.AddHyperlinkToFile (filename, [localPath])

The AddHyperlinkToFile method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

fileName

Required. An expression that returns a String value. Specifies the

filename (with the full or relative path) to which the added hyperlink will

point.

localPath

Optional. An expression that returns a Boolean value. If localPath is

True, then the fileName represents a relative path (with respect to the

folder, in which the document is located). Otherwise fileName contains the

full path to the file. The default value is False.

linkIDRet Optional. A Long type variable.

Remarks

If the hyperlink was added successfully, the AddHyperlinkToFile method returns the ID of the

added hyperlink. If the hyperlink collection of the document already contains a hyperlink with the

same properties, the method doesn't create a new hyperlink, but returns the ID of the identical

hyperlink. In all other cases the method returns 0.

A hyperlink created with the AddHyperlinkToFile method has the cdLinkToFile type (see the

LinkType property).

Example

This example contains a document-level script. The program creates a rectangle that contains a

hyperlink pointing to a file, chosen by the user. The hyperlink is added by using the

AddHyperlinkToFile method.
' Declare variables

Dim shp As Shape

Dim linkID As Long

Dim fileName As String

' Get the name of the file

fileName = GetOpenFileName(,,"Choose file!")

if fileName <> "" AND fileName <> Null Then

 ' Add hyperlink using the provided filename

 Let linkID = thisDoc.AddHyperlinkToFile(fileName)

 ' Draw rectangle

 Set shp = thisDoc.ActivePage.DrawRect(100,100,700,500)

 ' Assign text to rectangle

 shp.Text = fileName

 ' Assign hyperlink to rectangle

 shp.Hyperlink = linkID

 ' Set double-click action to open hyperlink

 shp.DblClick = 4

ConceptDraw DIAGRAM Third Party Developer’s Guide

595

Else

 MsgBox("You did not choose any file!")

End If

See Also

ID property, LinkType property, AddHyperlinkToDocument method,

AddHyperlinkToPageShape method, AddHyperlinkToURL method,

Hyperlink method, HyperlinkByID method, HyperlinksNum method,

RemoveUnusedHyperlinks method, Hyperlink object

AddHyperlinkToPageShape Method

AddHyperlinkToPageShape Method

Adds a hyperlink pointing to a page or a shape located on the specified page of the ConceptDraw

document to the hyperlink collection of the document. Returns the ID (ID property) of the added

hyperlink.

Applies to: Document object

Syntax
[[Let] linkIDRet =] object.AddHyperlinkToPageShape (pageID, [shapeID])

The AddHyperlinkToPageShape method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

pageID
Required. An expression that returns a Long value. Specifies the ID (the

ID property) of the page, to which the added hyperlink will point.

shapeID

Optional. An expression that returns a Long value. Represents the ID of

the shape to which the added hyperlink will point. The default value is 0,

which means the hyperlink doesn't point to any specific shape.

linkIDRet Optional. A Long type variable.

Remarks

If the hyperlink was added successfully, the AddHyperlinkToPageShape method returns the ID

of the added hyperlink. If the hyperlink collection of the document already contains a hyperlink

with the same properties, the method doesn't create a new hyperlink, but returns the ID of the

identical hyperlink. In all other cases the method returns 0.

ConceptDraw DIAGRAM Third Party Developer’s Guide

596

A hyperlink created with the AddHyperlinkToPageShape method has the cdLinkToPageShape

type (see the LinkType property).

Example

This example contains a document-level script. The program creates the header and the footnote

on the active page of the document, represented by two rectangles at the top and bottom of the

page. Each rectangle has a hyperlink, pointing to the other rectangle. The hyperlinks are added by

using the AddHyperlinkToPageShape method.
' Declare variables

Dim a_page As Page

Dim header As Shape

Dim footer As Shape

Dim linkid1 As Integer

Dim linkid2 As Integer

' Get the active page

Set a_page = thisDoc.ActivePage

' Create the header for the page

Set header = a_page.DrawRect(0, -50, thisDoc.PageSizeX, 0)

' Create the footnote for the page

Set footer = a_page.DrawRect(0, thisDoc.PageSizeY, thisDoc.PageSizeX,

thisDoc.PageSizeY+50)

' Add hyperlink pointing to header

Let linkid1 = thisDoc.AddHyperlinkToPageShape(a_page.ID, header.ID)

' Add hyperlink pointing to header

Let linkid2 = thisDoc.AddHyperlinkToPageShape(a_page.ID, footer.ID)

' Assign hyperlinks to shapes

Let header.Hyperlink = linkid2

Let footer.Hyperlink = linkid1

header.DblClick = 4

footer.DblClick = 4

header.Text = "PAGE START - Double click to go to the end of page"

footer.Text = "PAGE END - Double click to go to the beginning of page"

See Also

ID property, LinkType property, AddHyperlinkToDocument method,

AddHyperlinkToFile method, AddHyperlinkToURL method, Hyperlink

method, HyperlinkByID method, HyperlinksNum method,

RemoveUnusedHyperlinks method, Hyperlink object

AddHyperlinkToURL Method

AddHyperlinkToURL Method

Adds a hyperlink pointing to URL (an Internet address) to the hyperlink collection of the

document. Returns the ID (the ID property) of the added hyperlink.

ConceptDraw DIAGRAM Third Party Developer’s Guide

597

Applies to: Document object

Syntax
[[Let] linkIDRet =] object.AddHyperlinkToURL (url)

The AddHyperlinkToURL method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

url
Required. An expression that returns a String value. Specifies the URL

address of the resource to which the added hyperlink will point.

linkIDRet Optional. A Long type variable.

Remarks

If the hyperlink was added successfully, the AddHyperlinkToURL method returns the ID of the

added hyperlink. If the hyperlink collection of the document already contains a hyperlink with the

same properties, the method doesn't create a new hyperlink, but returns the ID of the identical

hyperlink. In all other cases the method returns 0.

A hyperlink created with the AddHyperlinkToURL method has the cdLinkToURL type (see

the LinkType property).

Example

This example contains a document-level script. The program adds a hyperlink pointing to the

ConceptDraw web site (www.conceptdraw.com) to the hyperlink collection of the document.

Then the user can input the ID of the shape in the document, to which the created hyperlink will

be assigned. The hyperlink is added by using the AddHyperlinkToURL

method.AddHyperlinkToURL.
' Declare variables

Dim shp As Shape

Dim cur_page As Page

Dim shapeID As Long

Dim hlinkID As Long

' Add hyperlink pointing to the ConceptDraw web site to the

' hyperlink collection of the document

hlinkID = thisDoc.AddHyperlinkToURL("www.conceptdraw.com")

' Ask the user to input the ID of the shape to which the hyperlink will be

assigned.

shapeID = InputBox("Enter the ID of the shape to assign the hyperlink to:")

' Loop through all pages of the document, until the shape with the provided ID

is found.

' Assign the hyperlink to that shape.

For i=1 To thisDoc.PagesNum()

 ' Look for the shape with provided ID in the shape collection of the

document.

 Set shp = thisDoc.Page(i).ShapeByID(shapeID)

 ' If the shape is found, assign the hyperlink to it.

https://www.conceptdraw.com/

ConceptDraw DIAGRAM Third Party Developer’s Guide

598

 If shp <> Null Then

 shp.Hyperlink = hlinkID

 shp.DblClick = 4

 End If

Next i

See Also

ID property, LinkType property, AddHyperlinkToDocument method,

AddHyperlinkToFile method, AddHyperlinkToPageShape method,

Hyperlink method, HyperlinkByID method, HyperlinksNum method,

RemoveUnusedHyperlinks method, Hyperlink object

AddLayer Method

AddLayer Method

Adds a new layer to the layer collection of the document. Returns a Layer object corresponding

to the created layer.

Applies to: Document object

Syntax
[[Set] layerRet =] object.AddLayer ()

The AddLayer method syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

layerRet Optional. A Layer type variable.

Remarks

The layer created by using the AddLayer method is added at the end of the layer collection of the

document. All properties of the new layer get the default values. To change the properties of the

layer, use the properties and methods of the Layer object.

Example

This example contains a document-level script. It uses the AddLayer method to add a new layer.

Then this layer is made active and a complex shape is drawn on it.
' Declare variables

Dim new_layer As Layer

ConceptDraw DIAGRAM Third Party Developer’s Guide

599

' Add new layer to document

Set new_layer = thisDoc.AddLayer()

' Display the name of the new layer

TRACE new_layer.Name

' Make the layer colored.

new_layer.Colored = TRUE

' Set the current layer color to blue.

new_layer.Color.SetRGB(0,0,255)

' Make the new layer active

thisDoc.ActiveLayer = new_layer.ID

'''

' Draw some figure on the new layer

' The figure takes the color of the layer on which it's being drawn

dy = 10

smax = 700 / dy

x1 = 0

y1 = 0

x2 = 0

y2 = 0

For i=1 To smax

 thisDoc.ActivePage.DrawLine(x1,y1,x2,y2)

 y1 = y1 + dy

 x1 = sqr(y1*200)

 x2 = sqr(y1*600)

 y2 = y1

Next i

x1 = 900

y1 = 0

x2 = 900

y2 = 0

For i=1 To smax

 thisDoc.ActivePage.DrawLine(x1,y1,x2,y2)

 y1 = y1 + dy

 x1 = 1000 - sqr(y1*200)

 x2 = 1000 - sqr(y1*600)

 y2 = y1

Next i

''

See Also
Layer method, LayerByID method, LayerByName method, LayersNum

method, RemoveLayer method, RemoveLayerByID method, Layer object

AddMaster Method

AddMaster Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

600

Adds to the library a new master object, based on the specified existing shape. Returns a Master

object that corresponds to the added master object.

Applies to: Library object

Syntax
[[Set] masterRet =] object.AddMaster (shapeSrc)

The AddMaster method syntax has these Elements:

Element Description

object Required. An expression that returns a Library object.

shapeSrc
Required. An expression that returns a Shape object. The shape on which

the new master object is based.

masterRet Optional. A Master type variable.

Remarks

If the specified shapeSrc shape couldn't be copied, the AddMaster method doesn't add the new

master object and returns Nothing.

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

AddMenuItem Method

AddMenuItem Method

Adds a new menu item to the menu.

Applies to: Menu object

Syntax
[[Set] menuItemRet =] object.AddMenuItem (menuItemType)

The AddMenuItem method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

601

menuItemType
Required. An expression that returns an Integer value. Specifies the type

of the menu item (the Type property).

menuItemRet Optional. A MenuItem type variable.

Remarks

The menuItemType parameter specifies which type (the Type property) will the added menu item

have.

See Also Type property, MenuItem object

AddPage Method

AddPage Method

Adds a new page to the page collection of the document. Returns an instance of the Page object,

corresponding to the added page.

Applies to: Document object

Syntax
[[Set] pageRet =] object.AddPage ()

The AddPage method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

pageRet Optional. A Page type variable.

Remarks

If for some reason the page couldn't be added to the document, the AddPage method returns

Nothing. Note that a new page, created with AddPage, gets default properties. To change the

properties of the page use the methods and properties of the Page object.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

602

The example below contains a document-level script. It demonstrates how the AddPage method

is used to add a page to the document. Then an ellipse is created on the page, containing the name

of the new page.
' Declare variables

Dim new_page As Page

Dim shp As Shape

' Add a new page to the document

Set new_page = thisDoc.AddPage()

' Make the page active

thisDoc.SetActivePageByID(new_page.ID)

' Draw an ellipse on the new page

Set shp = new_page.DrawOval(100,100,1000,500)

' Assign the page name as the text of the ellipse

shp.Text = ""

shp.SetPropertyFormula("_PAGENAME()", CDPT_TEXT)

shp.RecalcProperty(CDPT_TEXT)

See Also
FindPage method, Page method, PageByID method, PagesNum method,

RemovePage method, RemovePageByID method, ReorderPage method,

ReorderPageByID method, Page object

AddStyle Method

AddStyle Method

Adds a new style to the style collection of the document. Returns a Style object that corresponds

to the new created style.

Applies to: Document object

Syntax
[[Set] styleRet =] object.AddStyle (styleName)

The AddStyle method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

styleName
Optional. An expression that returns a String value. The name (the Name

property) of the new style.

styleRet Optional. A Style type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

603

The AddStyle method creates a new style based on the default style (the DefStyle property). If

there already is a style with the styleName name in the collection, the method doesn't create a new

style and returns Nothing. If styleName is not specified, the AddStyle method assigns a unique

name (the Name property) to the style automatically. The new style, created with the AddStyle

method, is added to the end of the style collection of the document.

Example

This example contains a document-level script. It demonstrates using the AddStyle method. It

also shows, that it's not possible to add to the collection two styles with the same names.
' Declare variables

Dim new_style As Style

' Add a style with some name

Set new_style = thisDoc.AddStyle()

' Display the name of the new style

TRACE new_style.Name

' Add a new style with a specified name

Set new_style = thisDoc.AddStyle("Style_Name_1")

' Display the name of the reference to the instance of the

' object corresponding to the new style

TRACE new_style

' Attempt to add a style with the same name

Set new_style = thisDoc.AddStyle("Style_Name_1")

' Display the name of the reference to the instance of the

' object corresponding to the new style, to make sure the style

' hasn't been added

TRACE new_style

See Also
Name property, FindStyle method, RemoveStyle method,

RemoveStyleByName method, RenameStyle method, Style method,

StyleByName method, StylesNum method, Style object

AddTabStop Method

AddTabStop Method

Adds a tab stop and returns a reference to it.

Applies to: TextBlock object

Syntax
[[Set] ret =] object.AddTabStop ()

ConceptDraw DIAGRAM Third Party Developer’s Guide

604

The AddTabStop method syntax has these Elements:

Element Description

object A reference to an instance of the object.

ret A TabStop type variable

Example

This example demonstrates how a tab stop can be added to a shape. It assumes the active page

contains a shape with the ID 1, and the shape contains text.
Dim s as Shape, MyTabStop as TabStop

s = thisDoc.ActivePage.ShapeByID(1)

Set MyTabStop = s.TextBlock.TabStop(1)

See Also
RemoveTabStop method, TabStop method, TabStopsNum method, TabStop

object

AddVariable Method

AddVariable Method

Adds a new user-defined variable to the variable collection of the shape. Returns a Variable

object that corresponds to the added variable.

Applies to: Shape object

Syntax
[[Set] variableRet =] object.AddVariable ()

The AddVariable method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape.

variableRet Optional. A Variable type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

605

If the new variable couldn't be added to the collection, the method returns Nothing.

See Also
Variable method, VariablesNum method, RemoveVariable method, Variable

object

ArcTo Method

ArcTo Method

Builds an arc of a circle. Returns an instance of the Shape object, corresponding to the built

shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.ArcTo (xEnd, yEnd, xMiddle, yMiddle)

The ArcTo method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

xMiddle
Required. An expression that returns a Double value. Represents the X-

coordinate of the point, that lies on the arc being built.

yMiddle
Required. An expression that returns a Double value. Represents the Y-

coordinate of the point, that lies on the arc being built.

xEnd
Required. An expression that returns a Double value. Represents the X-

coordinate of the end of the arc being built.

yEnd
Required. An expression that returns a Double value. Represents the Y-

coordinate of the end of the arc being built.

shapeRet Optional. A Shape type variable.

Remarks

The arc of a circle is based on three points: the beginning of the arc, a point on the arc, and the

end of the arc.

ConceptDraw DIAGRAM Third Party Developer’s Guide

606

If object is a page or a group, the ArcTo method creates the arc in the current Basic-shape (the

BeginShape method), and returns an instance of the Shape object, corresponding to that shape. If

the method was called prior to the BeginShape method or after the EndShape method, the

ArcTo method doesn't create anything and returns Nothing.

If object is a regular shape, the ArcTo method for the shape adds a new arc geometry to the shape

and returns object.

In any case, the begin point of the arc is the end point of the last geometry of the shape, in which

the segment is being built. To reposition the begin point of the arc, use the MoveTo method. The

coordinates of the points are in the coordinate system of the shape, group or the page - depending

on the object type. The unit of measure of the specified coordinates is InternalUnit.

See Also
BeginShape method, EndShape method, LineTo method, MoveTo method,

SplineStart method, SplineTo method

BeginShape Method

BeginShape Method

Returns an instance of the Shape object which corresponds to the current Basic shape for the

specified page or group.

Applies to: Page object, Shape object

Syntax
[[Set] currentBasicShapeRet =] object.BeginShape ()

The BeginShape method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

currentBasicShap

eRet
Optional. A Shape type variable.

Remarks

This method is only effective for pages and shapes that are groups. For all other shapes this

method returns Nothing.

ConceptDraw DIAGRAM Third Party Developer’s Guide

607

If the BeginShape method is called at the first time or after the EndShape method has been

called, the method creates on the page or in the group a shape that is considered as the current

Basic shape for the page or group. On each subsequent call BeginShape returns an already

existing current Basic shape.

See Also EndShape method

CharactersNum Method

CharactersNum Method

Returns the number of character blocks associated with the shape's text.

Applies to: Shape object

Syntax
[[Let] countRet =] object.CharactersNum ()

The CharactersNum method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

countRet Optional. A Character type variable.

Remarks

If the shape doesn't contain text, it doesn't contain any character block, so in this case the

CharactersNum method returns 0.

See Also

Character method, GetCharacterIndex method, RemoveCharacter method,

SetCharColor method, SetCharFont method, SetCharHyperlink method,

SetCharLanguage method, SetCharPos method, SetCharSize method,

SetCharSpacing method, SetCharStyle method, Character object

ConceptDraw DIAGRAM Third Party Developer’s Guide

608

Character Method

Character Method

Returns a Character object, that corresponds to a character block by its index in the character

block collection of the shape.

Applies to: Shape object

Syntax
[[Set] characterRet =] object.Character (index)

The Character method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

character block in the character block collection of the shape.

characterRet Optional. A Character type variable.

Remarks

If index is less than 1 or greater than the number of character blocks of the shape, the Character

method returns Nothing. To find out the number of character blocks in the shape, use the

CharactersNum method.

See Also

CharactersNum method, GetCharacterIndex method, RemoveCharacter

method, SetCharColor method, SetCharFont method, SetCharHyperlink

method, SetCharLanguage method, SetCharPos method, SetCharSize

method, SetCharSpacing method, SetCharStyle method, Character object

CloseDoc Method

CloseDoc Method

Closes the document and all its windows.

Applies to: Application object

ConceptDraw DIAGRAM Third Party Developer’s Guide

609

Syntax
[[Let] booleanRet =] object.CloseDoc (documentObj)

The CloseDoc method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

documentObj
Required. An expression that returns an instance of the Document object

(the document to be closed).

booleanRet Optional. A Boolean type variable.

Remarks

If the document was closed successfully the CloseDoc method returns True, otherwise it returns

False. The document can't be closed if a Basic script of the document or one of its shapes or

pages is running.

When using the ClodeDoc method remember that it closes the closeDocument document without

saving unsaved changes.

Example

This example contains an application-level script. The script closes all the documents open in the

application without saving changes.
Dim curDoc as Document ' Declare the curDoc variable.

 For i=1 To thisapp.DocsNum() ' Loop through all open documents

 curDoc = thisApp.Doc(1) ' Get the document with index 1

 thisapp.CloseDoc(curDoc) 'Close the document

Next i

See Also
CreateNewDoc method, Doc method, DocByName method, DocsNum

method, FirstDoc method, NextDoc method, OpenDoc method, Document

object

CloseLib Method

CloseLib Method

Closes a previously opened library.

ConceptDraw DIAGRAM Third Party Developer’s Guide

610

Applies to: Application object

Syntax
[[Let] booleanRet =] object.CloseLib(libraryObj)

The CloseDoc method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

libraryObj
Required. An expression that returns an instance of the Library object

(the library to be closed).

booleanRet Optional. A Boolean type variable.

Remarks

Note, that libraryObj must specify an open library, otherwise callingg this method may cause run-

time errors. If the library window contains only one open library, closing the library also closes

the library window. If the library was closed successfully, the method returns True. Otherwise

(for instance, if the library has been already closed) it returns False.

Example

This example contains an application-level script. It demonstrates using the CloseLib method.

The script closes all the libraries, open in the application, except for the active library. If there is

no active library, none of the libraries is closed.
Dim active_lib as Library, current_lib as Library

Dim lib_count as Integer

Set active_lib = thisApp.ActiveLib ' Get active library

If active_lib <> Nothing Then ' if we have active library

 lib_count = thisApp.LibsNum()

 For i=lib_count To 1 Step -1 ' loop by every library

 Set current_lib = thisApp.Lib(i)

 If current_lib <> active_lib Then ' if library is not active

 thisApp.CloseLib(current_lib) ' then close library

 End If

 Next i

 End ' End script

End If

MsgBox("There is no active library now.")

See Also
CloseLib method, CreateNewLib method, FindLib method, Lib method,

LibByName method, LibsNum method, OpenLib method, Library object

ConceptDraw DIAGRAM Third Party Developer’s Guide

611

ColCount Method

ColCount Method

Returns the maximum number of columns in the search for all rows in a table view CSV file data

source.

Applies to: DataSource object

Syntax

[[Let] countRet =] object. ColCount ()

The ColCount method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the DataSource object.

countRet Optional. A Long type variable.

Remarks

An instance of the DataSource object can be obtained using methods of the Shape.

Example
dim ds as DATASOURCE

dim count as Integer

ds = thisShape.DATASOURCE(1)

count = ds.ColCount()

trace count

See Also RowCount method

ColorEntry Method

ColorEntry Method

Returns an instance of the ColorEntry object, corresponding to a color from the color palette of

the document, by its index in the color collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

612

Applies to: Document object

Syntax
[[Set] colorEntryRet =] object.ColorEntry (index)

The ColorEntry method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

index
Required. An expression that returns a Long value. The index of the color

in the color palette.

colorEntryRet Optional. A ColorEntry type variable.

Remarks

If index is less than 1 or greater than the number of colors in the color palette of the document, the

ColorEntry method returns Nothing. To find out the number of the colors in the color palette of

the document, use the ColorsNum method.

See Also ColorsNum method, ColorEntry object

ColorProperty Method

ColorProperty Method

Returns a Color object that corresponds to the color of the specified property of the shape.

Applies to: Shape object

Syntax
[[Let] colorPropertyRet =] object.ColorProperty(propTag [, num[, geom]])

The ColorProperty method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

613

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

colorPropertyR

et
Optional. A Color type variable.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

ColorsNum Method

ColorsNum Method

Returns the number of colors in the color table of the document.

Applies to: Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

614

Syntax
[[Let] countRet =] object.ColorsNum ()

The ColorsNum method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

countRet Optional. A Long type variable.

Remarks

This method always returns a value greater than or equal to 1, because there's always at least one

color in the color table of the document. By defalut the color table of a new document contains

256 colors.

See Also ColorEntry method, ColorEntry object

ConnectDotsNum Method

ConnectDotsNum Method

Returns the number of connection points of the shape.

Applies to: Shape object

Syntax
[[Let] countRet =] object.ConnectDotsNum ()

The ConnectDotsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

Remarks

If the shape has no connection points, the ConnectDotsNum method returns 0.

ConceptDraw DIAGRAM Third Party Developer’s Guide

615

See Also
AddConnectDot method, ConnectDot method, RemoveConnectDot method,

ConnectDot object

ConnectDot Method

ConnectDot Method

Returns a ConnectDot object that corresponds to a connection point by its index in the

connection point collection of the shape.

Applies to: Shape object

Syntax
[[Set] connectDotRet =] object.ConnectDot (index)

The ConnectDot method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

shape's connection point.

connectDotRet Optional. A ConnectDot type variable.

Remarks

If index is less than 1 or greater than the number of connection points of the object shape, the

ConnectDot method returns Nothing. To find out the number of connection points of the shape,

use the ConnectDotsNum method.

See Also
AddConnectDot method, ConnectDotsNum method, RemoveConnectDot

method, ConnectDot object

ConceptDraw DIAGRAM Third Party Developer’s Guide

616

ControlDotsNum Method

ControlDotsNum Method

Returns the number of control handles that belong to the shape.

Applies to: Shape object

Syntax
[[Let] countRet =] object.ControlDotsNum ()

The ControlDotsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

Remarks

If object has no control handles, the ControlDotsNum method returns 0.

See Also
AddControlDot method, ControlDot method, RemoveControlDot method,

ControlDot object

ControlDot Method

ControlDot Method

Returns a ControlDot object that corresponds to a shape's control handle by its index in the

control handle collection of the shape.

Applies to: Shape object

Syntax
[[Set] controlDotRet =] object.ControlDot (index)

The ControlDot method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

617

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

control handle in the control handle collection of the shape.

controlDotRet Optional. A ControlDot type variable.

Remarks

If index is less than 1 or greater than the number of control handles of the shape, the ControlDot

method returns Nothing. To find out the number of control handles of the shape, use the

ControlDotsNum method.

See Also
AddControlDot method, ControlDotsNum method, RemoveControlDot

method, ControlDot object

ConvertToGroup Method

ConvertToGroup Method

Converts a shape from ConceptDraw vector picture format to a group of ConceptDraw shapes,

preserving its location in the document.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.ConvertToGroup (shapeID)

The ConvertToGroup method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

shapeID
Required. An expression that returns a Long value. The ID of the shape to

be converted.

shapeRet
Optional. A Shape type variable. The group of shapes resulting after the

conversion.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

618

If the shape with the specified shapeID is not found in the shape collection of object, or the found

shape is not a ConceptDraw vector picture, the ConvertToGroup method doesn't perform

conversion and returns Nothing.

See Also ConvertToVFPicture method

ConvertToVFPicture Method

ConvertToVFPicture Method

Converts a ConceptDraw shape to a ConceptDraw vector picture, preserving its location in the

document.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.ConvertToVFPicture (shapeID)

The ConvertToVFPicture method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

shapeID
Required. An expression that returns a Long value. The ID of the shape to

be converted.

shapeRet
Optional. A Shape type variable. The ConceptDraw vector picture

resulting after the conversion.

Remarks

If the shape with the specified shapeID is not found in the shape collection of object, the

ConvertToVFPicture method doesn't perform conversion and returns Nothing. The method also

returns Nothing when the shape with the specified ID can't be converted to a vector picture (for

instance, if it's already a vector picture).

ConceptDraw DIAGRAM Third Party Developer’s Guide

619

See Also ConvertToGroup method

CreateNewDoc Method

CreateNewDoc Method

Creates a new document and makes it active. Returns an instance of the Document object which

corresponds to the created document.

Applies to: Application object

Syntax
[[Set] documentRet =] object.CreateNewDoc ()

The CreateNewDoc method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

documentRet Optional. A Document type variable.

Remarks

A new document is created based on the default settings or from a template file. It's added to the

end of the document collection of the application. So, the expression below returns the most

recent created or opened document:

thisApp.Doc(thisApp.DocsNum()) ' returns most recent created or opened document

Example

This example contains an application-level script. It demonstrates using the CreateNewDoc

method. The script creates a new document, which contains the shape with "New Document" text

on the first page.
Dim newDoc as Document ' Declare variables

Dim shp_rect As Shape

Set newDoc = thisApp.CreateNewDoc() ' Create a new document

newDoc.PageSizeX = 700 ' Set page width for the document

newDoc.PageSizeY = 700 ' Set page height for the document

' Draw a rectangle with "New Document" text

ConceptDraw DIAGRAM Third Party Developer’s Guide

620

Set shp_rect = newDoc.Page(1).DrawRect(50,50, newDoc.PageSizeX-50,

newDoc.PageSizeY-50)

Set shp_rect.Text = "New Document"

See Also
CloseDoc method, Doc method, DocByName method, DocsNum method,

FirstDoc method, NextDoc method, OpenDoc method, Document object

CreateNewLib Method

CreateNewLib Method

Creates a new library and makes it active. Returns an instance of the Library object,

corresponding to the created library.

Applies to: Application object

Syntax
[[Set] libraryRet =] object.CreateNewLib ()

The CreateNewLib method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

libraryRet Optional. A Library type variable.

Remarks

A new library created with the CreateNewLib method becomes active and is added to the current

library window. Note, that the new library is added to the end of the library collection of the

document. That is, the following expression will return an instance of the Library object

corresponding to the most recent created or open library:

thisApp.Lib(thisApp.LibsNum())

Example

This example contains an application-level script. The script creates a library and adds three

shapes into it: a square, a circle and a triangle. The shapes are drawn in a temporary document,

which is then closed without saving. The new library is saved in the current folder.

ConceptDraw DIAGRAM Third Party Developer’s Guide

621

Dim newLib As Library ' Declare variables

Dim tmpDoc As Document

Dim workPage As Page

Set newLib = thisApp.CreateNewLib() ' Create new library

newLib.Title= "Simple_Items" ' Choose title

newLib.Name = "Simple_Items.cdl" ' and filename

Set tmpDoc = thisApp.CreateNewDoc() ' Create temporary document

Set workPage = tmpDoc.Page(1) ' Get reference to the

document page

workPage.DrawRect(0, 0, 400, 400).Text = "Square" ' Draw square

workPage.DrawOval(0, 0, 400, 400).Text = "Circle" ' Draw rectangle

workPage.BeginShape() ' Draw triangle

workPage.MoveTo(0, 400)

workPage.LineTo(400, 400)

workPage.LineTo(200, 400 - 400*cos(3.1419/6))

workPage.LineTo(0, 400)

workPage.EndShape().Text = "Triangle"

For i=1 to 3 ' Add the figures

 newLib.AddMaster(workPage.Shape(i)) ' to newLib library

Next i

thisApp.CloseDoc(tmpDoc) ' Close document without saving

newLib.Save() ' Save library in current folder

See Also
CloseLib method, CreateNewLib method, FindLib method, Lib method,

LibByName method, LibsNum method, OpenLib method, Library object

CSVColorValue Method

CSVColorValue Method

Returns an instance of Color, which contains information about the color, the value of which are

located at the specified position in the table view a CSV file of the specified data source object

(shape).

Applies to: Shape object

Syntax

[[Let] color =] object. CSVColorValue (dsIndex, row, col)

The CSVColorValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

622

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view a CSV file of the specified data source object (shape).

ret Optional. A Color type variable.

Remarks

Line numbering and stobtsov in the table view CSV file data source object (shape) starts with

1. The numbering of the data sources in the collection of data sources, the object starts at 1.
Translated version of Example.docx

Example

Getting the color value, which is located on the second line in the third column, the second source

of data in the collection of data source object (shape).
dim res as Color
res = thisShape.CSVColorValue (2,2,3)
if res.isRGB then
trace res.Red
trace res.Green
trace res.Blue
endif

See

Also

DataSource object , Color

object , CSVText , CSVTextForKey , CSVValue ,CSVValueD , CSVValueDForKey , CSVValueForKey , CSVValueType

CSVGetColumnForKey Method

CSVGetColumnForKey Method

Returns the column number, found by searching on a key in a table view of this CSV file data

source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVGetColumnForKey (dsIndex, keyRow, keyStr)

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.color_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.color_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

623

The CSVGetColumnForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for addressing a tabular representation of a CSV file of the specified data source

object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

ret Optional. A Long type variable.

Remarks

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1. In case of

addressing the range of the table, or in the absence of data, or if the keyword is not found, returns

0.

Example

Getting the column number in the third row of the second source of data in the collection of data

source object (shape). Find the column is the keyword "black".
dim res as Long
res = thisShape.CSVGetColumnForKey (2,3, "black")
trace res

See

Also

DataSource

object , CSVText , CSVTextForKey , CSVValue , CSVValueD ,CSVValueDForKey , CSVValueForKey , CSVValueType

CSVMinRowLength Method

CSVMinRowLength Method

Returns the minimum number of lines (from all the rows) in a tabular representation of a CSV file of the specified

data source object (shape).

Applies to: Shape object

Syntax

[[Let] length =] object. CSVMinRowLength (dsIndex)

The CSVMinRowLength method syntax has these Elements:

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

624

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the collection of data source

object (shape).

length Optional. A Long type variable.

Remarks

The numbering of the data sources in the collection of data sources, the object starts at 1.

Example

Obtaining the minimum number of line items (of all lines) from the first data source in the collection of data sources,

the object (shape).

dim num as Integer

num = thisShape.CSVMinRowLength (1)

trace num

See Also DataSource object , CSVRowMaxElement, CSVRowLength , CSVRowMinElement, CSVRowNum

Method

CSVRowLength Method

CSVRowLength Method

Returns the number of elements in the specified row in a table view of this CSV file data source

object (shape).

Applies to: Shape object

Syntax

[[Let] num =] object. CSVRowLength (dsIndex, row)

The CSVRowLength method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

num Optional. A Long type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowminelement_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

625

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1.

Example

Getting the number of elements of the last line of the first data source in the collection of data

sources, the object (shape).
dim num as Integer
num = thisShape.CSVRowNum (1)
trace num
num = thisShape.CSVRowLength (1, num)
trace num

See

Also

DataSource

object , CSVRowMaxElement, CSVMinRowLength ,CSVRowMinElement , CSVRowNum

Method

CSVRowMaxElement Method

CSVRowMaxElement Method

Returns the minimum element of the specified row in a table view of this CSV file data source

object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVRowMaxElement (dsIndex, row, defVal)

The CSVRowMaxElement method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvminrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowminelement_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

626

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1. The default

value is set out in the case of addressing the range of the table or in the case of missing data or not

corresponding to the data type and return type.

Example

Getting the maximum element of the second row from the first source of data sources in the

collection of data object (shape).
dim res as Double
res = thisShape.CSVRowMaxElement (1,2, -1.5)
trace res

See Also

DataSource

object , CSVRowMinElement , CSVRowLength , CSVMinRowLength ,CSVRowNum

Method

CSVRowMinElement Method

CSVRowMinElement Method

Returns the minimum element of the specified row in a table view of this CSV file data source

object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVRowMinElement (dsIndex, row, defVal)

The CSVRowMinElement method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

defVal Required. An expression that returns a Double value.Znachenie by default.

ret Optional. A Double type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowminelement_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvminrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

627

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1. The default

value is set out in the case of addressing the range of the table or in the case of missing data or not

corresponding to the data type and return type.

Example

Getting a minimal element of the second row from the first data source in the collection of data

sources, the object (shape).
dim res as Double
res = thisShape.CSVRowMinElement (1,2, -1.5)
trace res

See Also

DataSource

object , CSVRowMaxElement , CSVRowLength , CSVMinRowLength, CSVRowNum

Method

CSVRowNum Method

CSVRowNum Method

Returns the number of rows in a table view of this CSV file data source object (shape).

Applies to: Shape object

Syntax

[[Let] num =] object. CSVRowNum (index)

The CSVRowNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Required. An expression that returns a Long value. The index in the collection of

the data source data source object (shape).

num Optional. A Long type variable.

Remarks

CSVRowNum method returns the number of non-empty rows in a table view CSV file data

source object (shape). The numbering of the data sources in the collection of data sources, the

object starts at 1.

Example

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowmaxelement_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvminrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrownum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

628

Getting the number of non-empty rows in a table view CSV file first data source in the collection

of data source object (shape).
dim num as Integer
num = thisShape.CSVRowNum (1)
trace num

See Also

DataSource object , CSVRowMaxElement, CSVMinRowLength , CSVRowLength

Method , CSVRowMinElement

CSVTextForKey Method

CSVTextForKey Method

Returns the text found by searching on a key in a table view of this CSV file data source object

(shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVTextForKey (dsIndex, keyRow, keyStr, valueRow, defVal)

The CSVTextForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for addressing a tabular representation of a CSV file of the specified data

source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

valueRow Required. An expression that returns a Long value. The line number of the desired

value for the address in the table view a CSV file of the specified data source object

(shape).

defVal Required. An expression that returns a String value. The default value.

ret Optional. A String type variable.

Remarks

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1. The default

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvminrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowlength_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvrowminelement_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

629

value is set out in the case of addressing the range of the table or in the case of missing data or not

corresponding to the data type and return type, or if the keyword is not found.

Example

Getting the text, which are in the third line of the second source of data in the collection of data

source object (shape). Find the column is the keyword "find", which is located on the second line

of the source.
dim res as String
res = thisShape.CSVTextForKey (2,2, "find", 3, "Error")
trace res

See

Also

DataSource

object , CSVText , CSVValue , CSVValueD , CSVValueDForKey ,CSVValueForKey , CSVValueType

CSVText Method

CSVText Method

Returns the text that are in the specified position in the table view a CSV file of the specified data

source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVText (dsIndex, row, col, defVal)

The CSVText method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view a CSV file of the specified data source object (shape).

defVal Required. An expression that returns a String value. The default value.

ret Optional. A String type variable.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

630

Remarks

Line numbering and stobtsov in the table view CSV file data source object (shape) starts with

1. The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set out in the case of addressing the range of the table or in the case of missing

data or not corresponding to the data type and return type.

Example

Getting the string data, which are on the second line in the third column, the second source of data

in the collection of data source object (shape).
dim res as String
res = thisShape.CSVText (2,2,3, "Data Error")
trace res

See

Also

DataSource

object , CSVTextForKey , CSVValue , CSVValueD ,CSVValueDForKey , CSVValueForKey , CSVValueType , FileText

CSVValueDForKey Method

CSVValueDForKey Method

Returns the value found using the search key in a table view of this CSV file data source object

(shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVValueDForKey (dsIndex, keyRow, keyStr, valueRow, defVal)

The CSVValueDForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for addressing a tabular representation of a CSV file of the specified data

source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

631

valueRow Required. An expression that returns a Long value. The line number of the desired

value for the address in the table view a CSV file of the specified data source object

(shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1. The default

value is set out in the case of addressing the range of the table or in the case of missing data or not

corresponding to the data type and return type, or if the keyword is not found.

Example

Getting the data, which are the first line of the second source of data in the collection of data

source object (shape). Find the column is the keyword "height", which is located on the second

line of the source.
dim res as Double
res = thisShape.CSVValueDForKey (2,2, "height", 1, -1.5)
trace res

See

Also

DataSource

object , CSVText , CSVTextForKey , CSVValue , CSVValueD ,CSVValueForKey , CSVValueType

CSVValueD Method

CSVValueD Method

Gets a value that is in the specified position in the table view of this CSV file data source object

(shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVValueD (dsIndex, row, col, defVal)

The CSVValueD method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

632

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view a CSV file of the specified data source object (shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

Line numbering and stobtsov in the table view CSV file data source object (shape) starts with

1. The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set out in the case of addressing the range of the table or in the case of missing

data or not corresponding to the data type and return type.

Example

Getting the data that resides on the second line in the third column, the second source of data in

the collection of data source object (shape).
dim res as Double
res = thisShape.CSVValueD (2,2,3, -1.5)
trace res

See

Also

DataSource

object , CSVText , CSVTextForKey , CSVValue , CSVValueDForKey, CSVValueForKey , CSVValueType

CSVValueForKey Method

CSVValueForKey Method

Returns the integer value found by searching on a key in a table view of this CSV file data source

object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVValueForKey (dsIndex, keyRow, keyStr, valueRow, defVal)

The CSVValueForKey method syntax has these Elements:

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

633

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for addressing a tabular representation of a CSV file of the specified data

source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

valueRow Required. An expression that returns a Long value. The line number of the desired

value for the address in the table view a CSV file of the specified data source object

(shape).

defVal Required. An expression that returns a Long value. The default value.

ret Optional. A Long type variable.

Remarks

Line numbering in the table view CSV file data source object (shape) starts with 1. The

numbering of the data sources in the collection of data sources, the object starts at 1. The default

value is set out in the case of addressing the range of the table or in the case of missing data or not

corresponding to the data type and return type, or if the keyword is not found.

Example

Getting the data that resides in the third row of the second source of data in the collection of data

source object (shape). Find the column is the keyword "black", which is located on the second line

of the source.
dim res as Long
res = thisShape.CSVValueForKey (2,2, "black", 3, -1)
trace res

See

Also

DataSource

object , CSVText , CSVTextForKey , CSVValue , CSVValueD ,CSVValueDForKey , CSVValueType

CSVValueType Method

CSVValueType Method

Returns the type of data that resides in the specified position in the table view a CSV file of the

specified data source object (shape).

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

634

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVValueType (dsIndex, row, col)

The CSVValueType method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view a CSV file of the specified data source object (shape).

ret Optional. A Long type variable.

Remarks

Line numbering and stobtsov in the table view CSV file data source object (shape) starts with

1. The numbering of the data sources in the collection of data sources, the object starts at

1. Interpretation of the return value: 0 - Void; 1 - String; 2 - Integer; 3 - Float; 4 - Color; 5 - Date;

Example

Getting the data type, which are located on the second line in the third column, the second source

of data in the collection of data source object (shape).
dim res as Long
res = thisShape.CSVValueType (2,2,3)
trace res

See

Also

DataSource

object , CSVText , CSVTextForKey , CSVValue , CSVValueD ,CSVValueDForKey , CSVValueForKey

CSVValue Method

CSVValue Method

Returns an integer value that is at the specified position in the table view of this CSV file data

source object (shape).

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

635

Applies to: Shape object

Syntax

[[Let] ret =] object. CSVValue (dsIndex, row, col, defVal)

The CSVValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view a CSV file of the specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view a CSV file of the specified data source object (shape).

defVal Required. An expression that returns a Long value. The default value.

ret Optional. A Long type variable.

Remarks

Line numbering and stobtsov in the table view CSV file data source object (shape) starts with

1. The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set out in the case of addressing the range of the table or in the case of missing

data or not corresponding to the data type and return type.

Example

Getting the data that resides on the second line in the third column, the second source of data in

the collection of data source object (shape).
dim res as Long
res = thisShape.CSVValue (2,2,3, -1)
trace res

See

Also

DataSource

object , CSVText , CSVTextForKey , CSVValueD ,CSVValueDForKey , CSVValueForKey , CSVValueType

CustomPropByLabel Method

CustomPropByLabel Method

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtextforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalued_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluedforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvalueforkey_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvvaluetype_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

636

Returns an instance of the appropriate signature CustomProp custom property in the collection of

custom properties of the object (shape).

Applies to: Shape object

Syntax

[[Set] customPropRet =] object. CustomPropByLabel (label)

The CustomPropByLabel method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

label Required. An expression that returns a String value. Label of the custom

property in the custom property collection of the shape.

customPropRet Optional. A CustomProp type variable.

Remarks

If the custom property with such a signature label is not found, the CustomPropByLabel method

returns Nothing. To find out the number of custom properties of the shape, use

the CustomPropsNummethod.

Example

Getting a custom property from the collection of custom properties of the object (shape), whose

signature matches the signature of "Shape Label".
dim resCusProp as CustomProp
resCusProp = thisShape.CustomPropByLabel ("Shape Label")
if (resCusProp <> NULL) then
trace resCusProp.Prompt
else
trace "NULL"
end if

See Also

AddCustomProp Method , Method CustomProp , CustomPropsNum

Method ,Method RemoveCustomProp, CustomProp object

CustomPropsNum Method

CustomPropsNum Method

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.addcustomprop_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.customprop_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.custompropsnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.custompropsnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.customprop_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

637

Returns the number of custom properties of the shape.

Applies to: Shape object

Syntax

[[Let] countRet =] object. CustomPropsNum ()

The CustomPropsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

Remarks

If the shape has no custom properties, the CustomPropsNum method returns 0.

See Also

AddCustomProp Method , Method

CustomProp , CustomPropByLabel ,RemoveCustomProp Method, CustomProp

object

CustomProp Method

CustomProp Method

Returns a CustomProp object that corresponds to a custom property by its index in the custom

property collection of the shape.

Applies to: Shape object

Syntax

[[Set] customPropRet =] object. CustomProp (index)

The CustomProp method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

index Required. An expression that returns a Long value. The index of the custom

property in the custom property collection of the shape.

customPropRet Optional. A CustomProp type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.addcustomprop_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.customprop_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.customprop_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.custompropbylabel_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.customprop_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.customprop_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

638

If index is less than 1 or greater than the number of custom properties of the shape,

the CustomProp method returns Nothing. To find out the number of custom properties of the

shape, use theCustomPropsNum method.

See Also

AddCustomProp Method , CustomPropByLabel , CustomPropsNum

Method ,Method RemoveCustomProp, CustomProp object

DataSourcesNum Method

DataSourcesNum Method

Returns the number of data sources in the object (shape).

Applies to: Shape object

Syntax

[[Let] num =] object. DataSourcesNum ()

The DataSourcesNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

num Optional. A Long type variable.

Remarks

DataSourcesNum method returns the total number of data sources, regardless of whether they

are valid or not. If the object has no data sources, the function returns 0.

Example
dim num as Integer
num = thisShape.DataSourcesNum ()
trace num

See Also

DataSource object , AddDataSource Method , Method DataSource , Method

RemoveDataSource

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.addcustomprop_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.custompropbylabel_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.custompropsnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.custompropsnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.customprop_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.adddatasource_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.datasource_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

639

DataSource Method

DataSource Method

Returns an instance of the DataSource object from the collection of data sources, the object

(shape) of the index.

Applies to: Shape object

Syntax

[[Set] dataSourceRet =] object . DataSource (index)

The DataSource method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Required. An expression that returns a Long value. The index of the DataSource

in the DataSources collection of the shape.

dataSourceRet Optional. A DataSource type variable.

Remarks

AddDataSource method in case of failure returns 0.

The numbering of the indices of data sources in the collection begins with 1.

Example
dim num as Integer
dim ds as DataSource
num = thisShape.DataSourcesNum()
trace num
ds = thisShape.DataSource(num)
trace ds.DataSource

See Also

DataSource object , AddDataSource method , DataSourcesNum

method ,RemoveDataSource method

DeflateRect Method

DeflateRect Method

"Shrinks" a rectangle by its X and Y axis, calculates new coordinates of the object.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.adddatasource_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.datasourcesnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.datasourcesnum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

640

Applies to objects: DRect

Syntax

object . DeflateRect (x, y)

The DeflateRect statement syntax has these Elements:

Element Description

object A reference to an instance of the object.

x A Double value, that specifies the offset for the right and left sides of the rectangle.

y A Double value, that specifies the offset for the top and bottom sides of the

rectangle.

Remarks

"Shrinking" a rectangle doesn't reposition its center. The following formulas are used to calculate

the coordinates:

left = left + x; top = top + x; right = right - x; bottom = bottom - x

Example
' create an instance of the object
Dim MyObject as new DRect
' set left,top,right,bottom properties of object
MyObject.SetRect(200,200,1000,1000)
' shrink the rectangle
' After the operation the values will be as follows:
' left - 300, top - 300, right - 900, bottom - 900
MyObject.DeflateRect(100,100)

See Also

DRect Object , InflateRect Method

DeselectAll Method

DeselectAll Method

Removes selection from all shapes that belong to the page or group displayed in the window.

Applies to: Window object

Syntax

[[Let] boolRet =] object . DeselectAll ()

http://translate.googleusercontent.com/translate_f#topic_Cdobj.drect_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.drect_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

641

The DeselectAll method syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

boolRet Optional. A Boolean type variable.

Remarks

This method is only effective when the window is of the document view type (see

the Type property). For windows of other type the DeselectAll method returns False .

The DeselectAll method removes selection from all shapes displayed in the active page or group

window and returns True . If there are no selected shapes in the window, it returns False . An

inverse method to DeselectAll is the SelectAll method, which selects all shapes in the window.

See Also

Type property , Deselect method , GetSelectedService

method , GetSelectedShape method , Select method , SelectAll

method , SelectedNum method

Deselect Method

Deselect Method

Removes selection from a shape with the specified ID , that belongs to the page or group

displayed in the window.

Applies to: Window object

Syntax

[[Let] boolRet =] object . Deselect (shapeID)

The Deselect method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Window object.

shapeID Required. An expression that returns a Long value. An ID of the shape to be

deselected.

boolRet Optional. A Boolean type variable.

Remarks

This method is only effective when the window is of the library view type (see

the Type property). For windows of other type the Deselect method returns False .

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselect_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

642

If there is the shape with the specified ID among the shapes displayed in the page or group

window, the method deselects the shape and returns True , otherwise it returns False . An inverse

method toDeselect is the Select method, which selects a shape with the specified ID.

See Also

ID property , Type property , DeselectAll method , GetSelectedService

method ,GetSelectedShape method , Select method , SelectAll

method , SelectedNum method

DocByName Method

DocByName Method

Searches for a document with the specified name (Name property) among the open documents of

the application. Returns an instance of the Document object corresponding to the found

document.

Applies to: Application object

Syntax

[[Set] documentRet =] object . DocByName (docName)

The DocByName method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Application object.

docName Required. An expression that returns a String value. The name (Name property)

of the document being searched.

documentRet Optional. A Document type variable.

Remarks

The DocByName method searches for a document with the docName name starting from the first

document in the document collection and returns the first found document. That is, if the third and

fifth document have the same name, the DocByName method will returns the instance of

the Document object that corresponds to the third document. If there is no matching document,

the method returns Nothing.

Example

This example contains an application-level script. The program first askes the user to enter the

name of the document and then searches for the the document with the provided name. If the

search is successfu, it maximizes the active window of the found document.
' Declare variables

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselectall_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.application_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

643

Dim inStr As String
Dim resDoc As Document
' Show the dialog where to input the document name
Set inStr = InputBox("Enter document name:", "Document by name!",

"Concept1.cdd")
' Find the specified document
Set resDoc = thisApp.DocByName(inStr)
' If the document is found, activate it
If resDoc <> Nothing Then
resDoc.ActiveView.Maximize()
' Otherwise inform the user
Else
MsgBox("The document " & inStr & " is not found!")
End If

See Also

Name property , CloseDoc method , CreateNewDoc method , Doc

method ,DocsNum method , FirstDoc method , NextDoc method , OpenDoc

method ,Document object

DocsNum Method

DocsNum Method

Returns the number of open documents in the application.

Applies to: Application object

Syntax

[[Set] countRet =] object . DocsNum ()

The DocsNum method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Application object.

countRet Optional. A Long type variable.

Remarks

It's convenient to use the DocsNum method together with the Doc method to go through the open

documents in the application.

Example

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.closedoc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.createnewdoc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.doc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.doc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.docsnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.application_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

644

This example contains an application-level script. It displays the number of windows for each of

the documents open in the application, the number of the open documents and the total number of

document views in the application.
Dim curDoc As Document ' Declare variables
Dim resStr As String
Dim vcount As Integer
TRACE "--"
vcount = 0
For i=1 To thisApp.DocsNum() ' Loop through all documents
Set curDoc = thisApp.Doc(i) ' Get next document
TRACE curDoc.Name & " -- " & curDoc.ViewsNum() ' Display the number of views

of each document
vcount = vcount + curDoc.ViewsNum()
Next i
' Display the number of documents
TRACE "Count of documens = " & thisApp.DocsNum
TRACE "Count of views = " & vcount ' Display the number of document windows
TRACE "--"

See Also

CloseDoc method , CreateNewDoc method , Doc method , DocByName

method ,FirstDoc method , NextDoc method , OpenDoc method , Document

object

Doc Method

Doc Method

Returns an instance of the Document object by its index in the document collection of the

application.

Applies to: Application object

Syntax
[[Set] documentRet =] object.Doc (index)

The Doc method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

index
Required. An expression that returns a Long value. Represents the index

of the document in the document collection of the application.

documentRet Optional. A Document type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.closedoc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.createnewdoc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.doc_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.docbyname_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.docbyname_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

645

If index is less than 1 or greater than the number of open documents the Doc method returns

Nothing. To find out the number of open documents, use the DocsNum method.

When creating a new document or opening an existing one the document is added to the end of

the list of the open documents. That is, the index of the most recent open document is equal to the

number of the oepn document.

Example

This example contains an application-level script. It demonstrates how to export all open

documents to the PNG format. The example uses the Doc method to go through all open

documents.
Dim curDoc As Document ' Declare a document variable

For i=1 To thisApp.DocsNum() ' Loop through all open documents

 Set curDoc = thisApp.Doc(i) ' Get the i document

 If curDoc.Export(curDoc.Name & ".png", 0, False, False) Then' Export

document to png format

 TRACE curDoc.Name & ".png" ' Display name of the file

 End If

Next i

See Also
CloseDoc method, CreateNewDoc method, DocByName method, DocsNum

method, FirstDoc method, NextDoc method, OpenDoc method, Document

object

DoForConnected Method

DoForConnected Method

Causes BASIC procedure with an appropriate title for each of the objects (shapes), connected

(directly or through other objects) to the object (shape) with the specified identifier.

Applies to: Page object

Syntax
object.DoForConnected (funcname, id)

The DoForConnected method syntax has these Elements:

Element Description

object Required. An expression that returns an Page object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

646

funcname
Required. An expression that returns Value of the String type. The name of

the BASIC procedure to be called.

id
Required. An expression that returns Value of the Double type. ID of the

object to which append objects to the called procedure.

Remarks

I append the object to be compiled and run BASIC script.

Example

This example contains a shape-level script. Implementation of this procedure to execute the

BASIC function called "Add" to all objects (shapes), a BASIC script, which it will be found and

connected (directly or through other objects) to the object (shape) with an ID of 11.

thisPage.DoForConnected ("Add", 11)

See Also Shape object, Page object, Document object

DrawConnector Method

DrawConnector Method

Draws a connector. Returns an instance of the Shape object that represents the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawConnector (xBegin, yBegin, xEnd, yEnd)

The DrawConnector method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

xBegin
Required. A Double value that represents the X-coordinate of the

connector's begin point.

yBegin
Required. A Double value that represents the Y-coordinate of the

connector's begin point.

ConceptDraw DIAGRAM Third Party Developer’s Guide

647

xEnd
Required. A Double value that represents the X-coordinate of the

connector's end point.

yEnd
Required. A Double value that represents the Y-coordinate of the

connector's end point.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the DrawConnector method creates the new connector inside this

group / page, and then tries to connect the created connector. If the endpoints of the connector

coincide with the default or user-defined connection points on any shapes, the connector is

connected to these points. For shapes of other types the DrawConnector method doesn't build

anything and always returns Nothing.

The coordinates of the points are specified in the coordinate system of the shape, group or page,

object is associated with. The coordinates are measured in InternalUnits.

See Also DrawSmartConnector method

DrawGroup Method

DrawGroup Method

Creates a group with the specified position, width and height. Returns an instance of the Shape

object representing this group.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawGroup (xLeft, yTop, xRight, yBottom)

The DrawGroup method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the Applies

to list.

ConceptDraw DIAGRAM Third Party Developer’s Guide

648

xLeft
Required. A Double value that represents the X-coordinate of the top left

corner of the rectangle that is the group's bound.

yTop
Required. A Double value that represents the Y-coordinate of the top left

corner of the rectangle that is the group's bound.

xRight
Required. A Double value that represents the X-coordinate of the bottom right

corner of the rectangle that is the group's bound.

yBottom
Required. A Double value that represents the Y-coordinate of the bottom right

corner of the rectangle that is the group's bound.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the DrawGroup method creates a new group with the specified

dimensions and adds it to the shape collection of the corresponding page or group. The coordinate

origin of the created group (the GPinX and GPinY properties) is set in the point with the xLeft

and yTop coordinates. The new group contains no shapes.

If object is a simple shape (not group), the DrawGroup method takes no action and returns

Nothing.

The coordinates of the points are specified in the coordinate system of the shape, group or page to

which the instance of the object object corresponds. The coordinates are set in internal units

(InternalUnit).

See Also GPinX property, GPinY property

DrawGuide Method

DrawGuide Method

Draws a guide line based on the specified coordinates of the coordinate origin (the GPinX and

GPinY properties) of the guide line and the angle, to which it's turned with respect to its

coordinate origin. Returns an instance of the Shape object that represents the created service

object.

Applies to: Page object, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

649

Syntax
[[Set] servObjRet =] object.DrawGuide (xGPin, yGPin, angle)

The DrawGuide method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the Applies

to list.

xGPin
Required. An expression that returns a Double value. Represents the X-

coordinate of the coordinate origin (the GPinX property).

yGPin
Required. An expression that returns a Double value. Represents the Y-

coordinate of the coordinate origin (the GPinY property).

angle

Required. An expression that returns a Double value. Represents the angle to

which the guide line is turned counter-clockwise relevant to its horizontal

position in the coordinate system of object.

servObjRet Optional. A Shape type variable.

Remarks

When object is a page or a group, the DrawGuide method creates a guide line and adds it to the

service object collection of the corresponding page or group. The coordinates of the origin of the

guide are specified in the coordinate system of object. The angle value is set in radians.

If object is a simple shape, the DrawGuide method takes no action and returns Nothing.

See Also
RemoveServObj method, RemoveServObjByID method, ReorderServObj

method, ReorderServObjByID method, ServObj method, ServObjByID

method, ServObjsNum method, ServObj object

DrawLine Method

DrawLine Method

Draws a line. Returns an instance of the Shape object that corresponds to the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawLine (xBegin, yBegin, xEnd, yEnd)

ConceptDraw DIAGRAM Third Party Developer’s Guide

650

The DrawLine method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

xBegin
Required. An expression that returns a Double value, representing the X-

coordinate of the line's begin point.

yBegin
Required. An expression that returns a Double value, representing the Y-

coordinate of the line's begin point.

xEnd
Required. An expression that returns a Double value, representing the X-

coordinate of the line's end point.

yEnd
Required. An expression that returns a Double value, representing the Y-

coordinate of the line's end point.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the DrawLine method draws the shape on the page or in the group.

In the shape it adds a new geometry that describes the line with the specified coordinates. Then it

returns an instance of the Shape object that corresponds to the new shape. If DrawLine was

called after the BeginShape method, it adds a new geometry to the current Basic shape and then

returns an instance of the Shape object, corresponding to that shape.

If object is a simple shape (not a group), the DrawLine method draws a line in this shape and

returnsobject.

The coordinates of the points are specified in the coordinate system of the shape, group or page to

which the instance of object corresponds. The unit of measure for the coordinates are the internal

units (InternalUnit).

See Also
BeginShape method, DrawOval method, DrawRect method, DrawSector

method, EndShape method, LineTo method

DrawOval Method

DrawOval Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

651

Draws an ellipse. Returns an instance of the Shape object which corresponds to the drawn shape

or the shape in which the ellipse was built.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawOval (xLeft, yTop, xRight, yBottom)

The DrawOval method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

xLeft
Required. An expression that returns a Double value. It represents the X-

coordinate of the top left corner of the rectangle circumscribing the ellipse.

yTop
Required. An expression that returns a Double value. It represents the Y-

coordinate of the top left corner of the rectangle circumscribing the ellipse.

xRight

Required. An expression that returns a Double value. It represents the X-

coordinate of the bottom right corner of the rectangle circumscribing the

ellipse.

yBottom

Required. An expression that returns a Double value. It represents the Y-

coordinate of the bottom right corner of the rectangle circumscribing the

ellipse.

shapeRet Optional. A Shape type variable.

Remarks

The ellipse is drawn by the specified coordinates of the rectangle, circumscribing the ellipse. The

sides of the rectangle are equal to the diameters of the ellipse.

If object is a page or a group, the DrawOval method creates on that page or group a shape

containing a geometry that describes the ellipse with the specified size and coordinates. Then it

returns an instance of the Shape object, that corresponds to the created shape. If the DrawOval

method was called after the BeginShape method, it adds a geometry describing the ellipse to the

current Basic shape. Then it returns an instance of the Shape object, that corresponds to the

current Basic shape of the page or group.

If object is a simple shape, the DrawOval method draws the ellipse in this shape and returns

object.

The coordinates of the points are specified in the coordinate system of the shape, group or page to

which the instance of object corresponds. The coordinates are measured in the internal units

(InternalUnit).

ConceptDraw DIAGRAM Third Party Developer’s Guide

652

See Also
BeginShape method, DrawLine method, DrawRect method, DrawSector

method, EndShape method

DrawRect Method

DrawRect Method

Draws a rectangle. Returns an instance of the Shape object which corresponds to the drawn

shape, or the shape in which the rectangle has been drawn.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawRect (xLeft, yTop, xRight, yBottom)

The DrawRect method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

xLeft
Required. An expression that returns a Double value. It represents the X-

coordinate of the top left corner of the rectangle.

yTop
Required. An expression that returns a Double value. It represents the Y-

coordinate of the top left corner of the rectangle.

xRight
Required. An expression that returns a Double value. It represents the X-

coordinate of the bottom right corner of the rectangle.

yBottom
Required. An expression that returns a Double value. It represents the Y-

coordinate of the bottom right corner of the rectangle.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the DrawRect method creates on that page or group a shape

containing a geometry that describes the rectangle with the specified size and coordinates. Then in

returns an instance of the Shape object, that corresponds to the created shape. If the DrawRect

method was called after the BeginShape method, it adds a geometry describing the rectangle to

the current Basic shape. Then it returns an instance of the Shape object, that corresponds to the

current Basic shape of the page or group.

ConceptDraw DIAGRAM Third Party Developer’s Guide

653

If object is a simple shape, the DrawRect method draws the rectangle in this shape and returns

object.

When using the DrawRect method, the order in which the coordinates are specified is not

significant. The coordinates of the points are specified in the coordinate system of the shape,

group or page to which the instance of object corresponds. The coordinates are measured in the

internal units (InternalUnit).

See Also
BeginShape method, DrawLine method, DrawOval method, DrawSector

method, EndShape method

DrawSector Method

DrawSector Method

Draws an arc of a circle. Returns an instance of the Shape object which corresponds to the drawn

shape or the shape in which the arc has been built.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawSector (xBegin, yBegin, xEnd, yEnd, xMiddle, yMiddle)

The DrawSector method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

xBegin
Required. An expression that returns a Double value. Represents the X-

coordinate of the begin point of the arc being built.

yBegin
Required. An expression that returns a Double value. Represents the Y-

coordinate of the begin point of the arc being built.

xEnd
Required. An expression that returns a Double value. Represents the X-

coordinate of the end point of the arc being built.

yEnd
Required. An expression that returns a Double value. Represents the Y-

coordinate of the end point of the arc being built.

xMiddle
Required. An expression that returns a Double value. Represents the X-

coordinate of the point, that lies on the arc being built.

ConceptDraw DIAGRAM Third Party Developer’s Guide

654

yMiddle
Required. An expression that returns a Double value. Represents the Y-

coordinate of the point, that lies on the arc being built.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the DrawSector method creates on the corresponding page or group

a shape, that contains a geometry describing an arc of a circle with the specified coordinates of the

begin, end points and the point that lies on the arc. Then it returns an instance of the Shape

object, corresponding to that shape. If the DrawSector method was called after the BeginShape

method, it adds a new geometry, describing the arc, to the current Basic-shape. Then it returns an

instance of the Shape object, corresponding to that shape.

If object is a simple shape, the DrawSector method for the shape creates an arc in the shape and

returns object.

The coordinates of the points are in the coordinate system of the shape, group or the page -

depending on the object type. The unit of measure of the specified coordinates is InternalUnit.

See Also
BeginShape method, DrawLine method, DrawOval method, DrawRect

method, EndShape method

DrawSmartConnector Method

DrawSmartConnector Method

Draws a smart connector. Returns a Shape object that corresponds to the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawSmartConnector (xBegin, yBegin, xEnd, yEnd)

The DrawSmartConnector method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

xBegin
Required. An expression that returns a Double value. The X-coordinate of

the smart connector's begin point.

ConceptDraw DIAGRAM Third Party Developer’s Guide

655

yBegin
Required. An expression that returns a Double value. The Y-coordinate of

the smart connector's begin point.

xEnd
Required. An expression that returns a Double value. The X-coordinate of

the smart connector's end point.

yEnd
Required. An expression that returns a Double value. The Y-coordinate of

the smart connector's end point.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the DrawSmartConnector method creates the new smart connector

inside this group / page, and then tries to connect the created smart connector. If the endpoints of

the smart connector coincide with the default or user-defined connection points on any shapes, the

connector is connected to these points. For shapes of other types the DrawSmartConnector

method doesn't build anything and always returns Nothing.

The coordinates of the points are specified in the coordinate system of the shape, group or page,

object is associated with. The coordinates are measured in internal units (InternalUnit).

See Also DrawConnector method

DrawStampSelection Method

DrawStampSelection Method

Creates on this page / in this group a copy of selected shapes, with the specified dimensions and

position, similar to the Stamp Tool in ConceptDraw. Returns a Shape object that corresponds to

the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawStampSelection (xLeft, yTop, xRight, yBottom)

The DrawStampSelection method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

656

object Required. An expression that returns an object in the Applies to list.

xLeft

Required. An expression that returns a Double value. The X-coordinate of

the top left corner of the bound that will encompass the copy of the

selected shapes.

yTop

Required. An expression that returns a Double value. The Y-coordinate of

the top left corner of the bound that will encompass the copy of the

selected shapes.

xRight

Required. An expression that returns a Double value. The X-coordinate of

the bottom right corner of the bound that will encompass the copy of the

selected shapes.

yBottom

Required. An expression that returns a Double value. The Y-coordinate of

the bottom right corner of the bound that will encompass the copy of the

selected shapes.

shapeRet Optional. A Shape type variable.

Remarks

Selected shapes are the shapes selected on the active page of the ConceptDraw document to

which object belongs. If a copy of the selected shapes couldn't be created, the

DrawStampSelection method returns Nothing. Copies of the selected shapes are grouped into

one group, which is then positioned at the specified coordinates. If the operation has been

successful, the method returns a Shape object that corresponds to the newly created shape or

group.

Note, that the order in which the coordinates of the bound encompassing the copy of the shape are

specified, is not significant. The coordinates are specified in the coordinate system of the shape,

group or page to which the instance of object corresponds. The coordinates are measured in

internal units (InternalUnit).

See Also DrawStamp method, DropStamp method, DropStampSelection method

DrawStamp Method

DrawStamp Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

657

Creates on this page / in this group a copy of the specified shape, with the specified dimensions

and position, similar to the Stamp Tool in ConceptDraw. Returns a Shape object that corresponds

to the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DrawStamp (shapeToStamp, xLeft, yTop, xRight, yBottom)

The DrawStamp method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

shapeToStamp
Required. An expression that returns a Shape object. The shape to be

copied.

xLeft

Required. An expression that returns a Double value. The X-coordinate of

the top left corner of the bound that will encompass the copy of the shape

in shapeToStamp.

yTop

Required. An expression that returns a Double value. The Y-coordinate of

the top left corner of the bound that will encompass the copy of the shape

in shapeToStamp.

xRight

Required. An expression that returns a Double value. The X-coordinate of

the bottom right corner of the bound that will encompass the copy of the

shape in shapeToStamp.

yBottom

Required. An expression that returns a Double value. The Y-coordinate of

the bottom right corner of the bound that will encompass the copy of the

shape in shapeToStamp.

shapeRet Optional. A Shape type variable.

Remarks

If a copy of shapeToStamp couldn't be created, the DrawStamp method returns Nothing.

Note, that the order in which the coordinates of the bound encompassing the copy of the shape are

specified, is not significant. The coordinates are specified in the coordinate system of the shape,

group or page to which the instance of object corresponds. The coordinates are measured in

internal units (InternalUnit).

See Also
DrawStamp method, DrawStampSelection method, DropStamp method,

DropStampSelection method

ConceptDraw DIAGRAM Third Party Developer’s Guide

658

DropStampSelection Method

DropStampSelection Method

Creates on this page / in this group a copy of selected shapes, and places it to the specified

position, similar to the Stamp Tool in ConceptDraw. Returns a Shape object that corresponds to

the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DropStampSelection (xGPin, yGPin)

The DropStampSelection method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

xGPin

Required. An expression that returns a Double value. The X-coordinate of

the rotation center (the GPinX property) for the copy of the selected

shapes.

yGPin

Required. An expression that returns a Double value. The Y-coordinate of

the rotation center (the GPinY property) for the copy of the selected

shapes.

shapeRet Optional. A Shape type variable.

Remarks

Selected shapes are the shapes selected on the active page of the ConceptDraw document to

which object belongs. If a copy of the selected shapes couldn't be created, the

DropStampSelection method returns Nothing. Copies of the selected shapes are grouped into

one group, which is then positioned at the specified coordinates. If the operation has been

successful, the method returns a Shape object that corresponds to the newly created shape or

group.

The coordinates are specified in the coordinate system of the shape, group or page to which the

instance of object corresponds. The coordinates are measured in internal units (InternalUnit).

See Also
GPinX property, GPinY property, DrawStamp method, DrawStampSelection

method, DropStamp method

ConceptDraw DIAGRAM Third Party Developer’s Guide

659

DropStamp Method

DropStamp Method

Creates on this page / in this group a copy of the specified shape, and places it to the specified

position, similar to the Stamp Tool in ConceptDraw. Returns a Shape object that corresponds to

the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.DropStamp (shapeToStamp, xGPin, yGPin)

The DropStamp method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

shapeToStamp
Required. An expression that returns a Shape object. The shape to be

copied.

xGPin

Required. An expression that returns a Double value. The X-coordinate of

the rotation center (the GPinX property) for the copy of the shape in

shapeToStamp.

yGPin

Required. An expression that returns a Double value. The Y-coordinate of

the rotation center (the GPinY property) for the copy of the shape in

shapeToStamp.

shapeRet Optional. A Shape type variable.

Remarks

If a copy of shapeToStamp couldn't be created, the DropStamp method returns Nothing.

The coordinates are specified in the coordinate system of the shape, group or page to which the

instance of object corresponds. The coordinates are measured in internal units (InternalUnit).

See Also
GPinX property, GPinY property, DrawStamp method, DrawStampSelection

method, DropStampSelection method

ConceptDraw DIAGRAM Third Party Developer’s Guide

660

DSValueEl Method

DSValueEl Method

Returns an instance of an object by name DataSourceValue line (field Name) Data Table

parameters of the object (shape), containing in the Value data list.

Applies to: Shape object

Syntax

[[Set] dataSourceValueRet =] object. DSValueEl (name, index)

The DSValueEl method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

name Required. An expression that returns a String value. The data row of the

Name field Data parameters of the object (shape), which in the Value field

contains the value of interest.

index Required. An expression that returns a Long value. Number of list item,

contained in the Value row Data.

dataSourceValueRet Optional. A DataSourceValue type variable.

Remarks

DSValueEl method in case of failure returns 0. The numbering of the list item, contained in the

Value Data Table parameters of the object (shape) starts with 1. The list in the Value field is a set

of values, separated by a comma.

Example
For example, Table Data object parameters (shape) has a row with a value in

the field Name - "first".
In the Value field of this line there is a list of values - "9,777.777,999.99,

Value El, 20."
As a result of performing a function in BASIC editor will print 777,777.
dim num as Integer
dim ds as DataSourceValue
ds = thisShape.DSValueEl ("first", 2)
trace ds.value

See Also

DataSourceValue object , AddDSValue Method , Method

DSValue , DSValuesNum Method , Method RemoveDSValue

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasourcevalue_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.adddsvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.dsvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.dsvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.dsvaluesnum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

661

DSValuesNum Method

DSValuesNum Method

Returns the number of rows in a table Data parameters of the object (shape).

Applies to: Shape object

Syntax

[[Let] num =] object. DSValuesNum ()

The DSValuesNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

num Optional. A Long type variable.

Remarks

If the object does not have a table Data parameters of the object (shape), DSValuesNum method

returns 0.

Example
dim num as Integer
num = thisShape.DSValuesNum ()
trace num

See Also

DataSourceValue object , AddDSValue Method , Method DSValue , DSValueEl

Method , Method RemoveDSValue

DSValue Method

DSValue Method

Returns an instance of an object DataSourceValue, containing data from a table row Data

parameters of the object (shape) of the index.

Applies to: Shape object

Syntax

[[Set] dataSourceValueRet =] object. DSValue (index)

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasourcevalue_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.adddsvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.dsvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.dsvalueel_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.dsvalueel_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

662

The DSValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Required. An expression that returns a Long value. The index of the row

Data parameters of the object (shape).

dataSourceValueRet Optional. A DataSourceValue type variable.

Remarks

DSValue method in case of failure returns 0. The numbering of the indices of rows in a table Data

begins at 1.

Example
dim num as Integer
dim ds as DataSourceValue
num = thisShape.DSValuesNum ()
trace num
ds = thisShape.DSValue (num)
trace ds.Value

See Also
DataSourceValue object, AddDSValue method, DSValueEl method,

DSValuesNum method, RemoveDSValue method

EndRebuild Method

EndRebuild Method

Informs the ConceptDraw engine about the termination of modifying properties of the shapes of

the document.

Applies to: Document object

Syntax
object.EndRebuild ()

The EndRebuild method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

663

object Required. An expression, that returns a Document object.

Remarks

Calling this method must be preceded by calling the StartRebuild method, which informs the

ConceptDraw engine about the start of modifying properties of the shapes of the document. This

scheme of modifying shape properties is used when it's necessary to modify several properties of

the shapes without re-calculating properties after each change. The properties are re-calculated

only once after the EndRebuild method has been called.

See Also StartRebuild method, UpdateAllViews method

EndShape Method

EndShape Method

Returns an instance of the Shape object which corresponds to the current Basic shape and informs

ConceptDraw that the shape has been built.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.EndShape ()

The EndShape method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

currentBasicShap

eRet
Optional. A Shape type variable.

Remarks

This method is only effective for pages and shape that are groups. For all other shapes this

method returns Nothing. Calling EndShape must be preceded by BeginShape, which initialized

the current Basic shape of the group/page. Otherwise the EndShape method returns Nothing.

ConceptDraw DIAGRAM Third Party Developer’s Guide

664

Note, that after you've called the EndShape, to start building a new shape you have to initialize

the current Basic shape of the group/page by calling the BeginShape method.

See Also BeginShape method

Equal Method

Equal Method

Copies all properties and contents of the source shape to the instance of a shape from the Applies

to list.

Applies to: DPoint object, DRect object, Master object, ServObj object, Shape object

Syntax
[[Let] booleanRet =] object.Equal (srcObject)

The Equal method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

srcObject
Required. An expression that returns an object of the same type as object.

The source object for copying.

booleanRet Optional. A Boolean type variable.

ExcelColorValue Method

ExcelColorValue Method

Returns an instance of Color, which contains information about the color, the value of which are

located at the specified position in the table view XLS file specified data source object (shape).

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

665

Syntax

[[Let] color =] object. ExcelColorValue (dsIndex, sheet, row, col)

The ExcelColorValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view XLS file specified data source object (shape).

ret Optional. A Color type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. Color value in the data source must be specified in a Web format (# 00000000).

Example

Getting the color value that is in the first sheet in the second row in the third column, the second

source of data sources in the collection of data object (shape).
dim res as Color
res = thisShape.ExcelColorValue (2,1,2,3)
if res.isRGB then
trace res.Red
trace res.Green
trace res.Blue
endif

See Also

DataSource

ExcelGetColumnForKey Method

ExcelGetColumnForKey Method

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

666

Returns the column number, found by searching on a key in a table view XLS file specified data

source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelGetColumnForKey (dsIndex, sheet, keyRow, keyStr)

The ExcelGetColumnForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for the address in the table view XLS file specified data source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

ret Optional. A Long type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. In case of addressing the range of the table, or in the absence of data, or if the keyword is not

found, returns 0.

Example

Getting the column number on the first sheet in the third row of the second source of data in the

collection of data source object (shape). Find the column is the keyword "black".
dim res as Long
res = thisShape.ExcelGetColumnForKey (2,1,3, "black")
trace res

See Also

DataSource

ExcelMinRowLength Method

ExcelMinRowLength Method

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

667

Returns the minimum number of lines (from all the rows) in the table view XLS file specified

data source object (shape).

Applies to: Shape object

Syntax

[[Let] length =] object. ExcelMinRowLength (dsIndex, sheet)

The ExcelMinRowLength method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

length Optional. A Long type variable.

Remarks

The numbering of pages in the source XLS starts at 1. The numbering of the data sources in the

collection of data sources, the object starts at 1.

Example

Obtaining the minimum number of line items (of all lines) from the first source of data from the

first sheet in the collection of data sources of the object (shape).
dim num as Integer
num = thisShape.ExcelMinRowLength (1,1)
trace num

See Also

DataSource

ExcelRowLength Method

ExcelRowLength Method

Returns the number of elements in the specified row in a table view XLS file specified data

source object (shape).

Applies to: Shape object

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

668

Syntax

[[Let] num =] object. ExcelRowLength (dsIndex, sheet, row)

The ExcelRowLength method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

num Optional. A Long type variable.

Remarks

The numbering of pages in the source XLS starts at 1. The numbering of the data sources in the

collection of data sources, the object starts at 1.

Example

Getting the number of elements of the last line on the first page of the first data source in the

collection of data sources, the object (shape).
dim num as Integer
num = thisShape.ExcelRowNum (1,1)
trace num
num = thisShape.ExcelRowLength (1,1, num)
trace num

See Also

DataSource

ExcelRowMaxElement Method

ExcelRowMaxElement Method

Returns the maximum element of the row in the table view XLS file specified data source object

(shape).

Applies to: Shape object

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

669

Syntax

[[Let] ret =] object. ExcelRowMaxElement (dsIndex, sheet, row, defVal)

The ExcelRowMaxElement method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the maximum value of the data, which are located on the first sheet in the third row of the

second source of data in the collection of data source object (shape).
dim res as Double
res = thisShape.ExcelRowMaxElement (2,1,3, -1.2)
trace res

See Also

DataSource

ExcelRowMinElement Method

ExcelRowMinElement Method

Returns the minimum element of the row in the table view XLS file specified data source object

(shape).

Applies to: Shape object

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

670

Syntax

[[Let] ret =] object. ExcelRowMinElement (dsIndex, sheet, row, defVal)

The ExcelRowMinElement method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the minimum value of data that resides on the first sheet in the third row of the second

source of data in the collection of data source object (shape).
dim res as Double
res = thisShape.ExcelRowMinElement (2,1,3, -1.8)
trace res

See Also

DataSource

ExcelRowNum Method

ExcelRowNum Method

Returns the number of rows in a table view XLS file specified data source object (shape).

Applies to: Shape object

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

671

Syntax

[[Let] num =] object. ExcelRowNum (dsIndex, sheet)

The ExcelRowNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

num Optional. A Long type variable.

Remarks

ExcelRowNum method returns the number of rows in a table view XLS file data source object

(shape). The numbering of pages in the source XLS starts at 1. The numbering of the data sources

in the collection of data sources, the object starts at 1.

Example

Getting the number of rows in a table view XLS file on the first page of the first data source in the

collection of data sources, the object (shape).
dim num as Integer
num = thisShape.ExcelRowNum (1,1)
trace num

See Also

DataSource

ExcelTextForKey Method

ExcelTextForKey Method

Returns the text found by searching on a key in a table view XLS file specified data source object

(shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelTextForKey (dsIndex, sheet, keyRow, keyStr, valueRow, defVal)

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

672

The ExcelTextForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for the address in the table view XLS file specified data source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

valueRow Required. An expression that returns a Long value. The line number of the desired

value for the address in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a String value. The default value.

ret Optional. A String type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the data that resides on the first sheet in the third row of the second source of data in the

collection of data source object (shape). Find the column is the keyword "black", which is located

on the second line of the source.
dim res as String
res = thisShape.ExcelTextForKey (2,1,2, "black", 3, "Error")
trace res

See Also

DataSource

ExcelText Method

ExcelText Method

Returns the text written in a specified position in the table view XLS file specified data source

object (shape).

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

673

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelText (dsIndex, sheet, row, col, defVal)

The ExcelText method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a String value. The default value.

ret Optional. A String type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the data that resides on the first sheet in the fourth row and first column of the third

source of data in the collection of data source object (shape).
dim res as String
res = thisShape.ExcelText (3,1,4,1, "Error")
trace res

See Also

DataSource

ExcelValueDForKey Method

ExcelValueDForKey Method

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

674

Returns the value found using the search key in a table view XLS file specified data source object

(shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelValueDForKey (dsIndex, sheet, keyRow, keyStr, valueRow, defVal)

The ExcelValueDForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for the address in the table view XLS file specified data source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

valueRow Required. An expression that returns a Long value. The line number of the desired

value for the address in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the data that resides on the first sheet in the first line of the third source of data in the

collection of data source object (shape). Find the column is the keyword "green", which is located

on the second line of the source.
dim res as Double
res = thisShape.ExcelValueDForKey (3,1,2, "green", 1, -1.8)
trace res

See Also

DataSource

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

675

ExcelValueD Method

ExcelValueD Method

Gets a value that is at the specified position in the table view XLS file specified data source object

(shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelValueD (dsIndex, sheet, row, col, defVal)

The ExcelValueD method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the data that resides on the first sheet in the first row and fourth column of the third

source of data in the collection of data source object (shape).
dim res as Double
res = thisShape.ExcelValueD (3,1,1,4, -1.5)
trace res

See Also

DataSource

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

676

ExcelValueForKey Method

ExcelValueForKey Method

Returns the integer value found by searching on a key in a table view XLS file specified data

source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelValueForKey (dsIndex, sheet, keyRow, keyStr, valueRow, defVal)

The ExcelValueForKey method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

keyRow Required. An expression that returns a Long value. The line number with the key

word for the address in the table view XLS file specified data source object (shape).

keyStr Required. An expression that returns a String value. Keyword search.

valueRow Required. An expression that returns a Long value. The line number of the desired

value for the address in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a Long value. The default value.

ret Optional. A Long type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

Getting the data that resides on the first sheet in the third row of the second source of data in the

collection of data source object (shape). Find the column is the keyword "black", which is located

on the second line of the source.
dim res as Long
res = thisShape.ExcelValueForKey (2,1,2, "black", 3, -1)
trace res

ConceptDraw DIAGRAM Third Party Developer’s Guide

677

See Also

DataSource

ExcelValueType Method

ExcelValueType Method

Returns the type of data that resides in the specified position in the table view XLS file specified

data source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelValueType (dsIndex, sheet, row, col)

The ExcelValueType method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view XLS file specified data source object (shape).

ret Optional. A Long type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1.Interpretation of the return value: 0 - Void; 1 - String; 2 - Integer; 3 - Float; 4 - Color; 5 -

Date;

Example

Getting the data type, which are located on the first sheet in the second row in the third column,

the second source of data in the collection of data source object (shape).
dim res as Long

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

678

res = thisShape.ExcelValueType (2,1,2,3)
trace res

See Also

DataSource

ExcelValue Method

ExcelValue Method

Returns an integer value that is at the specified position in the table view XLS file specified data

source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. ExcelValue (dsIndex, sheet, row, col, defVal)

The ExcelValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

sheet Required. An expression that returns a Long value. XLS file sheet number of the

specified data source object (shape).

row Required. An expression that returns a Long value. The line number for the address

in the table view XLS file specified data source object (shape).

col Required. An expression that returns a Long value. The column number for the

address in the table view XLS file specified data source object (shape).

defVal Required. An expression that returns a Long value. The default value.

ret Optional. A Long type variable.

Remarks

The numbering of pages, lines, and stobtsov in the table view XLS file data source object (shape)

starts with 1. The numbering of the data sources in the collection of data sources, the object starts

at 1. The default value is set out in the case of addressing the range of the table or in the case of

missing data or not corresponding to the data type and return type.

Example

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

679

Getting the data that resides on the first sheet in the third row and fourth column in the third

source of data in the collection of data source object (shape).
dim res as Long
res = thisShape.ExcelValue (3,1,3,4, -1)
trace res

See Also

DataSource

Export Method

Export Method

Exports the document to one of the file formats, supported by ConceptDraw.

Applies to: Document object

Syntax

[[Let] booleanRet =] object. Export (fileName, formatType, [showSaveDlg],

[showExportSetupDlg])

The Export method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

fileName Required. An expression that returns a String value. Represents the

filename and path (full or relative) of the file, to which the document is

being exported.

formatType Required. An expression that returns a Long value. Specifies the format of

the file, the which the document is being exported.

showSaveDlg Optional. An expression that returns a Boolean value. A flag that specifies

whether the file save dialog must be displayed. The default value is False.

showExportSetupDlg Optional. An expression that returns a Boolean value. A flag that specifies

whether to display the dialog with settings for the appropriate export

format.The default value is False.

booleanRet Optional. A Boolean type variable.

Remarks

If the file was exported successfully, the Export method returns True, otherwise it returns False.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

680

The file is not exported if the provided filename (fileName) is not valid for the platform, on which

ConceptDraw is running, or if the specified file format (formatType) is not supported by

ConceptDraw. The list of supported file formats and corresponding ConceptDraw Basic Constants

CAN be found here .

An inverse method to Export is the Import method, which imports a file of one of the formats,

supported by ConceptDraw.

See Also

Import / Export Constants , Import Method

FileText Method

FileText Method

Returns the text written in that text file data source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. FileText (dsIndex, startPos, count, defVal)

The FileText method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

startPos Required. An expression that returns a Long value. The character position in a text

file of the specified data source object (shape), which will begin reading.

count Required. An expression that returns a Long value. Determines how many characters

to read from a text file of the specified data source, starting from the position of the

character defined startPos.

defVal Required. An expression that returns a String value. The default value.

ret Optional. A String type variable.

Remarks

The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set for the case of lack of data. If the count parameter is 0, then read out the entire

text of the position startPos until the end of the file.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.const_refimport_export_const
http://translate.googleusercontent.com/translate_f#topic_Cdobj.const_refimport_export_const

ConceptDraw DIAGRAM Third Party Developer’s Guide

681

Example

Getting the data that resides in a text file, the third source of data in the collection of data source

object (shape). Reading of data starts with the fourth character from the beginning of the file and

read 10 characters.
dim res as String
res = thisShape.FileText (4,10, "Error")
trace res

See Also

DataSource object , CSVText , ExcelText , XPathText

FindFontByName method

FindFontByName Method

Searches for a font by its name in the font collection of the document. Returns the index of the

found font in the font collection of the document.

Applies to: Document object

Syntax
[[Let] index =] object.FindFontByName (fontName)

The FindFontByName method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

fontName
Required. An expression that returns a String value. Represents the font

name.

index Optional. A Long type variable.

Remarks

If the font with the specified name is not found in the font collection of the document, the

FindFontByName method returns 0. An inverse operation to FindFontByName is the

FontName method, which returns the name of the font by its index in the font collection of the

document.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.csvtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.exceltext_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

682

See Also FontName method, FontsNum method

FindLib Method (Application object)

FindLib Method (Application object)

Searches for a library among the libraries open in the application. Returns the index of the found

library in the library collection of the application.

Applies to: Application object

Syntax
[[Set] indexRet =] object.FindLib (inLib)

The FindLib method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

inLib Required. An expression that returns a Library object.

indexRet Optional. A Long type variable.

Remarks

If the specified library has not been found in the library collection of the application, the FindLib

method returns 0. The inverse method for FindLib is the Lib method, which returns a library by

its index in the library collection of the application.

Example

This example contains an application-level script. The script closes the library if it's the second

library in the library collection of the application.
Sub Close_if_2nd_Lib (inLib As Library)

 If thisApp.FindLib(inLib) = 2 Then

 thisApp.CloseLib(inLib)

 End If

End Sub

Close_if_2nd_Lib(thisApp.ActiveLibWnd.Library)

ConceptDraw DIAGRAM Third Party Developer’s Guide

683

See Also
CloseLib method, CreateNewLib method, FindLib method, Lib method,

LibByName method, LibsNum method, OpenLib method, Library object

FindLib Method (Window object)

FindLib Method (Window object)

Returns the index of the library in the library collection of the window.

Applies to: Window object

Syntax
[[Let] indexRet =] object.FindLib (inLib)

The FindLib method syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

inLib Required. An expression that returns a Library object.

indexRet Optional. A Long type variable.

Remarks

This method is only effective if the library is a library window (see the Type property). For

windows of other types the FindLib method always returns 0.

If the specified library has not been found in the library collection of the window, the FindLib

method returns 0. The inverse method for FindLib is the Lib method, which returns a Library

object by its index in the library collection of the window.

See Also
Type property, Lib method, LibByName method, LibsNum method, Library

object

ConceptDraw DIAGRAM Third Party Developer’s Guide

684

FindMaster Method

FindMaster Method

Searches for a master object in the master object collection of the library.

Applies to: Library object

Syntax
[[Let] index =] object.FindMaster (masterObj)

The FindMaster method syntax has these Elements:

Element Description

object Required. An expression that returns a Library object.

masterObj
Required. An expression that returns a Master object. The library object

to be found.

index Optional. A Long type variable.

Remarks

If the search has been successful, the FindMaster method returns the index of the specified

master object in the master object collection of the library. Otherwise the method returns 0. An

inverse method for this method is the Master method, which returns a master object by its index

in the master object collection of the library.

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

FindMenuItem Method

FindMenuItem Method

This method searches for an instance of the MenuItem object in the menu item collection of the

menu.

Applies to: Menu object

ConceptDraw DIAGRAM Third Party Developer’s Guide

685

Syntax
[[Let] indexRet =] object.FindMenuItem (menuItemObj)

The MenuItem method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

menuItemObj
Required. An expression, that returns an instance of the MenuItem object.

Represents a menu item, which index is to be found.

indexRet Optional. A Long type variable.

Remarks

If the search was successful, the FindMenuItem method returns the index of the specified menu

itme in the menu item collection of the menu. Otherwise, it returns 0.

See Also

FindPage Method

FindPage Method

Searches for a page in the page collection of the document. Returns the index of the page in the

page collection of the document.

Applies to: Document object

Syntax
[[Let] indexRet =] object.FindPage (pageObj)

The FindPage method syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

pageObj
Required. An expression, that returns a Page object. Represents the page

which index is to be returned.

indexRet Optional. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

686

Remarks

If the specified page was not found in the page collection of the document, the FindPage method

returns 0. The inverse method to FindPage is the Page method, which returns a page by its index

in the page collection of the document.

Example

This example contains a page-level script. It draws a rectangle in the upper left corner of the page,

which contains the number of the page in the page collection of the document. The FindPage

method is used to find the number of the page.
thisPage.DrawRect(0,0,100,100).Text = thisDoc.FindPage(thisPage)

See Also
AddPage method, Page method, PageByID method, PagesNum method,

RemovePage method, RemovePageByID method, ReorderPage method,

ReorderPageByID method, Page object

FindStyle Method

FindStyle Method

Searches for a style in the style collection of the document. Returns the index of the specified

style in the style collection of the document.

Applies to: Document object

Syntax
[[Set] indexRet =] object.FindStyle (styleObj)

The FindStyle method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

styleObj
Required. An expression, that returns an instance of the Style object.

Specified the style, which index is to be returned.

indexRet Optional Long.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

687

If the specified style was not found in the style collection of the document, the FindStyle method

returns 0.

Example

This example contains a document-level script. It uses the FindStyle method to demonstrate that

a new style is added to the end of the style collection of the document. Two new styles are added,

and then their indices are displayed. The index of the last style added is equal to the number of

styles in the document.
' Declare variables

Dim new_style1 As Style

Dim new_style2 As Style

Dim index1 As Long

Dim index2 As Long

' Add two new styles

Set new_style1 = thisDoc.AddStyle("New_Style_1")

Set new_style2 = thisDoc.AddStyle("New_Style_2")

TRACE new_style1

TRACE new_style1

' Get indices of the added styles

Let index1 = thisDoc.FindStyle(new_style1)

Let index2 = thisDoc.FindStyle(new_style2)

' Display the indices to make sure

' that the index of the style added first is less

' than the index of the second added style

TRACE "index1 = " & index1

TRACE "index2 = " & index2

See Also
AddStyle method, RemoveStyle method, RemoveStyleByName method,

RenameStyle method, Style method, StyleByName method, StylesNum

method, Style object

FirstDoc Method

FirstDoc Method

Returns an instance of the Document object corresponding to the first document in the document

collection of the application.

Applies to: Application object

Syntax
[[Set] docRet =] object.FirstDoc ()

ConceptDraw DIAGRAM Third Party Developer’s Guide

688

The FirstDoc method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

docRet Optional. A Document type variable.

Remarks

If there are no open documents in the application, the FirstDoc method returns Nothing. To get

the next documents in the document collection, use the NextDoc method.

Example

This example contains an application-level script. The script saves and closes all open documents,

using the FirstDoc method to go through documents.
Dim curDoc As Document

Set curDoc = thisApp.FirstDoc() ' Get the first document

While curDoc <> Nothing

 curDoc.Save() ' Save document in the current folder

 thisApp.CloseDoc(curDoc) ' Close document

 curDoc = thisApp.FirstDoc() ' Get next document

Wend

See Also
CloseDoc method, CreateNewDoc method, Doc method, DocByName

method, DocsNum method, NextDoc method, OpenDoc method, Document

object

FirstLibWindow Method

FirstLibWindow Method

Returns an instance of the Window object that corresponds to the first library window in the

window collection of the application.

Applies to: Application object

Syntax
[[Set libWindowRet =] object.FirstLibWindow ()

The FirstLibWindow method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

689

Element Description

object
Required. An expression, that returns an instance of the Application

object.

libWindowRet Optional. A Window type variable.

Remarks

If there are no library windows in the application, the FirstLibWindow method returns Nothing.

To get the next windows in the window collection, use the NextLibWindow method.

Example

This example contains an application-level script. The script displayes the titles (the Title

property) of all libraries in the first library window of the application.
Dim libWnd As Window ' Declare variables

Set libWnd = thisApp.FirstLibWindow() ' Get first window

If libWnd <> Null Then

 For i=1 To libWnd.LibsNum() ' For each library in the window

 TRACE libWnd.Lib(i).Title ' display its title

 Next i

Else

 TRACE "There are no library windows!" ' If there are no library windows

End If

See Also
LibWindowByID method, LibWindowsNum method, NextLibWindow

method, Window object

FirstView Method

FirstView Method

Returns an instance of the Window object that corresponds to the first window in the window

collection of the document.

Applies to: Document object

Syntax
[[Set] windowRet =] object.FirstView ()

The FirstView method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

690

Element Description

object Required. An expression, that returns a Document object.

windowRet Optional. A Window type variable.

Remarks

Note, that the window collection of the document can include windows of the following types

(the Type property): document view, table view, Basic view. It's convenient to use the FirstView

method together with the NextView method to go through all windows of the document.

See Also
Type property, NextView method, ViewByID method, ViewsNum method,

UpdateAllViews method, Window object

FontName Method

FontName Method

Returns the name of the font by its index in the font collection of the document.

Applies to: Document object

Syntax
[[Let] fontNameRet =] object.FontName (index)

The FindStyle method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Represents the index

of the font in the font collection of the document.

fontNameRet Optional. A String type variable.

Remarks

If index is less than 1 or greater than the number of fonts in the font collection of the document,

the FontName method returns an empty string. Use the FontsNum method to find out the

ConceptDraw DIAGRAM Third Party Developer’s Guide

691

number of the fonts. The inverse method to FontName is the FindFontByName method which

returns the index of the font in the font collection by the specified font name.

See Also FindFontByName method, FontsNum method

FontsNum Method

FontsNum Method

Returns the number of the fonts in the font collection of the document.

Applies to: Document object

Syntax
[[Let] countRet =] object.FontsNum ()

The FontsNum method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

countRet Optional. A Long type variable.

Remarks

The list of fonts is built when the document is created. The number of the fonts depends on how

many fonts are installed on the operating system. The FontsNum always returns a value equal or

greater than 1, because there's always at least 1 font on the operating system.

See Also FontName method, FindFontByName method

ConceptDraw DIAGRAM Third Party Developer’s Guide

692

GeometriesNum Method

GeometriesNum Method

Returns the number of geometries in the shape.

Applies to: Shape object

Syntax
[[Let] countRet =] object.GeometriesNum ()

The GeometriesNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

Remarks

For all 1D and 2D shapes the GeometriesNum method always returns a value equal to or greater

than 1, as such shapes always contain at least one geometry. For shapes of other types the method

always returns 0, as they don't contain geometries.

See Also
AddGeometry method, Geometry method, RemoveGeometry method,

Geometry object

Geometry Method

Geometry Method

Returns a Geometry object that corresponds to a geometry with the specified index in the

geometry collection of the shape.

Applies to: Shape object

Syntax
[[Set] geometryRet =] object.Geometry (index)

The Geometry method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

693

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

geometry in the geometry collection of the shape.

geometryRet Optional. A Geometry type variable.

Remarks

If index is less than 1 or greater than the number of geometries of the shape, the Geometry

method returns Nothing. To find out the number of geometries of the shape, use the

GeometriesNum method.

See Also
AddGeometry method, GeometriesNum method, RemoveGeometry method,

Geometry object

GetBlack Method

GetBlack Method

An Integer value. Gets the value of the black component of the color regardless of the color

scheme of the object.

Applies to objects: Color

Syntax
[[Let] ret =] object.GetBlack (Doc)

The GetBlack method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Doc A reference to an instance of the Document object.

ret An Integer type variable (range 1 - 100).

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

694

You can also use the Black propery to get the value of the black component of the object's color.

However, that property is only effective if the color of objeсt is in the CMYK format. For correct

transformation of an indexed color to the RGB or CMYK format for the specified document, the

Doc parameter is used in the GetBlack method.

Example

This example shows how to find out the value of the black component of a rectangle's fill color

(the color was specified in the RGB format).
dim s as shape

' Create Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetRGB(30,210,80) ' Change fill color in RGB format

s.PropertyChanged(CDPT_FILLCOLOR)

trace s.FillColor.GetBlack(thisDoc) ' Display the value of the black

component

See Also Color Object

GetBlue Method

GetBlue Method

An Integer value. Gets the value of the blue component of the color regardless of the color

scheme of the object.

Applies to objects: Color

Syntax
[[Let] ret =] object.GetBlue (Doc)

The GetBlue method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Doc A reference to an instance of the Document object.

ret An Integer type variable (range 0 - 255).

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

695

You can also use the Blue propery to get the value of the blue component of the object's color.

However, that property is only effective if the color of objeсt is in the RGB format. For correct

transformation of an indexed color to the RGB or CMYK format for the specified document, the

Doc parameter is used in the GetBlue method.

Example

This example shows how to find out the value of the blue component of a rectangle's fill color

(the color was specified in the CMYK format).
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetCMYK(30,10,70,35) ' Change fill color in CMYK format

s.PropertyChanged(CDPT_FILLCOLOR)

trace s.FillColor.GetBlue(thisDoc) ' Get the value of the blue component

See Also Color Object

GetBooleanProperty Method

GetBooleanProperty Method

Returns the value of a Boolean type property.

Applies to: Shape object

Syntax
[[Let] ret =] object.GetBooleanProperty(propTag [, num[, geom]])

The GetBooleanProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

696

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

GetByteProperty Method

GetByteProperty Method

Returns the value of a Byte type property.

Applies to: Shape object

Syntax
[[Let] ret =] object.GetByteProperty(propTag [, num[, geom]])

The GetByteProperty method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

697

Element Description

object Required. An expression that returns a Shape object.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the shape.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

GetCharacterIndex Method

GetCharacterIndex Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

698

Returns the index of a character block, which contains a character with the specified index in the

text string of the shape.

Applies to: Shape object

Syntax
[[Let] indexRet =] object.GetCharacterIndex (iSymbol)

The GetCharacterIndex method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iSymbol
Required. An expression that returns a Long value. The character index in

the text string of the shape.

indexRet Optional. A Long type variable.

Remarks

If index is less than 1 or greater than the number of character in the text string of the shape, the

GetCharacterIndex method returns 0.

See Also

Character method, CharactersNum method, RemoveCharacter method,

SetCharColor method, SetCharFont method, SetCharHyperlink method,

SetCharLanguage method, SetCharPos method, SetCharSize method,

SetCharSpacing method, SetCharStyle method, Character object

GetCyan Method

GetCyan Method

An Integer value. Gets the value of the cyan component of the color regardless of the color

scheme of the object.

Applies to objects: Color

Syntax
[[Let] ret =] object.GetCyan (Doc)

The GetCyan method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

699

object A reference to an instance of the object.

Doc A reference to an instance of the Document object.

ret An Integer type variable (range 1 - 100).

Remarks

You can also use the Cyan propery to get the value of the cyan component of the object's color.

However, that property is only effective if the color of objeсt is in the CMYK format. For correct

transformation of an indexed color to the RGB or CMYK format for the specified document, the

Doc parameter is used in the GetCyan method.

Example

This example shows how to find out the value of the cyan component of a rectangle's fill color

(the color was specified in the RGB format).
dim s as shape

' Create Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetRGB(30,210,80) ' Change fill color in RGB format

s.PropertyChanged(CDPT_FILLCOLOR)

trace s.FillColor.GetCyan(thisDoc) ' Display the value of the cyan component

See Also Color Object

GetDoubleProperty Method

GetDoubleProperty Method

Returns the value of a Double type property.

Applies to objects: Shape, ServObj

Syntax
[[Let] ret =] object.GetDoubleProperty(propTag [, num[, geom]])

The GetDoubleProperty method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

ConceptDraw DIAGRAM Third Party Developer’s Guide

700

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the object.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

ret
Optional. . An expression that returns a Double value. A variable that gets

the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

GetGreen Method

GetGreen Method

An Integer value. Gets the value of the green component of the color regardless of the color

scheme of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

701

Applies to objects: Color

Syntax
[[Let] ret =] object.GetGreen (Doc)

The GetGreen method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Doc A reference to an instance of the Document object.

ret An Integer type variable (range 0 - 255).

Remarks

You can also use the Green propery to get the value of the green component of the object's color.

However, that property is only effective if the color of objeсt is in the RGB format. For correct

transformation of an indexed color to the RGB or CMYK format for the specified document, the

Doc parameter is used in the GetGreen method.

Example

This example shows how to find out the value of the green component of a rectangle's fill color

(the color was specified in the CMYK format).
dim s as shape

' Create Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetCMYK(30,10,70,35) ' Change fill color in CMYK format

s.PropertyChanged(CDPT_FILLCOLOR)

trace s.FillColor.GetGreen(thisDoc) ' Display the value of the green

component

See Also Color Object

GetHeight Method

GetHeight Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

702

A Double value. Returns the height of the rectangle.

Applies to objects: DRect

Syntax
[[Let] width =] object.GetHeight()

The GetHeight method syntax has these Elements:

Element Description

height A Double type variable.

object A reference to an instance of the object.

Example

This example is used to calculate the height of a rectangle, which coordinates are stored in

MyObject.
Dim h as Double, MyObject as new DRect

' Set DRect object properties

MyObject.SetRect(30,30,100,90)

' Determine the height of MyObject

w = MyObject.GetHeight() ' h = 60

See Also DRect Object, GetWidth Method

GetHyperlinkID Method

GetHyperlinkID Method

Returns the ID of a hyperlink, provided the hyperlink is present in the hyperlink collection of the

document.

Applies to: Document object

Syntax
[[Let] hyperlinkIDRet =] object.GetHyperlinkID (hyperlinkObj)

The GetHyperlinkID method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

703

object Required. A reference to an instance of the Document object.

hyperlinkObj
Required. An expression that returns a Hyperlink type value. Represents

the hyperlink, which ID is to be returned.

hyperlinkIDRet Optional. A Long type variable.

Remarks

If the specified hyperlink doesn't exist in the document, the method returns 0.

See Also

AddHyperlinkToDocument Method, AddHyperlinkToFile Method,

AddHyperlinkToPageShape Method, AddHyperlinkToURL Method,

Hyperlink Method, HyperlinkByID Method, HyperlinksNum Method,

RemoveUnusedHyperlinks Method, Hyperlink Object, Document Object

GetIndex Method

GetIndex Method

Returns the index of the object (shape) in a collection of objects (shapes) of the parent group.

Applies to: Shape object

Syntax

[[Let] index =] object. GetIndex ()

The GetIndex method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Optional. A Long type variable.

Remarks

If the object is an object directly on the document page, then the parent of this object is a page

(Property Page). If an object is placed in a group, then its parent is a group of objects. The

numbering of objects starting with 0. In case of error the method returns -1.

Example
dim index as Integer

ConceptDraw DIAGRAM Third Party Developer’s Guide

704

index = thisShape.GetIndex()

trace index

See Also
Page property, Parent property, SendFront method, SendBack method,

StepBack method, StepFront method

GetIntegerProperty Method

GetIntegerProperty Method

Returns the value of a Integer type property.

Applies to objects: Shape

Syntax
[[Let] ret =] object.GetIntegerProperty(propTag [, num[, geom]])

The GetIntegerProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

ConceptDraw DIAGRAM Third Party Developer’s Guide

705

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

GetLongProperty Method

GetLongProperty Method

Returns the value of a Long type property.

Applies to objects: Shape

Syntax
[[Let] ret =] object.GetLongProperty(propTag [, num[, geom]])

The GetLongProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

ret Optional. A variable that gets the value returned by the method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

706

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

GetMagenta Method

GetMagenta Method

An Integer value. Gets the value of the magenta component of the color regardless of the color

scheme of the object.

Applies to objects: Color

Syntax
[[Let] ret =] object.GetMagenta (Doc)

The GetMagenta method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Doc A reference to an instance of the Document object.

ret An Integer type variable (range 1 - 100).

ConceptDraw DIAGRAM Third Party Developer’s Guide

707

Remarks

You can also use the Magenta propery to get the value of the magenta component of the object's

color. However, that property is only effective if the color of objeсt is in the CMYK format. For

correct transformation of an indexed color to the RGB or CMYK format for the specified

document, the Doc parameter is used in the GetMagenta method.

Example

This example shows how to find out the value of the magenta component of a rectangle's fill color

(the color was specified in the RGB format).
dim s as shape

' Create Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetRGB(30,210,80) ' Change fill color in RGB format

s.PropertyChanged(CDPT_FILLCOLOR)

trace s.FillColor.GetMagenta(thisDoc) ' Display the value of the magenta

component

See Also Color Object

GetParagraphIndex Method

GetParagraphIndex Method

Returns the paragraph index in the paragraph collection of the shape by the specified character

index in the text string of the shape.

Applies to: Shape object

Syntax
[[Let] paragraphIndexRet =] object.GetParagraphIndex (symbolIndex)

The GetParagraphIndex method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

symbolIndex
Required. An expression that returns a Long value. The index of the

character in the text string of the shape.

paragraphInde

xRet
Optional. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

708

Remarks

If index is less than 1 or greater than the number of characters in the text string of the shape, the

GetParagraphIndex method returns 0.

See Also

Paragraph method, ParagraphsNum method, RemoveParagraph method,

SetParaAfterSpacing method, SetParaBeforeSpacing method,

SetParaFirstInd method, SetParaHAlign method, SetParaLeftInd method,

SetParaLineSpacing method, SetParaRightInd method, Paragraph object

GetPropertyFormula Method

GetPropertyFormula Method

Returns the formula of the shape's property in the form of a string.

Applies to: Shape object, ServObj

Syntax
[[Let] ret =] object.GetPropertyFormula(propTag [, num[, geom]])

The GetPropertyFormula method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the object.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

ret Optional. A variable that gets the string returned by the method.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

709

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

GetRed Method

GetRed Method

An Integer value. Gets the value of the red component of the color regardless of the color scheme

of the object.

Applies to objects: Color

Syntax
[[Let] ret =] object.GetRed (Doc)

The GetRed method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Doc A reference to an instance of the Document object.

ret An Integer type variable (range 0 - 255).

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

710

You can also use the Red propery to get the value of the red component of the object's color.

However, that property is only effective if the color of objeсt is in the RGB format. For correct

transformation of an indexed color to the RGB or CMYK format for the specified document, the

Doc parameter is used in the GetRed method.

Example

This example shows how to find out the value of the red component of a rectangle's fill color (the

color was specified in the CMYK format).
dim s as shape

' Create Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetCMYK(30,10,70,35) ' Change fill color in CMYK format

s.PropertyChanged(CDPT_FILLCOLOR)

trace s.FillColor.GetRed(thisDoc) ' Display the value of the red component

See Also Color Object

GetSelectService Method

GetSelectService Method

Returns a service object from the collection-selected objects (shapes) is displayed in a window or

group of pages to index.

Applies to: Window object

Syntax

[[Let] serviseRet =] object. GetSelectService (index)

The GetSelectService method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

index Required. An expression that returns a Long value. Specifies the index-selected objects

in the collection is displayed in a window or group.

serviseRet Optional. A ServObj type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

711

This method is only effective if the window is of the document view type (see

the Type property). For windows of all other types, the GetSelectService method always

returns NULL.

If the specified index (parameter index) is correct for-selected collection of objects (shapes) is

displayed in a window or group of pages, the GetSelectService method vozvraschet service

object with the index.Otherwise, the method returns NULL.

See Also

ServObj Object, ID Property, Property Type, Deselect Method , Method

DeselectAll , GetSelectedShape

Method , Method Select, SelectAll Method, Method SelectedNum

GetSelectShape Method

GetSelectShape Method

Returns an instance of the Shape object, that represents a shape, associated with an instance of an

object from the Applies to list.

Applies to: Window object

Syntax

[[Let] shapeRet =] object. GetSelectShape (shapeIndex)

The GetSelectShape method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

shapeIndex Required. An expression that returns a Long value. Specifies the index of the shape-

selected objects in the collection is displayed in a window or group.

shapeRet Optional. A Shape type variable.

Remarks

This method is only effective if the window is of the document view type (see

the Type property). For windows of all other types, the GetSelectShape method always

returns NULL.

If the specified index (parameter shapeIndex) is valid for a collection-selected objects (shapes) is

displayed in a window or group of pages, the GetSelectShape method returns an object with that

index.Otherwise, the method returns NULL.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselect_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselectall_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselectall_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getselectedshape
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getselectedshape

ConceptDraw DIAGRAM Third Party Developer’s Guide

712

Example

The example demonstrates how you can get past the account-selected object from the collection-

selected objects (shapes) is displayed in a window or group.
dim sh as Shape
dim num as Long
num = Thisdoc.ActiveView.SelectedNum ()
if num> 0 then
sh = Thisdoc.ActiveView.GetSelectedShape (num)
trace sh.ID
else
trace "No selected"
end if

See Also

Shape object, ID Property, Property Type, Deselect Method , Method

DeselectAll ,GetSelectedService

Method , Method Select, SelectAll Method, Method SelectedNum

GetShapeByName Method

GetShapeByName Method

Searches for a shape with the specified name (Name property) in the shape collection of the group

/ page. Returns the position of the found object (shape) in a collection of objects (shapes).

Applies to: Page object, Shape object

Syntax

[[Set] pos =] object. GetShapeByName (name, start, end)

The GetShapeByName method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of an object from the Applies

to list.

name Required. An expression that returns a String value. The object name to search.

start Required. An expression that returns a Integer value. Start position in the collection

of objects (shapes).

end Optional. An expression that returns a Integer value. The final position in the

collection of objects (shapes).

pos Optional. A Long type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselect_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselectall_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.deselectall_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getselectedservice
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getselectedservice

ConceptDraw DIAGRAM Third Party Developer’s Guide

713

If an object (shape) with the specified name is not found in the collection of objects (shapes), or

the final position of the object passed by value over the starting, the method returns

0 GetShapeByName. If the end position is not specified, or equal to -1, the search facility will be

made from the starting position until the end of a collection of objects.

Example

This example contains a shape-level script. In the first example of an object (shape), which has

the name "FirstFindingObject", is searched, starting at position 1 and finishing fifth position in the

collection of objects on the page. In the second example of an object (shape), which has the name

"SecondFindingObject", sought, starting from the zero position until the end of the collection in a

group of objects.
dim pos as Long
pos = thisPage.GetShapeByName ("FirstFindingObject", 1,5)
or
pos = thisShape.GetShapeByName ("SecondFindingObject", 0)

See Also

ShapeByID method, RemoveAllShapes method, RemoveShape method,Rem

oveShapeByID method, ReorderShape method, ReorderShapeByID method,

Shape method, ShapesNum method

GetSingleProperty Method

GetSingleProperty Method

Returns the value of a Single type property.

Applies to objects: Shape

Syntax

[[Let] ret =] object. GetSingleProperty (propTag [, num [, geom]])

The GetSingleProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

propTag Required. An expression that returns a Long value. A tag that identifies the property

of the object.

num Optional. An expression that returns a Long value. An additional identifying

argument.It's used for specifying properties from collections of the object.

geom Optional. An expression that returns a Long value. An additional identifying

argument.It's used for specifying properties from geometry collections of the object.

ret Optional. A variable that gets the value returned by the method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

714

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table

formulas. Properties can be viewed or edited in the shape parameter table, called from a menu or

by using the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed

property: propTag, num, geom. Here, propTag is the tag that corresponds to the name of the

property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic Has a set of Constants That define all valid Property tags .

See Also

GetByteProperty Method , Method GetBooleanProperty , GetIntegerProperty

Method , Method GetLongProperty , GetSingleProperty Method , Method

GetDoubleProperty , GetStringProperty Method , Method ColorProperty ,

SetByteProperty Method, Method SetBooleanProperty,

SetIntegerProperty Method,

Method SetLongProperty, SetSingleProperty Method, Method SetDoublePro

perty,

SetStringProperty Method, Method IsDefaultFormula, IsNullFormula Metho

d, Method

GetPropertyFormula , SetPropertyFormula Method, MethodSetDefaultFormul

a, SetNullFormula Method, Method RecalcProperty,PropertyChanged Method

GetStringProperty Method

GetStringProperty Method

Returns the value of a String type property.

Applies to objects: Shape, ServObj

Syntax

[[Let] ret =] object. GetStringProperty (propTag [, num [, geom]])

The GetStringProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of an object from the Applies to list.

propTag Required. An expression that returns a Long value. A tag that identifies the property

of the object.

num Optional. It is used only for the object Shape. An expression that returns

a Long value.An additional identifying argument. It's used for specifying properties

from collections of the object.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.const_refPropTag
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getbyteproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getbooleanproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getintegerproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getintegerproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getlongproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getsingleproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getdoubleproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getdoubleproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getstringproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.colorproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getpropertyformula_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getpropertyformula_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

715

geom Optional. It is used only for the object Shape. An expression that returns

a Long value.An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table

formulas. Properties can be viewed or edited in the shape parameter table, called from a menu or

by using the F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic Has a set of Constants That define all valid Property tags .

See Also

GetByteProperty Method , Method GetBooleanProperty , GetIntegerProperty

Method , Method GetLongProperty , GetSingleProperty Method , Method

GetDoubleProperty , GetStringProperty Method , Method ColorProperty ,

SetByteProperty Method, Method SetBooleanProperty, SetIntegerProperty Me

thod,Method SetLongProperty, SetSingleProperty Method, Method SetDouble

Property,SetStringProperty Method, Method IsDefaultFormula, IsNullFormula

 Method,Method

GetPropertyFormula , SetPropertyFormula Method, MethodSetDefaultFormul

a, SetNullFormula Method, Method RecalcProperty,PropertyChanged Method

GetWidth Method

GetWidth Method

A Double value. Returns the width of the rectangle.

Applies to objects: DRect

Syntax

[[Let] width =] object. GetWidth ()

The GetWidth method syntax has these Elements:

Element Description

width A Double type variable.

object A reference to an instance of the object.

Example

http://translate.googleusercontent.com/translate_f#topic_Cdobj.const_refPropTag
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getbyteproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getbooleanproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getintegerproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getintegerproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getlongproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getsingleproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getdoubleproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getdoubleproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getstringproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.colorproperty_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getpropertyformula_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getpropertyformula_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.drect_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

716

This example is used to calculate the width of a rectangle, which coordinates are stored in

MyObject.
Dim w as Double, MyObject as new DRect
'Set DRect object properties
MyObject.SetRect (30,30,100,90)
'Determine the width of MyObject
w = MyObject.GetWidth () 'w = 70

See Also

DRect Object , Method GetHeight

GetYellow Method

GetYellow Method

An Integer value. Gets the value of the yellow component of the color regardless of the color

scheme of the object.

Applies to objects: Color

Syntax

[[Let] ret =] object. GetYellow (Doc)

The GetYellow method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Doc A Reference to an instance of the Document object.

ret An Integer type variable (range 1 - 100).

Remarks

You can also use the Yellow propery to get the value of the yellow component of the object's

color. However, that property is only effective if the color of objest is in the CMYK format. For

correct transformation of an indexed color to the RGB or CMYK format for the specified

document, the Doc parameter is used in the GetYellow method.

Example

This example shows how to find out the value of the yellow component of a rectangle's fill color

(the color was specified in the RGB format).
dim s as shape
'Create Shape object

http://translate.googleusercontent.com/translate_f#topic_Cdobj.drect_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.getheight_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.color_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

717

s = thisDoc.ActivePage.DrawRect (100,100,1000,1000)
s.FillColor.SetRGB (30,210,80) 'Change fill color in RGB format
s.PropertyChanged (CDPT_FILLCOLOR)
trace s.FillColor.GetYellow (thisDoc) 'Display the value of the yellow

component

See Also

Color Object

GPtoLP Method

GPtoLP Method

Performs the conversion of the coordinates of the coordinate system of the parent object (shape)

(group or page) in the local coordinate system of (this) object (shape).

Applies to: Shape object

Syntax
object.GPtoLP (srcPoint)

The GPtoLP method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

srcPoint Required. A DPoint type variable. The coordinates of the point.

Remarks

The global coordinate system with respect to the coordinate system of the given shape is the local

coordinate system of the parent group in the case when the shape is inside a group. If the shape is

not Element of a group, the global coordinate system coincides with the global coordinate system.

This method modifies the input argument srcPoint and uses it to return the resulting coordinates.

The coordinates are measured in internal units (InternalUnit).

See Also LAtoWA method, LPtoGP method, LPtoWP method, WPtoLP method

http://translate.googleusercontent.com/translate_f#topic_Cdobj.color_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

718

HyperlinkByID Method

HyperlinkByID Method

Searches for a hyperlink by the specified ID (the ID property) in the hyperlink collection of the

document. Returns an instance of the Hyperlink object, corresponding to the found hyperlink.

Applies to: Document object

Syntax
[[Set] hyperlinkRet =] object.HyperlinkByID (hyperlinkID)

The HyperlinkByID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

hyperlinkID
Required. An expression that returns a Long value. Represents the ID of

the hyperlink being searched.

hyperlinkRet Optional. A Hyperlink type variable.

Remarks

If the hyperlink with the specified hyperlinkID wasn't found in the document, the method returns

Nothing.

Example

This example contains a page-level script. It displays the list of all hyperlinks which exist on the

page (thisPage). The HyperlinkByID method is used to search for the hyperlink by the hyperlink

ID taken from the shape (see the Hyperlink property).
' Declare variables

Dim linkID As Long

Dim hlink As Hyperlink

' Loops though all shapes on the page (thisPage)

For i=1 To thisPage.ShapesNum()

 ' Get ID of the shape's hyperlink

 linkID = thisPage.Shape(i).Hyperlink

 ' Search for hyperlink with specified ID in the hyperlink

 ' collection of the document

 Set hlink = thisDoc.HyperlinkByID(linkID)

 If hlink <> Null Then

 ' If hyperlink found, display its properties

 TRACE "Shape_" & i & " " & hlink

 TRACE " ID = " & hlink.ID

 TRACE " LinkType = " & hlink.LinkType

 TRACE " Address = " & hlink.Address

 TRACE " LocalPath = " & hlink.LocalPath

 TRACE " PageID = " & hlink.PageID

ConceptDraw DIAGRAM Third Party Developer’s Guide

719

 TRACE " ShapeID = " & hlink.ShapeID

 End If

Next i

See Also

ID property, Hyperlink property, AddHyperlinkToDocument method,

AddHyperlinkToFile method, AddHyperlinkToPageShape method,

AddHyperlinkToURL method, Hyperlink method, HyperlinksNum method,

RemoveUnusedHyperlinks method, Hyperlink object

HyperlinksNum Method

HyperlinksNum Method

Returns the number of hyperlinks in the hyperlink collection of the document.

Applies to: Document object

Syntax
[[Let] countRet =] object.HyperlinksNum ()

The HyperlinksNum method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

countRet Optional. A Long type variable.

Remarks

Note, that the number of hyperlinks is increased when new hyperlinks are added to the collection

and is decreased when unused hyperlinks are deleted (see the RemoveUnusedHyperlinks

method). If there are no hyperlinks in the document, the HyperlinksNum method returns 0.

Example

This example contains a document-level script. The script calculates the number of hyperlinks in

the hyperlink collection of the document for each of the three hyperlink types: cdLinkToFile,

cdLinkToURL, cdLinkToPageShape. The results of the calculation and the total number of

hyperlinks in the document are displayed on the screen.
' Declare variables

Dim n_LinkToFile As Integer

Dim n_LinkToUrl As Integer

ConceptDraw DIAGRAM Third Party Developer’s Guide

720

Dim n_LinkToPageShape As Integer

' Initialize counters with zeros

n_LinkToFile = 0

n_LinkToUrl = 0

n_LinkToPageShape = 0

' Loop through all hyperlinks in the hyperlink

' collection of the document

For i=1 To thisDoc.HyperlinksNum()

 ' Calculate the amount of hyperlinks of each type

 Select Case thisDoc.Hyperlink(i).LinkType

 Case cdLinkToFile

 n_LinkToFile = n_LinkToFile + 1

 Case cdLinkToURL

 n_LinkToUrl = n_LinkToUrl + 1

 Case cdLinkToPageShape

 n_LinkToPageShape = n_LinkToPageShape + 1

 End Select

Next i

' Display the results

TRACE "Number of:"

TRACE "Links to file = " & n_LinkToFile

TRACE "Links to URL = " & n_LinkToUrl

TRACE "Links to Page Or Shape = " & n_LinkToPageShape

TRACE "Total number of links = " & thisDoc.HyperlinksNum()

See Also

AddHyperlinkToDocument metohd, AddHyperlinkToFile metohd,

AddHyperlinkToPageShape metohd, AddHyperlinkToURL method,

Hyperlink method, HyperlinkByID method, RemoveUnusedHyperlinks

method, Hyperlink object

Hyperlink Method

Hyperlink Method

Returns an instance of the Hyperlink object by the index of the hyperlink in the hyperlink

collection of the document.

Applies to: Document object

Syntax
[[Set] hyperlinkRet =] object.Hyperlink (index)

The Hyperlink method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

721

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Represents the index

of the hyperlink in the hyperlink collection of the document.

hyperlinkRet Optional. A Hyperlink type variable.

Remarks

If index is less than 1 or greater than the number of hyperlinks in the hyperlink collection of the

document, the Hyperlink method returns Nothing. Use the HyperlinksNum method to find out

the number of hyperlinks in the hyperlink collection of the document.

Example

This example contains a document-level script. It displays the list of properties of each hyperlink

in the current document.
' Declare variables

Dim hlink As Hyperlink

' Loop through all hyperlinks

For i=1 To thisDoc.HyperlinksNum()

 ' Get next hyperlink from

 ' the hyperlink collection of the document

 Set hlink = thisDoc.Hyperlink(i)

 ' Display the hyperlink properties

 TRACE "Hyperlink_" & i & " " & hlink

 TRACE " ID = " & hlink.ID

 TRACE " LinkType = " & hlink.LinkType

 TRACE " Address = " & hlink.Address

 TRACE " LocalPath = " & hlink.LocalPath

 TRACE " PageID = " & hlink.PageID

 TRACE " ShapeID = " & hlink.ShapeID

Next i

See Also

AddHyperlinkToDocument method, AddHyperlinkToFile method,

AddHyperlinkToPageShape method, AddHyperlinkToURL method,

HyperlinkByID method, HyperlinksNum method, RemoveUnusedHyperlinks

method, Hyperlink object

Import Method

Import Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

722

Imports a file of one of the formats, supported by ConceptDraw. Returns an instance of the

Document object corresponding to the imported file.

Applies to: Application object

Syntax
[[Set] docRet =] object.Import (fileName, formatType, [showSaveDlg], [showSettingsDlg])

The Import method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

fileName
Required. An expression that returns a String value. Represents the name

of the imported file.

formatType

Required. An expression that returns a Long value. Indicates the format of

the imported file. This parameter must be equal to one of the pre-defined

constants, which correspond the the file formats supported by

ConceptDraw. If the format is indicated incorrectly, it is recognized

automatically for raster files. For vector files format is not recognized.

showSaveDlg
Optional. An expression that returns a Boolean value. A flag that specifies

whether to display the file open dialog. The default value is False.

showSettingsDl

g

Optional. An expression that returns a Boolean value. A flag that specifies

whether to display the import settings dialog for some file formats. This

parameter is needed for the file formats, which can not be imported

without information about their contents (for instance, which delimiter is

used, etc). For example, such formats are Outline and Flowdata. When

this flag is False the import settings are taken from the application settings

which you can view and modify by choosing "Edit > Preferences". The

defaut value is False.

docRet Optional. A Document type variable.

Remarks

If the format of the imported file is specified as cdf_UNKNOWN (unknown file format) or set

incorrectly, ConceptDraw tries to recognized the format automatically (except for the Outline and

FlowData formats). If the file was imported successfully, tje Import method returns a reference

to the instance of the Document object, which corresponds to the imported file. If the specified

file couldn't be opened, the Import method returns Nothing.

The list of formats, supported in ConceptDraw and corresponding ConceptDraw Basic constants

can be seen here.

The inverse method to Import is the Export method which saves a ConceptDraw document in a

file with the specified format.

ConceptDraw DIAGRAM Third Party Developer’s Guide

723

Example

This example contains application-level script.
thisApp.Import("c:\ffffff.bmp", cdf_BMP, TRUE, TRUE)

See Also Import/Export constants, Export method, Document object

InflateRect Method

InflateRect Method

"Enlarges" the rectangle by the X and Y axes, calculates the coordinates of the object.

Applies to objects: DRect

Syntax
object.InflateRect (x, y)

The InflateRect method syntax has these Elements:

Element Description

object A reference to an instance of the object.

x
A Double value, represents the offset for the left and right sides of the

rectangle.

y
A Double value, represents the offset for the top and bottom sides of the

rectangle.

Remarks

"Enlarging" the rectangle doesn't reposition its center. The following formulas are used to

calculate the coordinates:

left = left - x; top = top - x; right = right + x; bottom = bottom + x

Example
' Create an instance of the object

Dim MyObject as new DRect

' Set left,top,right,bottom properties

MyObject.SetRect(200,200,1000,1000)

ConceptDraw DIAGRAM Third Party Developer’s Guide

724

' Inflate rectangle

' After the operation the properties will be equal to:

' left - 100, top - 100, right - 1100, bottom - 1100

MyObject.InflateRect(100,100)

See Also DRect Object, DeflateRect Method

InsertPicture Method

InsertPicture Method

Creates a shape that contains the picture from the specified file and places it onto the page / into

the group at the specified position. Returns a Shape object that corresponds to the created shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.InsertPicture (fileName, xInsert, yInsert)

The InsertPicture method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

fileName

Required. An expression that returns a String value. Full or relative path

to the file that contains the image in a format that ConceptDraw can

import.

xInsert
Required. An expression that returns a Double value. The X-coordinate of

the rotation center (the GPinX property) for the created shape.

yInsert
Required. An expression that returns a Double value. The Y-coordinate of

the rotation center (the GPinY property) for the created shape.

shapeRet Optional. A Shape type variable.

Remarks

If the file with the specified fileName hasn't been found or couldn't be opened, the InsertPicture

method doesn't create a new shape and returns Nothing.

ConceptDraw DIAGRAM Third Party Developer’s Guide

725

See Also GPinX property, GPinY property, Import/Export constants

IntersectRect Method

IntersectRect Method

Calculates the coordinates of the rectangle, corresponding to the area of intersection of the two

specified rectangles. Returns a Boolean value: TRUE if the rectangles intersect, otherwise

FALSE.

Applies to objects: DRect

Syntax
object.IntersectRect (inRect1, inRect2)

The IntersectRect method syntax has these Elements:

Element Description

object A reference to an instance of the object.

inRect1,

inRect2
References to DRect objects.

res A Boolean type variable.

Remarks

Note, that if the method returns FALSE, object properties are reset to zero.

Example
Dim outRect as new DRect, inRect1 as new DRect, inRect2 as new DRect, res as

Boolean

inRect1.SetRect(100,100,300,300)

inRect2.SetRect(200,200,400,400)

' intersect rect

' After the method has been called,

' outRect properties will become equal to 200,200,300,300

res = outRect.IntersectRect(inRect1,inRect2) ' return TRUE

ConceptDraw DIAGRAM Third Party Developer’s Guide

726

See Also DRect Object

IsDefaultFormula Method

IsDefaultFormula Method

Returns a Boolean type value. If the property has a formula, and it's marked as default, this

method returns True, otherwise it returns False.

Applies to: Shape object, ServObj

Syntax
[[Let] ret =] object.IsDefaultFormula(propTag [, num[, geom]])

The IsDefaultFormula method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the object.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

ConceptDraw DIAGRAM Third Party Developer’s Guide

727

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

IsEmpty Method

IsEmpty Method

Returns a Boolean value: TRUE, if the square of the rectangle is zero, otherwise FALSE.

Applies to objects: DRect

Syntax
[[Let] res =] object.IsEmpty ()

The IsEmpty method syntax has these Elements:

Element Description

res A Boolean type variable.

object A reference to an instance of the DRect object.

Remarks

Note, that if the right / bottom values in the DRect object are less than the left / top values, the

square of the rectangle is non-zero.

Example

This example demonstrates using the IsEmpty method.
Dim MyObject as new DRect, res as Boolean

ConceptDraw DIAGRAM Third Party Developer’s Guide

728

'set DRect object properties

MyObject.SetRect(30,100,30,500)

res = MyObject.IsEmpty() ' returns TRUE

See Also DRect Object

IsNullFormula Method

IsNullFormula Method

Returns a Boolean type value. If the property has no formula, the method returns True, otherwise

it returns False.

Applies to objects: Shape, ServObj

Syntax
[[Let] ret =] object.IsNullFormula(propTag [, num[, geom]])

The IsNullFormula method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the object.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or by using

the F3 key in ConceptDraw. Each property is described by its value and a table formula.

ConceptDraw DIAGRAM Third Party Developer’s Guide

729

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all valid property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

LAtoWA Method

LAtoWA Method

Converts the angle from the local coordinate system of the shape into the global coordinate

system.

Applies to: Shape object

Syntax
[[Let] retAngle =]object.LAtoWA (localAngle)

The WPtoLP method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

localAngle
Required. An expression that returns a Double value. The angle in the

local coordinate system.

retAngle
Optional. A Double type variable. The resulting angle in the global

coordinate system.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

730

The angle values are measured in radians.

See Also GPtoLp, LPtoGP method, LPtoWP method, WPtoLP method

LayerByID Method

LayerByID Method

Searches for a layer with the specified ID (ID property) in the layer collection of the document.

Returns an instance of the Layer object that corresponds to the found layer.

Applies to: Document object

Syntax
[[Set] layerRet =] object.LayerByID (layerID)

The LayerByID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

layerID
Required. An expression that returns a Long value. Represents the ID (ID

property) of the layer being searched.

layerRet Optional. A Layer type variable.

Remarks

If there is no layer with the specified ID (ID property) in the layer collection of the document, the

LayerByID method returns Nothing.

Example

This example contains a document-level script. The LayerByID method uses the layer ID taken

from a shape on that layer.
' Declare variables

Dim shp1 As Shape

Dim shp2 As Shape

Dim layerID As Long

Dim player As Layer

ConceptDraw DIAGRAM Third Party Developer’s Guide

731

' Set the first layer from the layer collection as active layer

thisDoc.ActiveLayer = thisDoc.Layer(1).ID

' Draw a rectangle on the active layer

Set shp1 = thisDoc.ActivePage.DrawRect(100,100,600,500)

shp1.Text = "Layer # 1"

' Use the LayerByID method to get the layer on which the shp1 shape

' was created

Set player = thisDoc.LayerByID(shp1.Layer)

' Set blue color for all shapes on the layer

player.Colored = True

player.Color.SetRGB(0,0,255)

' Make the second layer from the layer collection

' active layer

thisDoc.ActiveLayer = thisDoc.Layer(2).ID

' Draw a rectangle on the active layer

Set shp2 = thisDoc.ActivePage.DrawRect(700,100,1200,500)

shp2.Text = "Layer # 2"

' Use the LayerByID method to get the layer on which the shp2 shape

' was created

Set player = thisDoc.LayerByID(shp2.Layer)

' ' Set red color for all shapes on the layer

player.Colored = True

player.Color.SetRGB(255,0,0)

See Also
ID property, AddLayer method, Layer method, LayerByName method,

LayersNum method, RemoveLayer method, RemoveLayerByID method,

Layer object

LayerByName Method

LayerByName Method

Searches for a layer with the specified name (the Name property) in the layer collection of the

document. Returns an instance of the Layer object that corresponds to the first layer with the

specified name, found in the layer collection.

Applies to: Document object

Syntax
[[Set] layerRet =] object.LayerByName (layerName)

The LayerByID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

732

layerName
Required. An expression that returns a String value. Represents the name

(the Name property) of the layer being searched.

layerRet Optional. A Layer type variable.

Remarks

If there is no layer with the specified name in the layer collection of the document, the

LayerByName method returns Nothing.

Example

This example contains a document-level script. The script shows how the LayerByName method

is used to find the layer that was created earlier (with less index) among two layers with the same

names.
' Declare variables

Dim layer1 As Layer

Dim layer2 As Layer

Dim reslayer As Layer

' Add two new layers to the document

Set layer1 = thisDoc.AddLayer()

Set layer2 = thisDoc.AddLayer()

' Give the same name to both layers

layer1.Name = "Layer Name"

layer2.Name = "Layer Name"

' Display the names to make sure they are the same.

TRACE layer1.Name

TRACE layer2.Name

' Search for layer with specified name

Set reslayer = thisDoc.LayerByName("Layer Name")

' Display the references to the instances of the Layer object,

' to make sure that the LayerByName method

' returned the reference to the first added layer - layer1

TRACE "layer1 = " & layer1

TRACE "layer2 = " & layer2

TRACE "reslayer = " & reslayer

' Delete layers

thisDoc.RemoveLayerByID(layer1.ID)

thisDoc.RemoveLayerByID(layer2.ID)

See Also
AddLayer method, Layer method, LayerByID method, LayersNum method,

RemoveLayer method, RemoveLayerByID method, Layer object

ConceptDraw DIAGRAM Third Party Developer’s Guide

733

LayersNum Method

LayersNum Method

Returns the number of the layers in the layer collection of the document.

Applies to: Document object

Syntax
[[Set] countRet =] object.LayersNum ()

The LayersNum method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

countRet Optional. A Long type variable.

Remarks

Never returns 0, as there's always at least one layer in the document.

Example

This example contains a application-level script.. The program displays the number of layers in

each open documents by using the LayersNum method.
' Loop through all documents open in the application

' and display the name and number of layers

' for each document

For i=1 To thisApp.DocsNum()

 TRACE "Document : " & thisApp.Doc(i).Name

 TRACE " Number of layers = " & thisApp.Doc(i).LayersNum()

Next i

See Also
AddLayer method, Layer method, LayerByID method, LayerByName

method, RemoveLayer method, RemoveLayerByID method, Layer object

Layer Method

Layer Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

734

Returns an instance of the Layer object that corresponds to the layer with the specified index in

the layer collection of the document.

Applies to: Document object

Syntax
[[Set] layerRet =] object.Layer (index)

The Layer method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Indicates the index of

the layer in the layer collection of the document.

layerRet Optional. A Layer type variable.

Remarks

If index is less than 1 or greater than the number of layers in the layer collection of the document,

the Layer method returns Nothing. Use the LayersNum method to find out the number of layers

in the layer collection of the document. .

Example

This example contains a document-level script. The program uses the Layer method to go

through all layers in the layer collection of the document, and displays properties of each layer.
' Declare variables

Dim i As Integer

Dim player As Layer

' Loops through all layers in the document

' and display each layer's properties

For i=1 To thisDoc.LayersNum()

 Set player = thisDoc.Layer(i)

 TRACE "Layer_# " & i

 TRACE " ID = " & player.ID

 TRACE " Name = " & player.Name

 TRACE " Visible = " & player.Visible

 TRACE " Locked = " & player.Locked

 TRACE " Printable = " & player.Printable

 TRACE " Colored = " & player.Colored

Next i

See Also
AddLayer method, LayerByID method, LayerByName method, LayersNum

method, RemoveLayer method, RemoveLayerByID method, Layer object

ConceptDraw DIAGRAM Third Party Developer’s Guide

735

LibByName Method (Application object)

LibByName Method (Application object)

Searches for a library with the specified name (Name property) among the open libraries of the

application. Returns an instance of the Library object corresponding to the found library.

Applies to: Application object

Syntax
[[Set] libRet =] object.LibByName (libName)

The DocByName method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

libName
Required. An expression that returns a String value. The name (Name

property) of the library being searched.

libRet Optional. A Library type variable.

Remarks

The LibByName method searches for a library with the libName name starting from the first

library in the library collection and returns the first found library. That is, if the third and fifth

library have the same name, the LibByName method will returns the instance of the Library

object that corresponds to the third library. If there is no matching library, the method returns

Nothing.

LibByName Method (Window object)

LibByName Method (Window object)

Returns a Library object by the library name (the Name property).

Applies to: Window object

Syntax
[[Set] libraryRet =] object.LibByName (libraryName)

ConceptDraw DIAGRAM Third Party Developer’s Guide

736

The LibByName method syntax has these Elements:

Element Description

object Required. An expression that returns a Window object .

libraryName
Required. An expression that returns a String value. The name of the

library to be found.

libraryRet Optional. A Library type variable.

Remarks

This method is only effective if the window is a library window (see the Type property). For

window of all other types the LibByName method always returns Nothing.

The LibByName method searches for the library with the specified name (the Name property)

starting from the beginning of the library list of the window, and returns the first library found. If

there is no library with such name in the collection, the LibByName method returns Nothing.

See Also
Name property, Type property, FindLib method, Lib method, LibsNum

method, Library object

LibsNum Method (Application object)

LibsNum Method (Application object)

Returns the number of open libraries in the application.

Applies to: Application object

Syntax
[[Set] countRet =] object.LibsNum ()

The LibsNum method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

countRet Optional. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

737

Remarks

It's convenient to use the LibsNum method together with the Lib method to go through the open

libraries in the application.

LibsNum Method (Window object)

LibsNum Method (Window object)

Returns the number of open libraries in the library window.

Applies to: Window object

Syntax
[[Let] countRet =] object.LibsNum ()

The LibsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

countRet Optional. A Long type variable.

Remarks

This method is only effective if the window is a library window (see the Type property). For

window of all other types the LibsNum method always returns Nothing.

The LibsNum always returns a value equal to or greater than 1, as ConceptDraw automatically

closes the library window when the last library in the window has been closed.

See Also
Type property, FindLib method, Lib method, LibByName property, Library

object

ConceptDraw DIAGRAM Third Party Developer’s Guide

738

LibWindowByID Method

LibWindowByID Method

Searches for a library window with the specified ID (the ID property) in the window collection of

the application. Returns an instance of the Window object, that corresponds to the found library

window.

Applies to: Application object

Syntax
[[Set] libWndRet =] object.LibWindowByID (libWindowID)

The LibWindowByID method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

libWindowID
Required. An expression that returns a Long value. The ID of the library

window being searched.

libWndRet Optional. A Window type variable.

Remarks

If there is no library window with the specified libWindiwID in the window collection of the

document, the LibWindowByID method returns Nothing.

Example

This example contains a application-level script. The isLibWnd function employs the

LibWindowByID method and is used to determine whether the specified window is a library

window.
' The function checks whether the window with the specified ID

' is a library window.

Function isLibWnd(wnd As Window)

 if thisApp.LibWindowByID(wnd.ID) <> Null Then

 isLibWnd = True

 Else

 isLibWnd = False

 End If

End Function

' Declare variables

Dim l_wnd As Window

Dim d_wnd As Window

' Get first library window

Set l_wnd = thisApp.FirstLibWindow()

' Get second library window

Set d_wnd = thisApp.Doc(1).FirstView()

ConceptDraw DIAGRAM Third Party Developer’s Guide

739

' Disply the results of

' the isLibWnd function for l_wnd and d_wnd

TRACE isLibWnd(l_wnd)

TRACE isLibWnd(d_wnd)

At least one library and one documents must be open for this example to work correctly. As the

result, the following will be displayed:
TRUE

FALSE

See Also
ID property, FirstLibWindow method, LibWindowsNum method,

NextLibWindow method, Window object

LibWindowsNum Method

LibWindowsNum Method

Returns the number of library windows, open in the application.

Applies to: Application object

Syntax
[[Let] countRet =] object.LibWindowsNum ()

The LibWindowsNum method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

countRet Optional. A Long type variable.

Remarks

If there are no library windows in the application, the LibWindowsNum method returns 0. Also

note, that the number of library windows is less or equal to the number of open libraries, because

a library window can't exist without a library in it. So, the following expression always returns

True:

thisApp.LibWindowsNum() <= thisApp.LibsNum() ' returns True

ConceptDraw DIAGRAM Third Party Developer’s Guide

740

Example

This example contains a application-level script. The script calculates and displays the average

number of libraries in each library window.
TRACE thisApp.LibsNum()/thisApp.LibWindowsNum()

See Also
FirstLibWindow method, LibWindowByID method, NextLibWindow

method, Window object

Lib Method (Application object)

Lib Method (Application object)

Returns a Library object by its index in the library collection of the Application.

Applies to: Application object

Syntax
[[Set] libraryRet =] object.Lib (index)

The Lib method syntax has these Elements:

Element Description

object Required. An expression that returns a Application object .

index
Required. An expression that returns a Long value. The library index in

the library collection of the Application.

libraryRet Optional. A Library type variable.

Remarks

If index is less than 1 or greater than the number of libraries in the library collection of the

Application, the Lib method returns Nothing. To find out the number of libraries in the library

collection of the Application. use the LibsNum method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

741

Lib Method (Window object)

Lib Method (Window object)

Returns a Library object by its index in the library collection of the window.

Applies to: Window object

Syntax
[[Set] libraryRet =] object.Lib (index)

The Lib method syntax has these Elements:

Element Description

object Required. An expression that returns a Window object .

index
Required. An expression that returns a Long value. The library index in

the library collection of the library window.

libraryRet Optional. A Library type variable.

Remarks

This method is only effective if the window is a library window (see the Type property). For

window of all other types the Lib method always returns Nothing.

If index is less than 1 or greater than the number of libraries in the library collection of the

window, the Lib method returns Nothing. To find out the number of libraries in the library

collection of the window. use the LibsNum method.

See Also
Type property, FindLib method, LibByName method, LibsNum method,

Library object

LineTo Method

LineTo Method

Builds a line segment. Returns an instance of the Shape object, corresponding to the shape where

the line has been built.

Applies to: Page object, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

742

Syntax
[[Set] shapeRet =] object.LineTo (xEnd, yEnd)

The LineTo method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

xEnd
Required. An expression that returns a Double value. The X-coordinate of the

end point of the line.

yEnd
Required. An expression that returns a Double value. The Y-coordinate of the

end point of the line.

shapeRet Optional. A Shape type variable.

Remarks

The line is based on two points: the begin point of the line and the end point of the line.

If object is a page or a group, the LineTo method creates the line in the current Basic shape of the

page or group. If the method was called prior to the BeginShape method or after the EndShape

method, the LineTo method doesn't create anything and returns Nothing.

If object is a simple shape, the LineTo method creates the line in this shape.

In any case, the begin point of the line is the end point of the last geometry of the shape, in which

the segment is being built. To reposition the begin point of the line, use the MoveTo method. The

coordinates of the points are in the coordinate system of the shape, group or the page to which

object corresponds. The coordinates are measured in internal units (InternalUnit).

See Also
ArcTo method, BeginShape method, EndShape method, MoveTo method,

SplineStart method, SplineTo method

LPtoGP Method

LPtoGP Method

Converts the coordinate of the point from the local coordinate system of the shape into the global

coordinate system of the parent object (group or page).

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

743

Syntax
object.LPtoGP (srcPoint)

The LPtoGP method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

srcPoint Required. A DPoint type variable. The coordinates of the point.

Remarks

The global coordinate system with respect to the coordinate system of the given shape is the local

coordinate system of the parent group in the case when the shape is inside a group. If the shape is

not Element of a group, the global coordinate system coincides with the global coordinate system.

This method modifies the input argument srcPoint and uses it to return the resulting coordinates.

The coordinates are measured in internal units (InternalUnit).

See Also GPtoLp, LAtoWA method, LPtoWP method, WPtoLP method

LPtoWP Method

LPtoWP Method

Converts the coordinates of the specified point from the local coordinate system of this shape to

the world coordinate system.

Applies to: Shape object

Syntax
object.LPtoWP (srcPoint)

The LPtoWP method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

srcPoint Required. A DPoint type variable. The coordinates of the point.

ConceptDraw DIAGRAM Third Party Developer’s Guide

744

Remarks

This method modifies the input argument srcPoint and uses it to return the resulting coordinates.

The coordinates are measured in internal units (InternalUnit).

See Also GPtoLp, LAtoWA method, LPtoGP method, WPtoLP method

MasterByName Method

MasterByName Method

Searches for a master object with the specified name (the Name property) in the master object

collection of the library. Returns a Master object that corresponds to the found master object.

Applies to: Library object

Syntax
[[Set] masterObj =] object.MasterByName (masterName)

The MasterByName method syntax has these Elements:

Element Description

object Required. An expression that returns a Library object.

masterName
Required. An expression that returns a String value. The name of the

master object.

masterObj Optional. A Master type variable.

Remarks

The MasterByName method searches for a master object with the specified name starting from

the beginning of the master object collection of the library, and returns the first found master

object. If there is no master object with the masterName name in the master object collection of

the library, the MasterByName method returns Nothing.

ConceptDraw DIAGRAM Third Party Developer’s Guide

745

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

MastersNum Method

MastersNum Method

Returns the number of master objects in the library.

Applies to: Library object

Syntax
[[Let] count =] object.MastersNum ()

The MastersNum method syntax has these Elements:

Element Description

object Required. An expression, that returns a Library object.

count Optional. A Long type variable.

Remarks

If there are no master objects in the library, the MastersNum method returns 0. It's convenient to

use this method together with the Master method to go through all master objects in a library.

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

Master Method

Master Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

746

Returns an instance of the Master object corresponding to a master object with the specified

index in the master object collection of the library.

Applies to: Library object

Syntax
[[Set] masterObj =] object.Master (index)

The Master method syntax has these Elements:

Element Description

object Required. An expression, that returns a Library object.

index
Required. An expression that returns a Long value. Represents the index

of the master object.

masterObj Optional. A Master type variable.

Remarks

If index is less than 1 or greater than the number of master objects in the library, the Master

method returns Null. The number of the master objects in the library can be found out with the

MastersNum method. The inverse method to this one is the FindMaster method, which returns

the index of the master object in the master object collection of the library.

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

Maximize Method

Maximize Method

Maximizes the window to full screen.

Applies to: Window object

Syntax
object.Maximize ()

The Maximize method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

747

Element Description

object Required. An expression, that returns a Window object.

Remarks

Use the State property to find out the current state of the window.

See Also State property, Minimize method, Restore method

MenuItemByCmdID Method

MenuItemByCmdID Method

Returns an instance of the MenuItem object by the specified ID of the menu item (the CmdID

property) from the menu item collection of the menu.

Applies to: Menu object

Syntax
[[Set] menuItemRet =] object.MenuItemByCmdID (mItemCmdID)

The MenuItemByCmdID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

mItemCmdID
Required. An expression that returns a Long value. Represents the ID of

the menu item being searched.

menuItemRet Optional. A MenuItem type variable.

Remarks

If there is no menu item with the specified mItemCmdID, the MenuItemByCmdID method

returns Nothing.

ConceptDraw DIAGRAM Third Party Developer’s Guide

748

MenuItemsNum Method

MenuItemsNum Method

Returns the number of the menu items, contained in the menu.

Applies to: Menu object

Syntax
[[Let] menuItemsNumRet =] object.MenuItemsNum ()

The MenuItemsNum method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

menuItemsNum

Ret
Optional. A Long type variable.

Remarks

If there are no items in the menu, the MenuItemsNum method returns 0.

See Also AddMenuItem method, MenuItem method, MenuItem object

MenuItem Method

MenuItem Method

Returns an instance of the MenuItem object by its index in the menu item collection of the menu.

Applies to: Menu object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

749

[[Set] menuItemRet =] object.MenuItem (index)

The MenuItem method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

index
Required. An expression that returns a Long value. Indicates the index of

the menu item in the menu item collection of the menu.

menuItemRet Optional. A MenuItem type variable.

Remarks

If index is less than 1 or greater than the number of the items in the menu, the MenuItem method

returns Null. Use the MenuItemsNum method to find out the number of menu items in the menu.

See Also MenuItemsNum method, MenuItem object

Minimize Method

Minimize Method

Minimizes the window.

Applies to: Window object

Syntax
object.Minimize ()

The Minimize method syntax has these Elements:

Element Description

object Required. An expression, that returns a Window object.

Remarks

Use the State property to find out the current state of the window.

ConceptDraw DIAGRAM Third Party Developer’s Guide

750

See Also State property, Maximize method, Restore method

MoveShapeToGroup Method

MoveShapeToGroup Method

Moves the object (shape) at a specific position in the specified group.

Applies to: Document object

Syntax

object. MoveShapeToGroup (shp, gr, x, y, Place)

The MoveShapeToGroup method syntax has these Elements:

Element Description

object Required. An expression that returns an Document object.

shp Required. An expression that returns a value of type Shape. Relocatable object.

gr Required. An expression that returns a value of type Shape. The object-group, which

moves the specified object.

x Required. An expression that returns a Double value, representing the X coordinate

of the point.

y Required. An expression that returns a Double value, representing the Y coordinate

of the point.

Place Optional. An expression that returns a value of type Long. The position of the object

in the collection of objects of the group.

Remarks

If the position of the Place is not specified, the default, the object is placed at the end of a

collection of objects.

Methods MoveShapeToGroup () and MoveShapeToPage () are used to move an object (shape)

in a group or to another page, respectively. To move within the same group or page using the

properties of the object GPinY GPinX and Shape.

http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

751

See Also

MoveTo Method, GPinX Property, Property GPinY, MoveShapeToPage ()

Method, Shape object, Document object

MoveShapeToPage Method

MoveShapeToPage Method

Moves the object (shape) in a specific location on that page of the document.

Applies to: Document object

Syntax

object. MoveShapeToPage (shp, pg, x, y, Place)

The MoveShapeToPage method syntax has these Elements:

Element Description

object Required. An expression that returns an Document object.

shp Required. An expression that returns a value of type Shape. Relocatable object.

pg Required. An expression that returns a value of type Page. Page that moves the

specified object.

x Required. An expression that returns a Double value, representing the X coordinate

of the point.

y Required. An expression that returns a Double value, representing the Y coordinate

of the point.

Place Optional. An expression that returns a value of type Long. The position of the object

in the collection of objects of the group.

Remarks

If the position of the Place is not specified, the default, the object is placed at the end of a

collection of objects.

Methods MoveShapeToGroup () and MoveShapeToPage () are used to move an object (shape)

in a group or to another page, respectively. To move within the same group or page using the

properties of the object GPinY GPinX and Shape.

See Also
MoveTo method, GPinX property, GPinY property, MoveShapeToGroup()

method, Shape object, Document object

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.moveshapetopage_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.moveshapetopage_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.document_obj

ConceptDraw DIAGRAM Third Party Developer’s Guide

752

MoveTo Method

MoveTo Method

Sets the position of the current point of the shape, used for creating the shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.MoveTo (x, y)

The MoveTo method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

x
Required. An expression that returns a Double value, representing the X

coordinate of the point.

y
Required. An expression that returns a Double value, representing the Y

coordinate of the point.

shapeRet Optional. A Shape type variable.

Remarks

If object is a page or a group, the MoveTo method adds a new geometry with one start segment

with the specified coordinates to the current Basic shape of the page or group. If the method was

called before the BeginShape method or after the EndShape method, the MoveTo method

doesn't create anything and returns Nothing.

If object is a simple shape, the MoveTo method adds a new geometry with the start segment in

this shape.

The coordinates of the point are specified in the coordinate system of the shape, group or page to

which the instance of object corresponds. The units of measure for the coordinates are the internal

units (InternalUnit).

See Also
ArcTo method, BeginShape method, EndShape method, LineTo method,

SplineStart method, SplineTo method

ConceptDraw DIAGRAM Third Party Developer’s Guide

753

NextDoc Method

NextDoc Method

Returns an instance of the Document object corresponding to the next document in the document

collection of the application.

Applies to: Application object

Syntax
[[Set] documentRet =] object.NextDoc ()

The NextDoc method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

documentRet Optional. A Document type variable.

Remarks

Note, that FirstDoc method must be called prior to using the NextDoc method, otherwise the

NextDoc method will return Nothing. The NextDoc method also returns Nothing when the end

of the list of the open documents is reached. It's convenient to use the NextDoc method together

with the FirstDoc method to go through all documents open in the application.

Example

This example contains a application-level script. The script adds a page in each other document,

open in the application. The FirstDoc and NextDoc methods are used to go through document.
Dim curDoc As Document ' Declare variables

Set curDoc = thisApp.FirstDoc() ' Get first document

While curDoc <> Nothing ' Loop through all documents

 curDoc = thisApp.NextDoc() ' Get next document

 If curDoc <> Nothing Then

 curDoc.AddPage() ' Add page

 thisApp.NextDoc() ' Skip next document

 End If

Wend

See Also
CloseDoc method, CreateNewDoc method, Doc method, DocByName

method, DocsNum method, FirstDoc method, OpenDoc method, Document

object

ConceptDraw DIAGRAM Third Party Developer’s Guide

754

NextLibWindow Method

NextLibWindow Method

Returns an instance of the Window object corresponding to the next library window in the

window collection of the application.

Applies to: Application object

Syntax
[[Set] libWindowRet =] object.NextLibWindow ()

The NextLibWindow method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

libWindowRet Optional. A Window type variable.

Remarks

Note, that FirstLibWindow method must be called prior to using the NextLibWindow method,

otherwise the NextLibWindow method will return Nothing. The NextLibWindow method also

returns Nothing when the end of the list of the library windows has been reached. It's convenient

to use the NextLibWindow method together with the FirstLibWindow method to go through all

library winodws open in the application.

Example

This example contains a application-level script. The script displays the list of library windows

and the list of libraries in each window.
' Declare variables

Dim lib_wnd As Window

Dim i As Integer

' Get the first library window

Set lib_wnd = thisApp.FirstLibWindow()

TRACE "==============================="

While lib_wnd <> Null

 ' Display the ID of the window

 TRACE "ID = " & lib_wnd.ID & " :"

 ' Display the list of libraries in the current library window

 For i=1 To lib_wnd.LibsNum()

 TRACE " - " & lib_wnd.Lib(i).Title

 Next i

ConceptDraw DIAGRAM Third Party Developer’s Guide

755

 ' Get next library window

 Set lib_wnd = thisApp.NextLibWindow()

Wend

TRACE "==============================="

See Also
FirstLibWindow method, LibWindowByID method, LibWindowsNum

method, Window object

NextView Method

NextView Method

Returns an instance of the Window object corresponding to the next window in the window

collection of the document.

Applies to: Document object

Syntax
[[Set] windowRet =] object.NextView ()

The NextView method syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

windowRet Optional. A Window.type variable.

Remarks

The FirstView method must be called prior to using the NextView method, otherwise the

NextView method will return Nothing. The NextView method also returns Nothing when the

end of the list of the windows has been reached.

Note, that the window collection of the document can include windows of the following types

(the Type property): document window, table window, Basic window. It's convenient to use the

NextView method together with the FirstView method to go through all windows of the

document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

756

See Also
Type property, FirstView method, ViewByID method, ViewsNum method,

UpdateAllViews method, Window object

NormalizeRect Method

NormalizeRect Method

Normalizes the properties of the instance of the object. That means that when the left value is

greater than the right value, the values are exchanged. The same applies to the top and bottom

properties, if the top value is greater than bottom.

Applies to objects: DRect

Syntax
object.NormalizeRect ()

The NormalizeRect method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Example
Dim MyRect as new DRect

MyRect.SetRect(400,400,200,200)

' After this method has been used

' MyRect properties become 200,200,400,400

MyRect.NormalizeRect()

See Also DRect Object

OffsetRect Method

OffsetRect Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

757

Offsets the rectangle by the X and Y axes, calcualtes new coordinates for the instance of the

object.

Applies to objects: DRect

Syntax
object.OffsetRect (x, y)

The OffsetRect method syntax has these Elements:

Element Description

object A reference to an instance of the object.

x A Double value, represents the horizontal offset of the rectangle.

y A Double value, represents the vertical offset of the rectangle.

Example
' Create a new instance of the object

Dim MyObject as new DRect

' set left,top,right,bottom properties

MyObject.SetRect(100,100,200,300)

' offset rect

' After the operation the properties of MyObject will be equal to:

' left - 110, top - 85, right - 210, bottom - 285

MyObject.OffsetRect(10,-15)

See Also DRect Object

OpenDoc Method

OpenDoc Method

Opens an existing ConceptDraw document.

Applies to: Application object

Syntax
[[Set documentRet =] object.OpenDoc (fileName)

The OpenDoc method syntax has these Elements:

Element Description

file:///D:/Projects/ConceptDraw_2.x/CDBasic/Doc/CDBasic_Reference/cdobj/application_obj.htm

ConceptDraw DIAGRAM Third Party Developer’s Guide

758

object Required. An expression, that returns an instance of the Document object.

fileName
Required. An expression that returns a String value. Contains the name of

the document file including the full or relative path.

documentRet Optional. A Document type variable.

Remarks

The OpenDoc method attempts to open the specified file as one of the ConceptDraw files, to

which the following file formats belong:

Extention
File Type (for

Mac)

CDBasic

constant
Description

"cdd" 'cdda' cdf_CDD ConceptDraw V Document

"cdd" 'cdda' cdf_CDD1X ConceptDraw 1.x Document

"cdl" 'cddc' cdf_CDL ConceptDraw V Library

"cdl" 'cddc' cdf_CDL1X ConceptDraw 1.x Library

"cdx" cdf_CDX XML for ConceptDraw

"cdw" 'cddd' cdf_CDW ConceptDraw V Workspace

"cdw" 'cddd' cdf_CDW1X ConceptDraw 1.x Workspace

If the document has been opened successfully, the OpenDoc method returns an instance of the

Document object, that corresponds to the opened document. If the file with the specified name

doesn't exist, or doesn't match one of the file formats, listed above, the OpenDoc method returns

Nothing.

Example

This example contains a application-level script. The script imitates the way the "File->Open"

menu item of ConceptDraw works.
Dim str As String ' Declare string variable

str = GetOpenFileName () ' Display file open dialog

 ' and get the filename

thisApp.OpenDoc(str) ' Attempt to open the chosen file

See Also
CloseDoc method, CreateNewDoc method, Doc method, DocByName

method, DocsNum method, FirstDoc method, NextDoc method, Document

object, Import/Export constants

ConceptDraw DIAGRAM Third Party Developer’s Guide

759

OpenLib Method

OpenLib Method

Opens an existing ConceptDraw library. Returns an instance of the Library object, that

corresponds to the opened library.

Applies to: Application object

Syntax
[[Set] libRet =] object.OpenLib (fileName)

The OpenLib method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

fileName
Required. An expression that returns a String value. Contains the name of

the library file including the full or relative path.

libRet Optional. A Library type variable.

Remarks

The OpenLib method is used for opening only library files - both in ConceptDraw V and

ConceptDraw 1.x format. If the file with the specified fileName doesn't exist, or isn't a

ConceptDraw library, the OpenLib method returns Nothing.

Example

This example contains a application-level script. It opens the library, chosen by the user, then

creates a new document and copies all shapes from the library to to first page of the document.
Dim pLib As Library ' Declare variables

Dim pDoc As Document

Dim lib_name As String

' Get filename from the user

Set lib_name = GetOpenFileName()

' Open the library with specified filename

Set plib = thisApp.OpenLib(lib_name)

If plib <> Null Then

 ' Create new document

 Set pDoc = thisApp.CreateNewDoc()

 ' Copy all shapes from the opened library to

 ' the first page of the document

 For i=1 To plib.MastersNum()

 pDoc.Page(1).DropStamp(plib.Master(i).Shape, 700, 600)

 Next i

End If

ConceptDraw DIAGRAM Third Party Developer’s Guide

760

See Also
CloseLib method, CreateNewLib method, FindLib method, Lib method,

LibByName method, LibsNum method, OpenLib method, Library object

OpenWorkspace Method

OpenWorkspace Method

Opens an existing workspace file.

Applies to: Application object

Syntax
[[Let] booleanRet =] object.OpenWorkspace (fileName)

The OpenWorkspace method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Application object.

fileName
Required. An expression that returns a String value. Contains the name of the

workspace file including the full or relative path.

booleanRet Optional. A Boolean type variable.

Remarks

If the specified file has been successfully found and opened as a ConceptDraw workspace file, the

OpenWorkspace method returns True. Otherwise, the method returns False. To open

ConceptDraw documents and libraries separately use the OpenDoc and OpenLib methods

respectively.

Example

This example contains a application-level script. The script uses the OpenWorkspace method to

imitate the way the "File->Open Workspace" menu item of ConceptDraw works.
thisApp.OpenWorkSpace(GetOpenFileName())

ConceptDraw DIAGRAM Third Party Developer’s Guide

761

See Also OpenDoc method, OpenLib method, SaveWorkspace method

PageByID Method

PageByID Method

Searches for a page by the specified ID (the ID property) in the page collection of the document.

Returns an instance of the Page object, corresponding to the found page.

Applies to: Document object

Syntax
[[Set] pageRet =] object.PageByID (pageID)

The PageByID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

pageID
Required. An expression that returns a Long value. Represents the ID of

the page being searched.

pageRet Optional. A Page variable.

Remarks

If the page with the specified pageID wasn't found in the document, the method returns Nothing.

Example

This example contains a document-level script. The script removes all shapes on the page,

specified by the user. The user specifies the ID of the page, then the PageByID method is used to

find the page and the script removes all shapes and service objects on the page.
' Declare variables

Dim ppage As Page ' page

Dim pageID As Long ' Page ID

' Ask the user to input page ID

Let pageID = InputBox("Enter ID of page :", "CLEAR UP Page!")

' Get the reference to the page by the page ID

' provided by the user

Set ppage = thisDoc.PageByID(pageID)

' If the page with such ID was found

ConceptDraw DIAGRAM Third Party Developer’s Guide

762

' in the page collection of the document, clear the page

If ppage <> Null Then

 ' Remove all shapes on the page

 ppage.RemoveAllShapes()

 ' Remove all service objects on the page

 ppage.RemoveAllServObjs()

 ' Display a message that the page has been cleaned up

 MsgBox("Page is clear!")

Else

 ' Display a message the the page has not been found

 MsgBox("No page was chosen!")

End If

See Also
AddPage method, FindPage method, Page method, PagesNum method,

RemovePage method, RemovePageByID method, ReorderPage method,

ReorderPageByID method, Page object

PagesNum Method

PagesNum Method

Returns the number of the pages in the page collection of the document.

Applies to: Document object

Syntax
[[Let] countRet =] object.PagesNum ()

The PagesNum method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

countRet Optional. A Long type variable.

Remarks

Returns 1 or greater, as there's always at least one page in the document.

Example

This example contains a application-level script.. The program displays list of documents, open in

the application, and the number of pages in each document by using the PagesNum method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

763

' Declare variables

Dim pdoc As Document

' Loop through all open documents

For i=1 To thisApp.DocsNum()

 ' Get next document

 Set pdoc = thisApp.Doc(i)

 ' Display the name of the document

 TRACE "Document Name : " & pdoc.Name

 ' Display the number of pages in the document

 TRACE " Number of pages = " & pdoc.PagesNum()

Next i

See Also
AddPage method, FindPage method, Page method, PageByID method,

RemovePage method, RemovePageByID method, ReorderPage method,

ReorderPageByID method, Page object

Page Method

Page Method

Returns an instance of the Page object that corresponds to the page with the specified index in the

page collection of the document.

Applies to: Document object

Syntax
[[Set] pageRet =] object.Page (index)

The Page method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Indicates the index of

the page in the page collection of the document.

pageRet Optional. A Page type variable.

Remarks

If index is less than 1 or greater than the number of pages in the page collection of the document,

the Page method returns Nothing. Use the PagesNum method to find out the number of pages in

the page collection of the document. .

ConceptDraw DIAGRAM Third Party Developer’s Guide

764

Example

This example contains a document-level script. The program displays all page names and

properties of each page in the page collection of the document. The Page method is used to go

through all pages in the collection.
' Declare variables

Dim ppage As Page

' Loop through all pages of the document

' by using the Page method

For i=1 To thisDoc.PagesNum()

 ' Get next page from the pae collection

 ' of the document

 Set ppage = thisDoc.Page(i)

 ' Display the page index

 TRACE "Page_#_" & i

 ' display a page property

 TRACE " ID = " & ppage.ID

 TRACE " Name = " & ppage.Name

 TRACE " isBackground = " & ppage.isBackground

 TRACE " BackPageID = " & ppage.BackPageID

Next i

See Also
AddPage method, FindPage method, PageByID method, PagesNum method,

RemovePage method, RemovePageByID method, ReorderPage method,

ReorderPageByID method, Page object

ParagraphsNum Method

ParagraphsNum Method

Returns the number of paragraphs in the paragraph collection of the shape.

Applies to: Shape object

Syntax
[[Let] countRet =] object.ParagraphsNum ()

The ParagraphsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

765

Remarks

If the shape doesn't contain text, it doesn't contain any paragraphs, so in this case the

ParagraphsNum method returns 0.

See Also

GetParagraphIndex method, Paragraph method, RemoveParagraph method,

SetParaAfterSpacing method, SetParaBeforeSpacing method,

SetParaFirstInd method, SetParaHAlign method, SetParaLeftInd method,

SetParaLineSpacing method, SetParaRightInd method, Paragraph object

Paragraph Method

Paragraph Method

Returns a Paragraph object that corresponds to a paragraph with the specified index in the

paragraph collection of the shape.

Applies to: Shape object

Syntax
[[Set] paragraphRet =] object.Paragraph (index)

The Paragraph method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

paragraph in the paragraph collection of the shape.

paragraphRet Optional. A Paragraph type variable.

Remarks

If index is less than 1 or greater than the number of paragraphs of the shape, the Paragraph

method returns Nothing. To find out the number of paragraphs of the shape, use the

ParagraphsNum method.

See Also
GetParagraphIndex method, ParagraphsNum method, RemoveParagraph

method, SetParaAfterSpacing method, SetParaBeforeSpacing method,

ConceptDraw DIAGRAM Third Party Developer’s Guide

766

SetParaFirstInd method, SetParaHAlign method, SetParaLeftInd method,

SetParaLineSpacing method, SetParaRightInd method, Paragraph object

PropertyChanged Method

PropertyChanged Method

Tells ConceptDraw engine that the value of the specified property has been changed and the

formulas of the dependent properties must be re-calculated.

Applies to objects: Shape, ServObj

Syntax
object.PropertyChanged(propTag [, num[, geom]])

The PropertyChanged method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the object.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

ConceptDraw DIAGRAM Third Party Developer’s Guide

767

If the PropertyChanged method has been called after the StartRebuild method, the properties

will be re-calculated on calling the EndRebuild method. Otherwise, they will be re-calculated

immediately.

If the PropertyChanged method has been called from a user procedure, which in its turn has

been called during re-calculation of a property, containing the table formula with functions

_CALLTHIS, _CALLTHIS_1ARG or _CALLTHIS_2ARGS, the properties, depending on the

property specified in PropertyChanged will be re-calculated as soon as the calculation of the

property that called the user procedure is over.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method , EndRebuild

method, StartRebuild method

PtInRect Method

PtInRect Method

Returns a Boolean value: TRUE, if the point with the specified coordinates is within the

rectanlge, otherwise - FALSE.

Applies to objects: DRect

Syntax
[[Let] res =] object.PtInRect (x, y)

The PtInRect method syntax has these Elements:

Element Description

object A reference to an instance of the object.

x, y X,Y coordinates of the point, Double values.

res A Boolean type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

768

Example

This example demonstrates using the PtInRect method.
Dim MyObject as new DRect, res as Boolean

'set DRect object properties

MyObject.SetRect(100,100,200,500)

res = MyObject.PtInRect(150,250) ' res = true

See Also DRect Object

RecalcProperty Method

RecalcProperty Method

Tells ConceptDraw engine that the value of the specified property is to be re-calculated using its

table formula.

Applies to objects: Shape, ServObj

Syntax
object.RecalcProperty(propTag [, num[, geom]])

The RecalcProperty method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the shape.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the shape.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the shape.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

769

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

If the RecalcProperty method has been called after the StartRebuild method, the properties will

be re-calculated on calling the EndRebuild method. Otherwise, they will be re-calculated

immediately.

If the RecalcProperty method has been called from a user procedure, which in its turn has been

called during re-calculation of a property, containing the table formula with functions

_CALLTHIS, _CALLTHIS_1ARG or _CALLTHIS_2ARGS, the properties, depending on the

property specified in RecalcProperty will be re-calculated as soon as the calculation of the

property that called the user procedure is over.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method , EndRebuild

method, StartRebuild method

RemoveAction Method

RemoveAction Method

Removes a user-defined action with the specified index from the user-defined action collection of

the shape, and returns the number of remaining actions.

Applies to: Shape object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

770

[[Let] countRet =] object.RemoveAction (index)

The RemoveAction method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the user-

defined action to be deleted.

actionRet Optional. An Action type variable.

Remarks

If index is less than 1 or greater than the number of user-defined actions of the shape, the

RemoveAction method doesn't delete anything and returns the number of user-defined actions of

the shape. To find out the number of user-defined actions of the shape, use the ActionsNum

method.

See Also
Action method, ActionsNum method, AddAction method, RemoveAction

method

RemoveAllServObjs Method

RemoveAllServObjs Method

Removes all service objects that belong to the page/group.

Applies to: Page object, Shape object

Syntax
object.RemoveAllServObjs ()

The RemoveAllServObjs method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

771

The RemoveAllServObjs method attempts to remove all service objects of the page/group. To

find out whether all service objects have been removed, use the ServObjsNum method which

returns the number of service objects, that belong to the page/group.

See Also
RemoveAllShapes method, RemoveServObj method, RemoveServObjByID

method, ServObjsNum method

RemoveAll Method

RemoveAllShapes Method

Removes all shapes that belong to the page/group.

Applies to: Page object, Shape object

Syntax
object.RemoveAllShapes ()

The RemoveAllShapes method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

Remarks

The RemoveAllShapes method attempts to remove all shapes of the page/group. Note, that you

can't delete the shape which Basic script is being executed at the moment. To find out whether all

shapes have been removed, use the ShapesNum method which returns the number of shapes, that

belong to the page/group.

See Also
RemoveAllServObj method, RemoveShape method, RemoveShapeByID

method, ShapesNum method

ConceptDraw DIAGRAM Third Party Developer’s Guide

772

RemoveAll Method

Removes all menu items from the menu.

Applies to: Menu object

Syntax
object.RemoveAll ()

The MenuItem method syntax has these Elements:

Element Description

object Required. An expression that returns a Menu object.

RemoveCharacter Method

RemoveCharacter Method

Removes the character block with the specified index from the character block collection of the

shape, and returns the number of remaining character blocks.

Applies to: Shape object

Syntax
[[Let] countRet =] object.RemoveCharacter (index)

The RemoveCharacter method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

character block to be deleted.

indexRet Optional. A Long type variable.

Remarks

If index is less than 1 or greater than the number of character blocks of the shape, the

RemoveCharacter method doesn't delete anything and returns the current number of character

blocks of the shape. To find out the number of character blocks of the shape, use the

CharactersNum method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

773

See Also

Character method, CharactersNum method, GetCharacterIndex method,

SetCharColor method, SetCharFont method, SetCharHyperlink method,

SetCharLanguage method, SetCharPos method, SetCharSize method,

SetCharSpacing method, SetCharStyle method, Character object

RemoveConnectDot Method

RemoveConnectDot Method

Removes a connection point from the connection point collection of the shape, and returns the

number of remaining connection points.

Applies to: Shape object

Syntax
[[Let] countRet =] object.RemoveConnectDot (index)

The RemoveConnectDot method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index

Required. An expression that returns a Long value. The index of the

connection point to be deleted from the connection point collection of the

shape.

connectDotRet Optional. A ConnectDot type variable.

Remarks

If index is less than 1 or greater than the number of connection points of the object shape, the

RemoveConnectDot method doesn't delete anything and returns the current number of

connection points of the shape. To find out the number of connection points of the shape, use the

ConnectDotsNum method.

See Also
AddConnectDot method, ConnectDot method, ConnectDotsNum method,

ConnectDot object

ConceptDraw DIAGRAM Third Party Developer’s Guide

774

RemoveControlDot Method

RemoveControlDot Method

Removes a control handle with the specified index from the control handle collection of the

shape, and returns the number of remaining control handles.

Applies to: Shape object

Syntax
[[Let] countRet =] object.RemoveControlDot (index)

The RemoveControlDot method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

control handle to be deleted in the control handle collection of the shape.

countRet Optional. A Long type variable.

Remarks

If index is less than 1 or greater than the number of control handles of the object shape, the

RemoveControlDot method doesn't delete anything and returns the current number of control

handles of the shape. To find out the number of control handles of the shape, use the

ControlDotsNum method.

See Also
AddControlDot method, ControlDot method, ControlDotsNum method,

ControlDot object

RemoveCustomProp Method

RemoveCustomProp Method

Removes a custom property with the specified index from the custom property collection of the

shape, and returns the number of remaining custom properties.

ConceptDraw DIAGRAM Third Party Developer’s Guide

775

Applies to: Shape object

Syntax
[[Let] countRet =] object.RemoveCustomProp (index)

The RemoveCustomProp method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index

Required. An expression that returns a Long value. The index of the

custom property to be deleted in the custom property collection of the

shape.

countRet Optional. A Long type variable.

Remarks

If index is less than 1 or greater than the number of custom properties of the shape, the

RemoveCustomProp method doesn't delete anything and returns the current number of custom

properties of the shape. To find out the number of custom properties of the shape, use the

CustomPropsNum method.

See Also
AddCustomProp method, CustomProp method, CustomPropByLabel,

CustomPropsNum method, CustomProp object

RemoveDataSource Method

RemoveDataSource Method

Deletes the data source from the collection of data sources, the object (shape) of the

index. Returns the number of data sources in the object (shape).

Applies to: Shape object

Syntax

[[Let] num =] object. RemoveDataSource (index)

The RemoveDataSource method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

776

index Required. An expression that returns a Long value. The index of the DataSource in

the DataSources collection of the shape.

num Optional. A Long type variable.

Remarks

The numbering of the indices of data sources in the collection begins with

1. RemoveDataSource method returns the total number of data sources, regardless of whether

they are valid or not. If the object has no data sources, the function returns 0.

Example
dim num as Integer
num = thisShape.DataSourcesNum ()
trace num
num = thisShape.RemoveDataSource (1)
trace num

See Also

DataSource object , AddDataSource Method , Method DataSource , Method

DataSourcesNum

RemoveDSValue Method

RemoveDSValue Method

Removes a row from a table Data parameters of the object (shape) of the index. Returns the

number of rows in a table Data parameters of the object (shape).

Applies to: Shape object

Syntax

[[Let] num =] object. RemoveDSValue (index)

The RemoveDSValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Required. An expression that returns a Long value. The index of the row Data

parameters of the object (shape).

num Optional. A Long type variable.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.adddatasource_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.datasource_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.datasourcesnum_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.datasourcesnum_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

777

The numbering of the indices of rows in a table Data begins at 1. If the object does not have a

table Data parameters of the object (shape), or has been removed the last line, the method returns

0RemoveDSValue.

Example
dim num as Integer

num = thisShape.DSValuesNum()

trace num

num = thisShape.RemoveDSValue(1)

trace num

See Also
DataSourceValue object, AddDSValue method, DSValue method,

DSValueEl method, DSValuesNum method

RemoveGeometry Method

RemoveGeometry Method

Removes a geometry with the specified index from the geometry collection of the shape, and

returns the number of remaining geometries.

Applies to: Shape object

Syntax
[[Let] countRet =] object.RemoveGeometry (index)

The RemoveGeometry method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

geometry in the geometry collection of the shape.

countRet Optional. An Long type variable.

Remarks

If index is less than 1 or greater than the number of geometries of the shape, the

RemoveGeometry method doesn't delete anything and returns the current number of geometries

ConceptDraw DIAGRAM Third Party Developer’s Guide

778

of the shape. To find out the number of geometries of the shape, use the GeometriesNum

method.

See Also
AddGeometry method, GeometriesNum method, Geometry method,

Geometry object

RemoveLayerByID Method

RemoveLayerByID Method

Removes the layer with the specified ID (ID property) from the layer collection of the document.

Returns the number of layers, remaining in the collection after the operation.

Applies to: Document object

Syntax
[[Let] countRet =] object.RemoveLayerByID (layerID)

The RemoveLayerByID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

layerID
Required. An expression that returns a Long value. Indicates the ID of the

layer in the layer to be removed.

countRet Optional. A Long type variable.

Remarks

If the layer with the specified ID (the ID property) wasn't found, the RemoveLayerByID method

doesn't remove anything and returns the number of layers in the document. When a layer is

removed, the remaining layers are re-indexed - that is, the index of every layer after the removed

one is decreased by 1.

You can't remove all layers - at least one layer must exist in the document. An attempt to delete

the last layer will have no effect.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

779

This example contains a document-level script. The program removes all layers that don't have

shapes on them from the layer collection of the document. First it determines the IDs of all layers

and records them into the layerIDs array. Then the IDs of the layers which have shapes on them

are erased from the array. The layers with remaining IDs are removed by using the

RemoveLayerByID method. The number of removed layers is calculated and displayed on the

screen.
' Declare variables

Dim ppage As Page ' Page

Dim player As Layer ' Layer

Dim layers_num As Integer ' Number of layers

Dim layerIDs() As Long ' Layer IDs array

' Get the number of layers

layers_num = thisDoc.LayersNum()

' Create an array to store the IDs of the layers in the document

ReDim layerIDs(layers_num)

' Fill the layerIDs array with IDs of all layers of the document

For i=1 To layers_num

 Let layerIDs(i) = thisDoc.Layer(i).ID

Next i

' Loop through all pages of the document

For i=1 To thisDoc.PagesNum()

 ' Get next page

 Set ppage = thisDoc.Page(i)

 ' Loop through all shapes on the page

 For j=1 To ppage.ShapesNum()

 ' For each shape determine the ID of the layer on which it's located

 ' and if it matches the currently used layer,

 ' erase it

 For k=1 To layers_num

 If layerIDs(k) = ppage.Shape(j).Layer Then

 layerIDs(k) = 0

 End If

 Next k

 Next j

Next i

layers_num = 0

' Loop through all remaining layer IDs

' and remove corresponding layers

For i=1 To thisDoc.LayersNum()

 If layerIDs(i) <> 0 Then

 thisDoc.RemoveLayerByID(layerIDs(i))

 layers_num = layers_num + 1

 End If

Next i

' Display the number of removed layers

TRACE "Number of deleted layers = " & layers_num

See Also
Layer method, LayerByID method, LayerByName method, LayersNum

method, RemoveLayer method, Layer object

ConceptDraw DIAGRAM Third Party Developer’s Guide

780

RemoveLayer Method

RemoveLayer Method

Removes the layer with the specified index from the layer collection of the document. Returns the

number of layers, remaining in the collection after the operation.

Applies to: Document object

Syntax
[[Let] countRet =] object.RemoveLayer (index)

The RemoveLayer method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Indicates the index of

the layer to be removed in the layer collection of the document.

countRet Optional. A Long type variable.

Remarks

If index is less than 1, or greater than the number of layers in the layer collection of the document,

the RemoveLayer method doesn't remove the layer. When a layer is removed, the remaining

layers are re-indexed - that is, the index of every layer after the removed one is decreased by 1.

You can't remove all the layers - at least one layer must exist in the document. An attempt to

delete the last layer will have no effect.

Example

This example contains a document-level script. It removes all non-printable layers of the

document by using the RemoveLayer method.
' Declare variables

Dim player As Layer

' Loop through all layers

' starting from the end of the layer list of the current document

For i=thisDoc.LayersNum() To 1 Step -1

 ' Get next layer

 Set player = thisDoc.Layer(i)

 ' If layer is non-printable, remove the layer

 If player.Printable = False Then

 thisDoc.RemoveLayer(i)

 End If

Next i

ConceptDraw DIAGRAM Third Party Developer’s Guide

781

See Also
AddLayer method, Layer method, LayerByID method, LayerByName

method, LayersNum method, RemoveLayerByID method, Layer object

RemoveMasterByName Method

RemoveMasterByName Method

Removes the master object with the specified name (the Name property) from the master object

collection of the library.

Applies to: Library object

Syntax
[[Let] count =] object.RemoveMasterByName (masterName)

The RemoveMasterByName method syntax has these Elements:

Element Description

object Required. An expression, that returns a Library object.

masterName
Required. An expression that returns a String value. Indicates the name

(the Name property) of the master object to be removed.

count Optional. A Long type variable.

Remarks

The RemoveMasterByName method searches for a master object with the specified name,

starting from the beginning of the master object collection of the library, and returns the first

master object, that matches the specified name. If there are no master objects with such name, the

MasterByName method returns Nothing.

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

ConceptDraw DIAGRAM Third Party Developer’s Guide

782

RemoveMaster Method

RemoveMaster Method

Removes a master object with the specified index from the master object collection of the library,

and returns the number of remaining master objects.

Applies to: Library object

Syntax
[[Let] count =] object.RemoveMaster (index)

The RemoveMaster method syntax has these Elements:

Element Description

object Required. An expression that returns a Library object.

index
Required. An expression that returns a Long value. The index of the

master object to be deleted.

count Optional. A Long type variable.

Remarks

If index is less than 1, or greater than the number of master objects in the master object collection

of the library, the RemoveMaster method doesn't remove the master object. When a master

object is removed, the remaining master objects are re-indexed - that is, the index of every master

object after the removed one is decreased by 1.

See Also
AddMaster method, FindMaster method, Master method, MasterByName

method, MastersNum method, RemoveMaster method,

RemoveMasterByName method

RemoveMenuItemByCmdID Method

RemoveMenuItemByCmdID Method

Removes the menu item with the specified ID (the CmdID property). Returns the number of

menu item, remaining in the menu after the operation.

ConceptDraw DIAGRAM Third Party Developer’s Guide

783

Applies to: Menu object

Syntax
[[Let] countRet =] object.RemoveMenuItemByCmdID (mItemCmdID)

The RemoveMenuItemByCmdID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

mItemCmdID
Required. An expression that returns a Long value. Indicates the ID (the

CmdID property) of the menu item to be removed.

countRet Optional. A Long type variable.

Remarks

If the menu item with the specified mItemCmdID was not found in the menu item collection of the

menu, the RemoveMenuItemByCmdID method doesn't remove anything.

RemoveMenuItem Method

RemoveMenuItem Method

Removes the menu item with the specified index Returns the number of menu item, remaining in

the menu after the operation.

Applies to: Menu object

Syntax
[[Let] countRet =] object.RemoveMenuItem (index)

The RemoveMenuItem method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Menu object.

index
Required. An expression that returns a Long value. Indicates the index of

the menu item to be removed in the menu item collection of the menu.

countRet Optional. A Long type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

784

If index is less than 1 or greater than the number of menu items in the menu, the

RemoveMenuItem method removes nothing.

See Also

RemovePageByID Method

RemovePageByID Method

Removes the page with the specified ID (the ID property) from the page collection of the

document. Returns the number of pages, remaining in the document after the operation.

Applies to: Document object

Syntax
[[Let] countRet =] object.RemovePageByID (pageID)

The RemovePageByID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

pageID

Required. An expression that returns a Long value. Indicates the ID (the

ID property) of the page to be removed in the page collection of the

document.

countRet Optional. A Long type variable.

Remarks

If there is no page with the specified ID (the ID property) in the document, the

RemovePageByID method doesn't delete the page and returns the number of pages in the

document. When a page is removed, the remaining pages are re-indexed - that is, the index of

every page following the removed one is decreased by 1. Use the PagesNum method to find out

the number of the pages in the document.

You can't remove all the pages - at least one page must exist in the document. An attempt to

delete the last page will have no effect. Also, you can't remove the page if its script or the script of

one of its shapes is being executed at the moment.

ConceptDraw DIAGRAM Third Party Developer’s Guide

785

Example

This example contains a document-level script. The program attempts to remove the page with the

ID specified by the user by using the RemovePageByID method. Then in analyses the number of

the pages in the document, and displays a message saying whether the page was removed.
' Declare variables

Dim pageID As Long

Dim count As Long

' The user inputs the ID of the page

' to be deleted

Let pageID = InputBox("Enter ID of page to delete:", "Delete page by ID")

' Remember the number of pages in the document

' before the attempt to remove the page

Let count = thisDoc.PagesNum()

' Remove the page with the specified ID

If count = thisDoc.RemovePageByID(pageID) Then

 ' If the number of pages hasn't changed,

 ' display a message that the page wasn't deleted

 MsgBox("Page has been deleted!")

Else

 ' If the number of pages hast changed,

 ' display a message that the page has been deleted

 MsgBox("Page with ID = " & pageID & " has been deleted!")

End If

See Also
AddPage method, FindPage method, Page method, PageByID method,

PagesNum method, RemovePage method, ReorderPage method,

ReorderPageByID method, Page object

RemovePage Method

RemovePage Method

Removes the page with the specified index from the page collection of the document. Returns the

number of pages, remaining in the collection after the operation.

Applies to: Document object

Syntax
[[Let] countRet =] object.RemovePage (index)

The RemovePage method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

786

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Indicates the index of

the page to be removed in the page collection of the document.

countRet Optional. A Long type variable.

Remarks

If index is less than 1, or greater than the number of pages in the document, the RemovePage

method doesn't remove the page. When a page is removed, the remaining pages are re-indexed -

that is, the index of every page following the removed one is decreased by 1. Use the PagesNum

method to find out the number of the pages in the document.

You can't remove all the pages - at least one page must exist in the document. An attempt to

delete the last page will have no effect. Also, you can't remove the page if its script or the script of

one of its shapes is being executed at the moment.

Example

This example contains a document-level script. The program removes all pages that don't have

shapes on them. Pages are removed with the RemovePage method.
' Loop through all pages of the document

For i=thisDoc.PagesNum() To 1 Step -1

 ' If there are no shapes on the page

 ' delete page

 If thisDoc.Page(i).ShapesNum() = 0 Then

 thisDoc.RemovePage(i)

 End If

Next i

See Also
AddPage method, FindPage method, Page method, PageByID method,

PagesNum method, RemovePageByID method, ReorderPage method,

ReorderPageByID method, Page object

RemoveParagraph Method

RemoveParagraph Method

Removes a paragraph with the specified index from the paragraph collection of the shape, and

returns the number of remaining paragraphs.

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

787

Syntax
[[Let] countRet =] object.RemoveParagraph (index)

The RemoveParagraph method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

paragraph to be deleted in the paragraph collection of the shape.

countRet Optional. A Long type variable.

Remarks

If index is less than 1 or greater than the number of paragraphs of the shape, the

RemoveParagraph method doesn't delete anything and returns the current number of paragraphs

of the shape. To find out the number of paragraphs of the shape, use the ParagraphsNum

method.

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

SetParaAfterSpacing method, SetParaBeforeSpacing method,

SetParaFirstInd method, SetParaHAlign method, SetParaLeftInd method,

SetParaLineSpacing method, SetParaRightInd method, Paragraph object

RemoveServObjByID Method

RemoveServObjByID Method

Removes a service object with the specified ID (the ID property) from the service object

collection of the group/page, and returns the number of remaining service objects.

Applies to: Page object, Shape object

Syntax
[[Let] countRet =] object.RemoveServObjByID (servObjID)

The RemoveServObjByID method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

ConceptDraw DIAGRAM Third Party Developer’s Guide

788

servObjID
Required. An expression that returns a Long value. The ID (the ID

property) of the service object to be deleted.

countRet Optional. A Long type variable

Remarks

If there is no service object with the specified servObjID, the RemoveServObjByID method

doesn't delete anything and returns the current number of service objects in the group/page.

See Also
ID property, RemoveAllServObjs method, RemoveServObj method,

ReorderServObj method, ReorderServObjByID method, ServObj method,

ServObjByID method, ServObjsNum method, ServObj object

RemoveServObj Method

RemoveServObj Method

Removes a service object with the specified index from the service object collection of the

group/page, and returns the number of remaining service objects.

Applies to: Page object, Shape object

Syntax
[[Let] countRet =] object.RemoveServObj (index)

The RemoveServObj method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

index

Required. An expression that returns a Long value. The index of the

service object to be deleted in the service object collection of the

group/page.

countRet Optional. A Long type variable

Remarks

If index is less than 1, or greater than the number of service objects in the group/page, the

RemoveServObj method doesn't remove the service object and returns the number of service

ConceptDraw DIAGRAM Third Party Developer’s Guide

789

objects in the group/page. When a service object is removed, the remaining service objects are re-

indexed - that is, the index of every service object after the removed one is decreased by 1. To

find out the number of service objects in the group/page, use the ServObjsNum method.

See Also
RemoveAllServObjs method, RemoveServObjByID method,

ReorderServObj method, ReorderServObjByID method, ServObj method,

ServObjByID method, ServObjsNum method, ServObj object

RemoveShapeByID Method

RemoveShapeByID Method

Removes a shape with the specified ID (the ID property) from the shape collection of the

group/page, and returns the number of remaining shapes.

Applies to: Page object, Shape object

Syntax
[[Let] countRet =] object.RemoveShapeByID (shapeID)

The RemoveShapeByID method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

shapeID
Required. An expression that returns a Long value. The ID (ID property) of

the shape to be deleted.

countRet Optional. A Long type variable

Remarks

If there is no shape with the specified shapeID in the shape collection of the group/page, the

RemoveShapeByID method doesn't delete anything and returns the current number of shapes in

the group/page.

ConceptDraw DIAGRAM Third Party Developer’s Guide

790

See Also
ID property, RemoveAllShapes method, RemoveShape method,

ReorderShape method, ReorderShapeByID method, Shape method,

ShapeByID method, ShapesNum method

RemoveShape Method

RemoveShape Method

Removes a shape with the specified index from the shape collection of the group/page, and

returns the number of remaining shapes.

Applies to: Page object, Shape object

Syntax
[[Let] countRet =] object.RemoveShape (index)

The RemoveShape method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

index
Required. An expression that returns a Long value. The index of the shape

in the shape collection of the group/page.

countRet Optional. A Long type variable.

Remarks

If index is less than 1, or greater than the number of shapes in the group/page, the RemoveShape

method doesn't remove anything and returns the current number of shapes in the group/page.

When a shape is removed, the remaining shapes are re-indexed - that is, the index of every shape

after the removed one is decreased by 1. To find out the number of shapes in the group/page, use

the ShapesNum method.

See Also
RemoveAllShapes method, RemoveShapeByID method, ReorderShape

method, ReorderShapeByID method, Shape method, ShapeByID method,

ShapesNum method

ConceptDraw DIAGRAM Third Party Developer’s Guide

791

RemoveStyleByName Method

RemoveStyleByName Method

Removes the style with the specified name (the Name property) from the style collection of the

document. Returns the number of styles, remaining in the collection after the operation.

Applies to: Document object

Syntax
[[Let] countRet =] object.RemoveStyleByName (styleName)

The RemoveStyleByName method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

styleName
Required. An expression that returns a String value. Indicates the name

(the Name property) of the style to be removed.

countRet Optional. A Long type variable.

Remarks

If no style with the specified styleName has been found, the RemoveStyleByName method

doesn't remove the style and returns the number of styles in the style collection of the document.

See Also
Name property, AddStyle method, FindStyle method, RemoveStyle method,

RenameStyle method, Style method, StyleByName method, StylesNum

method, Style object

RemoveStyle Method

RemoveStyle Method

Removes the style with the specified index from the style collection of the document. Returns the

number of styles, remaining in the collection after the operation.

Applies to: Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

792

Syntax
[[Let] countRet =] object.RemoveStyle (index)

The RemoveStyle method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

index
Required. An expression that returns a Long value. Indicates the index of

the style to be removed in the style collection of the document.

countRet Optional. A Long type variable.

Remarks

If index is less than 1, or greater than the number of styles in the document, the RemoveStyle

method doesn't remove the style and returns the number of styles in the style collection of the

document.

See Also
AddStyle method, FindStyle method, RemoveStyleByName method,

RenameStyle method, Style method, StyleByName method, StylesNum

method, Style object

RemoveTabStop Method

RemoveTabStop Method

Removes a tab stop with the specified index from the tab stop collection of the text block, and

returns the number of remaining tab stops.

Applies to: TextBlock object

Syntax
[[Let] countRet =] object.RemoveTabStop (index)

The RemoveTabStop method syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

index
Required. An expression that returns a Long value. The index of the tab

stop to be deleted.

ConceptDraw DIAGRAM Third Party Developer’s Guide

793

countRet Optional. A Long type variable

Remarks

If index is less than 1 or greater than the number of tab stops in the text block, the

RemoveTabStop method doesn't delete anything and returns the current number of tab stops in

the text block. To find out the number of tab stops in the text block, use the TabSopsNum

method.

Example

This example contains a document-level script. It demonstrates how to delete a tab stop with

number 1 in a shape. It assumes that the active page contains the shape with ID 1, which has text

and at least one tab stop is defined.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Delete TabStop with ID1, display the number of remaining tab stops

trace s.TextBlock.RemoveTabStop(1)

See Also AddTabStop method, TabStop method, TabStopsNum method

RemoveUnusedHyperlink Method

RemoveUnusedHyperlinks Method

Removes unused hyperlinks from the hyperlink collection of the document. Returns the number

of remaining hyperlinks in the hyperlink collection of the document.

Applies to: Document object

Syntax
[[Let] countRet =] object.RemoveUnusedHyperlinks ()

The RemoveUnusedHyperlinks method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

countRet Optional. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

794

Remarks

A hyperlink is considered unused if from all shapes and characters in the document there is no

one, which Hyperlink property would match the ID (the ID property) of the hyperlink. After you

use this method, be careful when working with references to instances of the Hyperlink object,

because the instances of the objects to which they referenced may no longer exist (be removed).

Example

This example contains a document-level script. It demonstrates how the

RemoveUnusedHyperlinks is used for two hyperlinks, added by using the AddHyperlinkToFile

method. Also it shows how an error may occur when an instance of the Hyperlink object,

pointing to a non-existing hyperlink, is used.
' Declare variables

Dim hlinkID1 As Long

Dim hlinkID2 As Long

Dim shp As Shape

Dim hlink1 As Hyperlink

Dim hlink2 As Hyperlink

' Add to the hyperlink collection of the document

' two new hyperlinks to files

hlinkID1 = thisDoc.AddHyperlinkToFile("1.cdd")

hlinkID2 = thisDoc.AddHyperlinkToFile("2.cdd")

' Get the hyperlinks by their IDs

Set hlink1 = thisDoc.HyperlinkByID(hlinkID1)

Set hlink2 = thisDoc.HyperlinkByID(hlinkID2)

' Draw a shape and assign the first hyperlink to it

Set shp = thisDoc.ActivePage.DrawRect(100,100,700,300)

shp.Text = "1.cdd"

shp.Hyperlink = hlinkID1

' Remove unused hyperlinks from the hyperlink collection of the document;

' the hyperlink with ID 2 will be removed because it's not assigned to

' any object.

thisDoc.RemoveUnusedHyperlinks()

' Display the Address property

' of any of the two added hyperlinks

TRACE "Hyperlink_1 = " & hlink1.Address

' The same for the second hyperlink!

' This code can cause a run-time error, because the

' hyperlink, referenced to by the hlink2 variable,

' no longer exists

TRACE "Hyperlink_2 = " & hlink2.Address

See Also

ID property, Hyperlink property, AddHyperlinkToDocument method,

AddHyperlinkToFile method, AddHyperlinkToPageShape method,

AddHyperlinkToURL method, Hyperlink method, HyperlinkByID method,

HyperlinksNum method, Hyperlink object

ConceptDraw DIAGRAM Third Party Developer’s Guide

795

RemoveVariable Method

RemoveVariable Method

Removes a user-defined variable with the specified index from the user-defined variable

collection of the shape, and returns the number of remaining variables.

Applies to: Shape object

Syntax
[[Let] countRet =] object.RemoveVariable (index)

The RemoveVariable method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

variable to be deleted in the user-defined variable collection of the shape.

countRet Optional. A Long type variable.

Remarks

If index is less than 1 or greater than the number of user-defined variables of the shape, the

RemoveVariable method doesn't delete anything and returns the current number of user-defined

variables of the shape. To find out the number of user-defined variables of the shape, use the

VariablesNum method.

See Also
AddVariable method, Variable method, VariablesNum method, Variable

object

RenameStyle Method

RenameStyle Method

Renames a style: modifies its Name property.

Applies to: Document object

ConceptDraw DIAGRAM Third Party Developer’s Guide

796

Syntax
[[Let] booleanRet =] object.RenameStyle (originalStyleName, newStyleName)

The RemoveStyleByName method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

originalStyleNa

me

Required. An expression that returns a String value. Represents the name

of the style (the Name property) to be renamed.

newStyleName
Required. An expression that returns a String value. Represents the new

name of the style.

booleanRet Optional. A Boolean type variable.

Remarks

Note, that the name of the style (the Name property) is unique within the scope of the style

collection of the document. If there is not style with the specified originalStyleName in the style

collection, or a style with newStyleName already exists, the RenameStyle method doesn't rename

the style and returns False. If the style was renamed successfully, this method returns True.

See Also
Name property, AddStyle method, FindStyle method, RemoveStyle method,

RemoveStyleByName method, Style method, StyleByName method,

StylesNum method, Style object

ReorderPageByID Method

ReorderPageByID Method

Places page into the specified position in the page collection of the document. The page to be

repositioned is specified by the ID (the ID property) of the page in the page collection of the

document. The position is indicated by the ID of the page, to which position the specified page

must be placed.

Applies to: Document object

Syntax
[[Let] booleanRet =] object.ReorderPageByID (pageIDFrom, pageIDTo)

The ReorderPageByID method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

797

Element Description

object Required. An expression, that returns an instance of the Document object.

pageIDFrom
Required. An expression that returns a Long value. Represents the ID (the

ID property) of the page to be repositioned.

pageIDTo

Required. An expression that returns a Long value. Represents the ID (the

ID property) of the page, to which position the page specified by

pageIDFrom will be placed.

booleanRet Optional. A Boolean type variable.

Remarks

If there is no page with the pageIDFrom or pageIDTo ID in the page collection of the document,

the ReorderPageByID doesn't reorder the page and returns False. If the page was repositioned

successfully, this method returns True.

See Also
ID property, AddPage method, FindPage method, Page method, PageByID

method, PagesNum method, RemovePage method, RemovePageByID

method, ReorderPage method, Page object

ReorderPage Method

ReorderPage Method

Places page into the specified position in the page collection of the document. The page to be

repositioned is specified by the index of the page in the page collection of the document. The

position is indicated by the index, which the page will get after repositioning.

Applies to: Document object

Syntax
[[Let] booleanRet =] object.ReorderPage (indexFrom, indexTo)

The ReorderPage method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

indexFrom
Required. An expression that returns a Long value. Represents the index

of the page to be repositioned in the page collection of the document.

ConceptDraw DIAGRAM Third Party Developer’s Guide

798

indexTo
Required. An expression that returns a Long value. Specifies the index of

the position, to which the page will be placed.

booleanRet Optional. A Boolean type variable.

Remarks

If either indexFrom or indexTo are less than 1 or greater than the number of pages in the

document, the RemoveMenuItem method doesn't reposition the page and returns False. If the

page was repositioned, the method returns True. Use the PagesNum method to find out the

number of the pages in the document.

Note, that if indexFrom is greater than indexTo, then when you reposition a page with the

indexFrom index, the indices of all pages, starting from indexTo to (indexFrom - 1), will be

increased by 1. If indexTo is greater than indexFrom, then when you reposition the page with the

indexFrom index, the indices of all pages, starting from (indexFrom + 1) to indexTo will be

decreased by 1.

Example

This example contains a document-level script. The script uses the ReorderPage method to

reverse the page order of the document.
' Declare variables

Dim page_count As Long

' Remember the number of the pages in the document

Let page_count = thisDoc.PagesNum()

' Reposition pages from the last position

' to the current, specified by the i counter

For i=1 To page_count

 thisDoc.ReorderPage(page_count, i)

Next i

See Also
AddPage method, FindPage method, Page method, PageByID method,

PagesNum method, RemovePage method, RemovePageByID method,

ReorderPageByID method, Page object

ReorderServObjByID Method

ReorderServObjByID Method

Places the service object into the specified position in the service object collection of the

group/page. The repositioned service object is specified by its ID (the ID property). The position

ConceptDraw DIAGRAM Third Party Developer’s Guide

799

is specified by the ID of the service object, to whose position the repositioned service object will

be placed.

Applies to: Page object, Shape object

Syntax
[[Let] booleanRet =] object.ReorderServObjByID (servObjIDFrom, servObjIDTo)

The ReorderServObjByID method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

servObjIDFro

m

Required. An expression that returns a Long value. The ID (ID property) of

the service object to be repositioned.

servObjIDTo

Required. An expression that returns a Long value. The ID (ID property) of

the service object to whose position the service object specified by

servObjIDFrom will be placed.

booleanRet Optional. A Boolean type variable.

Remarks

If there is no service object with the servObjIDFrom or servObjIDTo ID in the collection, the

ReorderServObjByID method doesn't reposition the service object and returns False. If

repositioning has been successful, the method returns True.

See Also
ID property, RemoveAllServObjs method, RemoveServObj method,

RemoveServObjByID method, ReorderServObj method, ServObj method,

ServObjByID method, ServObjsNum method, ServObj object

ReorderServObj Method

ReorderServObj Method

Places the service object into the specified position in the service object collection of the

group/page. The repositioned service object is specified by its index in the service object

collection of the page/group. The position is specified by the new index the service object will

have after repositioning.

Applies to: Page object, Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

800

Syntax
[[Let] booleanRet =] object.ReorderServObj (indexFrom, indexTo)

The ReorderServObj method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

indexFrom

Required. An expression that returns a Long value. The index of the

service object to be repositioned in the service object collection of the

group/page.

indexTo
Required. An expression that returns a Long value. The index of the

position into which the service object will be placed.

booleanRet Optional. A Boolean type variable.

Remarks

If either the indexFrom or indexTo are less than 1 or greater than the number of service objects in

the group/page, the ReorderServObj method doesn't reposition the service object and returns

False. If the service object has been repositioned successfully, the method returns True. Use the

ServObjsNum method to find out the number of service objects in the group/page.

Note, that if indexFrom is greater than indexTo, then when a service object with the indexFrom

index is repositioned, the indices of all service objects starting from indexTo and to (indexFrom -

1) will be increased by 1. If indexTo is greater than indexFrom, then when a service object with

the indexFrom index is repositioned, the indices of all service objects starting from (indexFrom +

1) and to indexTo will be decreased by 1.

See Also
RemoveAllServObjs method, RemoveServObj method,

RemoveServObjByID method, ReorderServObjByID method, ServObj

method, ServObjByID method, ServObjsNum method, ServObj object

ReorderShapeByID Method

ReorderShapeByID Method

Places the shape into the specified position in the shape collection of the group/page. The

repositioned shape is specified by its ID (the ID property). The position is specified by the ID of

the shape, to whose position the repositioned shape will be placed.

ConceptDraw DIAGRAM Third Party Developer’s Guide

801

Applies to: Page object, Shape object

Syntax
[[Let] booleanRet =] object.ReorderShapeByID (shapeIDFrom, shapeIDTo)

The ReorderShapeByID method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

shapeIDFrom
Required. An expression that returns a Long value. The ID (ID property) of

the service shape to be repositioned.

shapeIDTo

Required. An expression that returns a Long value. The ID (ID property) of

the shape to whose position the shape specified by shapeIDFrom will be

placed.

booleanRet Optional. A Boolean type variable.

Remarks

If there is no shape with the shapeIDFrom or shapeIDTo ID in the collection, the

ReorderShapeByID method doesn't reposition the shape and returns False. If repositioning has

been successful, the method returns True.

See Also
ID property, RemoveAllShapes method, RemoveShape method,

RemoveShapeByID method, ReorderShape method, Shape method,

ShapeByID method, ShapesNum method

ReorderShape Method

ReorderShape Method

Places the shape into the specified position in the shape collection of the group/page. The

repositioned shape is specified by its index in the shape collection of the page/group. The position

is specified by the new index the shape will get after repositioning.

Applies to: Page object, Shape object

Syntax
[[Let] booleanRet =] object.ReorderShape (indexFrom, indexTo)

ConceptDraw DIAGRAM Third Party Developer’s Guide

802

The ReorderShape method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

indexFrom
Required. An expression that returns a Long value. The index of the shape

to be repositioned in the shape collection of the group/page.

indexTo
Required. An expression that returns a Long value. The index of the

position into which the shape will be placed.

booleanRet Optional. A Boolean type variable.

Remarks

If either the indexFrom or indexTo are less than 1 or greater than the number of shapes in the

group/page, the ReorderShape method doesn't reposition the shape and returns False. If the

shape has been repositioned successfully, the method returns True. Use the ShapesNum method

to find out the number of shapes in the group/page.

Note, that if indexFrom is greater than indexTo, then when a shape with the indexFrom index is

repositioned, the indices of all shapes starting from indexTo and to (indexFrom - 1) will be

increased by 1. If indexTo is greater than indexFrom, then when a shape with the indexFrom

index is repositioned, the indices of all shapes starting from (indexFrom + 1) and to indexTo will

be decreased by 1.

See Also
RemoveAllShapes method, RemoveShape method, RemoveShapeByID

method, ReorderShapeByID method, Shape method, ShapeByID method,

ShapesNum method

Restore Method

Restore Method

Restores the initial size and position of the window.

Applies to: Window object

Syntax
object.Restore ()

The Restore method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

803

Element Description

object Required. An expression, that returns a Window object.

Remarks

The initial size and position of the window is its state when it's neither minimized, nor

maximized. The initial size and position of the window can be set by using the SetWindowRect

method. To find out the current state of the window, use the State property.

See Also
State property, Maximize method, Minimize method, SetWindowRect

method

RowCount Method

RowCount Method

Returns the number of non-empty string, ie rows that contain data in a tabular representation of

the CSV file data source.Applies to: DataSource object

Syntax
[[Let] countRet =] object.RowCount ()

The RowCount method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the DataSource

object.

countRet Optional. A Long type variable.

Remarks

An instance of the DataSource object can be obtained using methods of the Shape.

Example
dim ds as DATASOURCE

dim count as Integer

ds = thisShape.DATASOURCE(1)

count = ds.RowCount()

ConceptDraw DIAGRAM Third Party Developer’s Guide

804

trace count

See Also ColCount method

SaveAs Method (Document object)

SaveAs Method (Document object)

Saves the document with the specified parameters: filename, document format version,

workspace, etc.

Applies to: Document object

Syntax
[[Let] booleanRet =] object.SaveAs (fileName, saveFlags, saveVersion, showSaveDlg)

The SaveAs method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

fileName
Required. An expression that returns a String value. The name of the file,

to save the document in.

saveFlags
Required. An expression that returns a Long value. The flags describing

the contents of the saved document.

saveVersion
Required. An expression that returns a Long value. The version of the

format to save the document in.

showSaveDlg

Optional. An expression that returns a Boolean value. A flag that indicates

whether to show the file save dialog: True - display the dialog, False - not

to display the dialog and use the name, specified by the fileName

parameter. The default value is False.

booleanRet Optional. A Boolean type variable.

Remarks

The saveFlags parameter can take the following values:

Constant Value Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

805

cdSaveWith

WS
&H1 Save the workspace information together with the document.

cdSaveAsTe

mplate
&H2 Save the document as template

cdSaveInXM

L
&H4 Save the document in XML format

The document format version saveVersion specifies in which format to save the document. The

saveVersion parameter can take the following values: 200 or greater - the document is in the

ConceptDraw V format, between 0 and 200 - the document is in the ConceptDraw 1.x format. To

save the document in the same format it was saved before, set saveVersion to 0 or less.

If the document has been saved successfully with the specified parameters, the SaveAs method

returns True. Otherwise, the method returns False.

Saving the document under fileName different from the current document filename changes the

corresponding properties of the document: the FullName property, the Name property, the Path

property. If the name of the file, specified in fileName equals to an empty string, the method

attempts to save the document under the current filename. If the document hasn't been yet saved,

the name of the file (the Name property) is made up automatically of the document title (the Title

property) and the standard extension for ConceptDraw documents (.cdd) and then the document

is saved in the current folder of the application. Also, by using the showSaveDlg parameter it's

possible to specify the filename manually.

See Also OpenDoc method, Save method

SaveAs Method (Library object)

SaveAs Method (Library object)

Saves the library with the specified parameters: filename, version.

Applies to: Library object

Syntax
[[Let] booleanRet =] object.SaveAs (fileName, saveVersion, [showSaveDlg])

The SaveAs method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

806

Element Description

object Required. An expression that returns an instance of the Library object.

fileName
Required. An expression that returns a String value. The filename (full or

relative), under which the library is to be saved.

saveVersion
Required. An expression that returns a Long value. The version of the

format to save the library in.

showSaveDlg

Optional. An expression that returns a Boolean value. A flag that indicates

whether to show the file save dialog: True - display the dialog, False - not

to display the dialog and use the name, specified by the fileName

parameter. The default value is False.

booleanRet Optional. A Boolean type variable.

Remarks

The document format version saveVersion specifies in which format to save the library. The

saveVersion parameter can take the following values: 200 or greater - the library is in the

ConceptDraw V format, between 0 and 200 - the library is in the ConceptDraw 1.x format. To

save the library in the same format it was saved before, set saveVersion to 0 or less.

If the library has been saved successfully with the specified parameters, the SaveAs method

returns True. Otherwise, the method returns False.

Saving the library under fileName different from the current document filename changes the

corresponding properties of the library: the FullName property, the Name property, the Path

property. If the name of the file, specified in fileName equals to an empty string, the method

attempts to save the library under the current filename. If the library hasn't been yet saved, the

name of the file (the Name property) is made up automatically of the library title (the Title

property) and the standard extension for ConceptDraw libraries (.cdl) and then the library is saved

in the current folder of the application. Also, by using the showSaveDlg parameter it's possible to

specify the filename manually.

See Also
FullName property, Name property, Path property, OpenLib method, Save

method

SaveWorkspace Method

SaveWorkspace Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

807

Saves the workspace with the specified parameters: filename and workspace format version.

Applies to: Application object

Syntax
[[Let] booleanRet =] object.SaveWorkspace (fileName, saveVersion, showSaveDlg)

The SaveAs method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of the Application

object.

fileName
Required. An expression that returns a String value. The name of the file,

to save the document in.

saveVersion
Required. An expression that returns a Long value. The version of the

format to save the workspace in.

showSaveDlg

Optional. An expression that returns a Boolean value. A flag that indicates

whether to show the file save dialog: True - display the dialog, False - not

to display the dialog and use the name, specified by the fileName

parameter. The default value is False.

booleanRet Optional. A Boolean type variable.

Remarks

The workspace format version saveVersion specifies in which format to save the workspace. The

saveVersion parameter can take the following values: 200 or greater - the workspace is in the

ConceptDraw V format, between 0 and 200 - the workspace is in the ConceptDraw 1.x format.

If the workspace has been saved successfully with the specified parameters, the SaveWorkspace

method returns True. Otherwise, the method returns False.

Save Method (Document object)

Save Method (Document object)

Saves the document.

Applies to: Document object

Syntax
[[Let] booleanRet =] object.Save (saveFlags)

The Save method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

808

Element Description

object Required. An expression that returns a Document object.

saveFlags
Optional. An expression that returns a Long value. Flags of the document

saving options.

booleanRet Optional. A Boolean type variable.

Remarks

The method attempts to save the document under the default filename (the FullName property)

and in the format in which it was saved earlier. If the document hasn't been yet saved, the name of

the file (the Name property) is made up automatically of the document title (the Title property)

and the standard extension for ConceptDraw documents (.cdd for a regular document, and .cdx

for documents in the ConceptDraw XML format), and then the document is saved in the current

folder of the application.

The option flags saveFlags can take the following value:

Constant Value Description

cdSaveWithWS &H1 Save the workspace information together with the document.

If the document has been saved successfully, the Save method returns True. Otherwise, the

method returns False. To save the document with the specified filename and parameters, use the

SaveAs method.

See Also
FullName property, Name property, Title property, OpenDoc method,

SaveAs method

Save Method (Library object)

Save Method (Library object)

Saves the library.

Applies to: Library object

Syntax
[[Let] booleanRet =] object.Save ()

ConceptDraw DIAGRAM Third Party Developer’s Guide

809

The Save method syntax has these Elements:

Element Description

object Required. An expression that returns a Library object.

booleanRet Optional. A Boolean type variable.

Remarks

The method attempts to save the library under the default filename (the FullName property). If

the library hasn't been yet saved, the name of the file (the Name property) is made up

automatically of the library title (the Title property) and the standard extension for ConceptDraw

libraries (.cdl) and then the library is saved in the current folder of the application.

If the library has been saved successfully, the Save method returns True. Otherwise, the method

returns False. To save the library with the specified filename and parameters, use the SaveAs

method.

See Also
FullName property, Name property, Title property, OpenLib method, SaveAs

method

ScrollViewTo Method

ScrollViewTo Method

Scrolls a window to a Elementicular page coordinate.

Applies to: Window object

Syntax
object.ScrollViewTo (x, y)

The ScrollViewTo method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

x
Required. An expression that returns a Double value. The x-coordinate to

which to scroll.

ConceptDraw DIAGRAM Third Party Developer’s Guide

810

y
Required. An expression that returns a Double value. The y-coordinate to

which to scroll.

Remarks

This method is only effective if the window is of the document view type (see the Type property).

For windows of all other types, the ScrollViewTo method always returns 0.

The method scrolls the window so that the point with the x and y coordinates is displayed in the

center of the window. The coordinates are specified in the coordinate system of the page or the

shape, displayed in the window. The units of measure are internal units (InternalUnit). Use the

ViewCenterX and ViewCenterY properties to get the coordinates of the point of the page or

group displayed in the center of the window.

See Also
Type property, ViewCenterX property, ViewCenterY property, ViewZoom

property

SegmentsNum Method

SegmentsNum Method

Returns the number of segments in geometry.Applies to: Geomentry object

Syntax
object.SegmentNum ()

The SegmentNum method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Geomentry object.

Remarks

Knowing the number of segments in geometry, you can get any information about it. To get the

values and formulas specific fields, use the methods of the Shape of Get ... Property (), and

GetPropertyFormula ().

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

811

dim gm as Geometry

dim count as Integer

gm = thisShape.Geometry(1)

count = gm.SegmentsNum()

trace count

See Also

ColorProperty method, Geometry method, GetBooleanProperty method,

GetByteProperty method, GetDoubleProperty method, GetIntegerProperty

method, GetLongProperty method, GetPropertyFormula method,

GetSingleProperty method, GetStringProperty method, Geometry object,

Shape object

SelectAll Method

SelectAll Method

Selects all shapes of the page or group displayed in the window.

Applies to: Window object

Syntax
[[Let] boolRet =] object.SelectAll ()

The SelectAll method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

boolRet Optional. A Boolean type variable.

Remarks

This method is only effective if the window is of the document view type (see the Type property).

For windows of all other types, the SelectAll method always returns False.

The SelectAll method selects all shapes of the page or group displayed in the window, and returns

True if at least one shape has been selected in the result. If all shapes of the page or group

displayed in the window are already selected, returns False.The inverse method to SelectAll is the

DeselectAll method, which removes selection from all the shape of the page or group.

ConceptDraw DIAGRAM Third Party Developer’s Guide

812

See Also
Type property, Deselect method, DeselectAll method, GetSelectedService

method, GetSelectedShape method, Select method, SelectedNum method

SelectedNum Method

SelectedNum Method

Returns the number of selected shapes on the page/group being displayed.

Applies to: Window object

Syntax
[[Let] selectedNumRet =] object.SelectedNum ()

The SelectedNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Window object.

selectedNumRe

t
Optional. A Long type variable.

Remarks

This method is only effective if the window is of the document view type (see the Type property).

For windows of all other types the SelectedNum method always returns 0.

See Also
Type property, Deselect method, DeselectAll method, GetSelectedService

method, GetSelectedShape method, Select method, SelectAll method

Select Method

Select Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

813

Selects a shape with the specified ID (the ID property).

Applies to: Window object

Syntax
[[Let] boolRet =] object.Select (shapeID)

The Select method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

shapeID
Required. An expression that returns a Long value. Specifies the ID of the

shape.

boolRet Optional. A Boolean type variable.

Remarks

This method is only effective if the window is of the document view type (see the Type property).

For windows of all other types, the Select method always returns False.

If there is a shape with the specified ID in the shape collection of the page or group, displayed in

the window, the Select method selects the shape and returns True. Otherwise (or if the object is

already selected), the Select method returns False. This method doesn't deselect already selected

shapes on the page or in the group. The inverse method to Select is the Deselect method, which

removes selection from the shape with the specified ID (the ID property).

See Also
ID property, Type property, Deselect method, DeselectAll method,

GetSelectedService method, GetSelectedShape method, SelectAll method,

SelectedNum method

SendBack Method

SendBack Method

Moves the object (shape) in the first position in the collection of objects (shapes) of the parent

group. Returns the index of the object (shape) in a collection of objects (shapes) of the parent

group.

Applies to: Shape object

ConceptDraw DIAGRAM Third Party Developer’s Guide

814

Syntax
[[Let] index =] object.SendBack ()

The SendBack method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Optional. A Long type variable.

Remarks

If the object is an object directly on the document page, then the parent of this object is a page

(Property Page). If an object is placed in a group, then its parent is a group of objects. The

numbering of objects starting with 0. In case of success the function returns 0 (first position in the

collection of objects (shapes) of the parent group). In case of error the method returns -1.

Example
dim index as Integer

index = thisShape.SendBack()

trace index

See Also
GetIndex method, Page property, Parent property, SendFront method,

StepBack method, StepFront method

SendFront Method

SendFront Method

Moves the object (shape) in the last position in the collection of objects (shapes) of the parent

group. Returns the index of the object (shape) in a collection of objects (shapes) of the parent

group.

Applies to: Shape object

Syntax

[[Let] index =] object. SendFront ()

The SendFront method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

815

object Required. An expression that returns a Shape object.

index Optional. A Long type variable.

Remarks

If the object is an object directly on the document page, then the parent of this object is a page

(Property Page). If an object is placed in a group, then its parent is a group of objects. The

numbering of objects starting with 0. In case of error the method returns -1.

Example
dim index as Integer

index = thisShape.SendFront()

trace index

See Also
GetIndex method, Page property, Parent property, SendBack method,

StepBack method, StepFront method

ServObjByID Method

ServObjByID Method

Searches for a service object with the specified ID (the ID property) in the service object

collection of the group/page. Returns a ServObj object that corresponds to the found service

object.

Applies to: Page object, Shape object

Syntax
[[Set] servObjRet =] object.ServObjByID (servObjID)

The ServObjByID method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

servObjID
Required. An expression that returns a Long value. The ID of the service

object.

servObjRet Optional. A ServObj type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

816

Remarks

If there is no service object with the servObjID ID in the service object collection of the

group/page, the ServObjByID method returns Nothing.

See Also

ID property, RemoveAllServObjs method, RemoveServObj method,

RemoveServObjByID method, ReorderServObj method,

ReorderServObjByID method, ServObj method, ServObjsNum method,

ServObj object

ServObjsNum Method

ServObjsNum Method

Returns the number of service objects in a group/page.

Applies to: Page object, Shape object

Syntax
[[Let] countRet =] object.ServObjsNum ()

The ServObjsNum method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

countRet Optional. A Long type variable.

Remarks

If there are no service objects in the group/page, the ServObjsNum returns 0.

See Also

RemoveAllServObjs method, RemoveServObj method,

RemoveServObjByID method, ReorderServObj method,

ReorderServObjByID method, ServObj method, ServObjByID method,

ServObj object

ConceptDraw DIAGRAM Third Party Developer’s Guide

817

ServObj Method

ServObj Method

Returns a ServObj object that corresponds to the service object with the specified index in the

service object collection of the page/group.

Applies to: Page object, Shape object

Syntax
[[Set] servObjRet =] object.ServObj (index)

The ServObj method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

index Required. An expression that returns a Long value.

servObjRet Optional. A ServObj type variable.

Remarks

If index is less than 1 or greater than the number of service objects in a group or page to which

object corresponds, the ServObj method returns Nothing. You can use the ServObjsNum

method to find out the number of service objects in the group or page.

See Also

RemoveAllServObjs method, RemoveServObj method,

RemoveServObjByID method, ReorderServObj method,

ReorderServObjByID method, ServObjByID method, ServObjsNum method,

ServObj object

SetActiveLib Method

SetActiveLib Method

Makes the specified library active.

Applies to: Application object

ConceptDraw DIAGRAM Third Party Developer’s Guide

818

Syntax
[[Let] booleanRet =] object.SetActiveLib (libraryObj)

The SetActiveLib method syntax has these Elements:

Element Description

object
Required. An expression, that returns an instance of the Application

object.

libraryObj
Required. An expression, that returns an instance of the Library object.

Indicates the library to make active.

booleanRet Optional. A Boolean type variable.

Remarks

If libraryObj is open in the application, the SetActiveLib changes the active library from the

current to specified one, and returns True. Otherwise the SetActiveLib method remains the

active library unchanged and returns False. The SetActiveLib method is used to change the

ActiveLib property.

Example

This example contains a application-level script. It activates the fifth library from the library

collection of the application.
thisApp.SetActiveLib(thisApp.Lib(5))

See Also ActiveLib property, Library object

SetActivePageByID Method

SetActivePageByID Method

Makes active the page of the document with the specified ID (the ID property).

Applies to: Document object

Syntax
object.SetActivePageByID (pageID)

ConceptDraw DIAGRAM Third Party Developer’s Guide

819

The SetActivePageByID method syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

pageID
Required. An expression that returns a Long value. The ID (ID property)

of the page to make active.

Remarks

If there is no page with the specified pageID in the document, the SetActivePageByID method

doesn't change the active page of the document. To get a Page object, that corresponds to the

active page of the document, use the ActivePage property.

See Also ActivePage property, SetActivePage method, Page object

SetActivePage Method

SetActivePage Method

Makes active the page with the specified index in the page collection of the document.

Applies to: Document object

Syntax
object.SetActivePage (index)

The SetActivePage method syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

index
Required. An expression that returns a Long value. The index of the page

in the page collection of the document.

Remarks

If index is less than 1 or greater than the number of pages in the page collection of the document,

the SetActivePage method doesn't change the active page of the document. To get a reference to

ConceptDraw DIAGRAM Third Party Developer’s Guide

820

the instance of the Page object, that corresponds to the active page of the document, use the

ActivePage property.To find out the number of pages in the document, use the PagesNum

method.

See Also
ActivePage property, PagesNum method, SetActivePageByID method, Page

object

SetActiveView Method

SetActiveView Method

Activates the specified window of the document.

Applies to: Document object

Syntax
[[Let] booleanRet =] object.SetAcitveView (viewID)

The SetActiveView method syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

viewID
Required. An expression that returns a Long value. The ID (ID property)

of the window of the document to be activated.

booleanRet Optional. A Boolean type variable.

Remarks

Note, that activating the document window directly modifies the value of the ActiveView

property. If there is no window with the specified viewID in the window collection of the

document, the SetActiveView method doesn't change the current active document view.

See Also ActiveView property, Window object

ConceptDraw DIAGRAM Third Party Developer’s Guide

821

SetBooleanProperty Method

SetBooleanProperty Method

Sets the value of a Boolean type property.

Applies to objects: Shape

Syntax
object.SetBooleanProperty(data, propTag [, num[, geom]])

The SetBooleanProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

data
Required. An expression that returns a Boolean value. The value to be set

to the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method, SetByteProperty method, SetBooleanProperty method,

ConceptDraw DIAGRAM Third Party Developer’s Guide

822

SetIntegerProperty method, SetLongProperty method, SetSingleProperty

method, SetDoubleProperty method, SetStringProperty method,

IsDefaultFormula method, IsNullFormula method, GetPropertyFormula

method, SetPropertyFormula method, SetDefaultFormula method,

SetNullFormula method, RecalcProperty method, PropertyChanged method

SetByteProperty Method

SetByteProperty Method

Sets the value of a Byte type property.

Applies to: Shape object

Syntax
object.SetByteProperty(data, propTag [, num[, geom]])

The SetByteProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

data
Required. An expression that returns a Byte value. The value to be set to

the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

ConceptDraw DIAGRAM Third Party Developer’s Guide

823

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetCharColor Method

SetCharColor Method

Sets the color for the specified character block of the shape's text.

Applies to: Shape object

Syntax
object.SetCharColor (iFrom, iTo, [irc], [gm], [by], [bk], [bTransparent])

The SetCharColor method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

irc

Optional. An expression that returns an Integer value.

The possible options for this parameter:

- Index color: the index of the color in the color palette of the document

which owns the object shape. The valid range is from 1 to the number of

the colors in the color palette of the document.

- RGB color: the red component of the color. The valid range is from 0 to

255.

ConceptDraw DIAGRAM Third Party Developer’s Guide

824

- CMYK color: the cyan component of the color. The valid range is from

0 to 100.

The default value is -1.

gm

Optional. An expression that returns an Integer value.

The possible options for this parameter:

- RGB color: the green component of the color. The valid range is from 0

to 255.

- CMYK color: the magenta component of the color. The valid range is

from 0 to 100.

The default value is -1.

by

Optional. An expression that returns an Integer value.

The possible options for this parameter:

- RGB color: the blue component of the color. The valid range is from 0 to

255.

- CMYK color: the yellow component of the color. The valid range is from

0 to 100.

The default value is -1.

bk

Optional. An expression that returns an Integer value.

The possible options for this parameter:

- CMYK color: the black component of the color. The valid range is from

0 to 100.

The default value is -1.

bTransparent

Optional. An expression that returns a Boolean value. A flag which is

True when the character block is transparent, and False if the character

block is not transparent. The default value is False.

Remarks

Note, that if the character block doesn't include the character block within the iFrom to iTo range,

the SetCharColor method adds a new character block and sets the specified color to it.

The format of the color for the character block is described in the following way. If all four

components of a CMYK color are set, that is, the irc, gm, by and bk parameters are equal to or

greater than 0 and less than or equal to 100, the color is considered a CMYK color. Otherwise, if

only the RGB components are set, that is, the irc, gm, by parameters are equal to or greater than 0

and less than or equal to 255, and bk is less than 0 or greater than 100, the color is considered an

RGB color. Otherwise, the color is considered an indexed color with the irc index in the color

palette of the document - if the irc parameter is greater than or equal to 1 and less than or equal to

the number of the colors in the color palette of the document which owns the object shape. In all

other cases the color of the character block is not altered and only the transparency parameter

bTransparent is applied.

ConceptDraw DIAGRAM Third Party Developer’s Guide

825

See Also

Character method, CharactersNum method, GetCharacterIndex method,

RemoveCharacter method, SetCharFont method, SetCharHyperlink method,

SetCharLanguage method, SetCharPos method, SetCharSize method,

SetCharSpacing method, SetCharStyle method, Character object

SetCharFont Method

SetCharFont Method

Sets the font for the specified character block of the shape's text.

Applies to: Shape object

Syntax
object.SetCharFont (iFrom, iTo, iFont)

The SetCharFont method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

iFont
Required. An expression that returns a Long value. A font index in the

font collection of the document which owns the object shape.

Remarks

Note, that if the character block doesn't include the character block within the iFrom to iTo range,

the SetCharFont method adds a new character block and sets the specified font to it.

The value of iFont must be greater than or equal to 1 and less than or equal to the number of the

fonts in the font collection of the document. To find out the number of fonts in the document, use

the FontsNum method.

See Also
Character method, CharactersNum method, GetCharacterIndex method,

RemoveCharacter method, SetCharColor method, SetCharHyperlink method,

ConceptDraw DIAGRAM Third Party Developer’s Guide

826

SetCharLanguage method, SetCharPos method, SetCharSize method,

SetCharSpacing method, SetCharStyle method, Character object

SetCharHyperlink Method

SetCharHyperlink Method

Assigns a hyperlink to the specified character block of the shape's text.

Applies to: Shape object

Syntax
object.SetCharHyperlink (iFrom, iTo, hyperlinkID)

The SetCharHyperlink method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

hyperlinkID
Required. An expression that returns a Long value. The ID (ID property)

of the hyperlink to be assigned to the specified character block.

Remarks

Note, that if the character block doesn't include the character block within the iFrom to iTo range,

the SetCharHyperlink method adds a new character block and assigns the specified hyperlink to

it.

If there is no hyperlink with the hyperlinkID ID in the hyperlink collection of the document which

owns the object shape, the SetCharHyperlink neither adds a new character block, nor assigns a

hyperlink to an existing one.

See Also
Hyperlink property, ID property, Character method, CharactersNum method,

GetCharacterIndex method, RemoveCharacter method, SetCharColor

method, SetCharFont method, SetCharLanguage method, SetCharPos

ConceptDraw DIAGRAM Third Party Developer’s Guide

827

method, SetCharSize method, SetCharSpacing method, SetCharStyle

method, Character object,

SetCharLanguage Method

SetCharLanguage Method

Assigns a charset for the specified character block of the shape's text.

Applies to: Shape object

Syntax
object.SetCharLanguage (iFrom, iTo, Language)

The SetCharLanguage method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

Language Required. An expression that returns a Byte value. The charset.

Remarks

Note, that if the character block collection of the shape doesn't include the character block within

the iFrom to iTo range, the SetCharLanguage method adds a new character block and sets the

specified charset to it.

Below is the list of possible values of the Language parameter:

Constant Value Description

ANSI_CHARSET 0 ANSI charset.

DEFAULT_CHARSET 1 Default charset.

SYMBOL_CHARSET 2 Symbol charset.

MAC_CHARSET 77 Macintosh charset.

SHIFTJIS_CHARSET 128 charset.

HANGEUL_CHARSET 129 Hungarian charset.

ConceptDraw DIAGRAM Third Party Developer’s Guide

828

HANGUL_CHARSET 129 Hungarian charset.

JOHAB_CHARSET 130 charset.

GB2312_CHARSET 134 charset.

CHINESEBIG5_CHARS

ET
136 Chinese charset.

GREEK_CHARSET 161 Greek charset.

TURKISH_CHARSET 162 Turkish charset.

VIETNAMESE_CHARS

ET
163 Vietnamese charset.

HEBREW_CHARSET 177 Hebrew charset.

ARABIC_CHARSET 178 Arabic charset.

BALTIC_CHARSET 186 Baltic charset.

RUSSIAN_CHARSET 204 Russian (cyrillic) charset.

THAI_CHARSET 222 Thai charset.

EASTEUROPE_CHARS

ET
238 East Europe charset.

OEM_CHARSET 255 OEM charset.

See Also

Language property, Character method, CharactersNum method,

GetCharacterIndex method, RemoveCharacter method, SetCharColor

method, SetCharFont method, SetCharHyperlink method, SetCharPos

method, SetCharSize method, SetCharSpacing method, SetCharStyle

method, Character object

SetCharPos Method

SetCharPos Method

Sets the position of the character block with respect to the baseline of the shape's text.

Applies to: Shape object

Syntax
object.SetCharPos (iFrom, iTo, Pos)

ConceptDraw DIAGRAM Third Party Developer’s Guide

829

The SetCharPos method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

Pos Required. An expression that returns a Byte value. The text position.

Remarks

Note, that if the character block collection of the shape doesn't include the character block within

the iFrom to iTo range, the SetCharPos method adds a new character block and sets the specified

position to it.

Below is the list of possible values of the Pos parameter:

Constant Value Description

cdPosNormal 0 Normal size and position of the text.

cdPosSuper 1 Superscript.

cdPosSub 2 Subscript.

See Also

Pos property (Character object), Character method, CharactersNum method,

GetCharacterIndex method, RemoveCharacter method, SetCharColor

method, SetCharFont method, SetCharHyperlink method, SetCharLanguage

method, SetCharSize method, SetCharSpacing method, SetCharStyle

method, Character object

SetCharSize Method

SetCharSize Method

Sets the font size for the specified character block of the shape's text.

Applies to: Shape object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

830

object.SetCharSize (iFrom, iTo, fontSize)

The SetCharSize method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

fontSize Required. An expression that returns an Integer value. The font size.

Remarks

The font size (fontSize parameter) is specified in points (1 pt = 1/72 inch).

Note, that if the character block collection of the shape doesn't include the character block within

the iFrom to iTo range, the SetCharSize method adds a new character block and sets the

specified font size to it.

See Also

Character method, CharactersNum method, GetCharacterIndex method,

RemoveCharacter method, SetCharColor method, SetCharFont method,

SetCharHyperlink method, SetCharLanguage method, SetCharPos method,

SetCharSize method, SetCharSpacing method, SetCharStyle method,

Character object

SetCharSpacing Method

SetCharSpacing Method

Sets the character spacing for the specified character block of the shape's text.

Applies to: Shape object

Syntax
object.SetCharSpacing (iFrom, iTo, charSpacing)

The SetCharSpacing method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

831

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

charSpacing
Required. An expression that returns a Single value. The character

spacing.

Remarks

Note, that if the character block collection of the shape doesn't include the character block within

the iFrom to iTo range, the SetCharSpacing method adds a new character block and applies the

specified character spacing to it.

See Also

Character method, CharactersNum method, GetCharacterIndex method,

RemoveCharacter method, SetCharColor method, SetCharFont method,

SetCharHyperlink method, SetCharLanguage method, SetCharPos method,

SetCharSize method, SetCharStyle method, Character object

SetCharStyle Method

SetCharStyle Method

Sets the font style (bold, italic, underline, etc.) for the specified character block of the shape's text.

Applies to: Shape object

Syntax
object.SetCharStyle (iFrom, iTo, bStyle)

The SetCharStyle method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character in the character block.

iTo
Required. An expression that returns a Long value. The index of the last

character in the character block.

ConceptDraw DIAGRAM Third Party Developer’s Guide

832

bStyle Required. An expression that returns a Byte value. The font style.

Remarks

Note, that if the character block collection of the shape doesn't include the character block within

the iFrom to iTo range, the SetCharStyle method adds a new character block and sets the

specified font style to it.

Below is the list of possible values of the bStyle parameter:

Constant Value Description

cdFSNormal 0 Normal.

cdFSBold 1 Bold.

cdFSItalic 2 Italic.

cdFSUnderline 4 Underline.

cdFSStrikeTrough 8 Strikethrough.

See Also

Character method, CharactersNum method, GetCharacterIndex method,

RemoveCharacter method, SetCharColor method, SetCharFont method,

SetCharHyperlink method, SetCharLanguage method, SetCharPos method,

SetCharSize method, SetCharSpacing method, Character object

SetCmdProcessing Method

SetCmdProcessing Method

Sets a procedure to process the menu item command.

Applies to: MenuItem object

Syntax
[[Set] bRet =] object.SetCmdProcessing (sOnCmdSub [, sOnCmdModule])

The MenuItemByCmdID method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the MenuItem object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

833

sOnCmdSub
Required. An expression that returns a String value. Represents the

processing procedure name.

sOnCmdModul

e

Optional. An expression that returns a String value. Represent the external

module (shared library on the Mac or *.dll on the Windows platform).

bRet Optional. A Boolean type variable.

Remarks

The SetCmdProcessing method returns True if setting was successfull and False in other case.

SetCMYK Method

SetCMYK Method

Sets color components in CMYK format.

Applies to: Color object, ColorEntry object

Syntax
object.SetCMYK (cyan, magenta, yellow, black)

The SetCMYK method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

cyan Required. An expression that returns an Integer value (from 0 to 100).

magenta Required. An expression that returns an Integer value (from 0 to 100).

yellow Required. An expression that returns an Integer value (from 0 to 100).

black Required. An expression that returns an Integer value (from 0 to 100).

Remarks

After the SetCMYK method has been called, the color is converted to the CMYK format

regardless of its previous format.

Example

This example demonstrates how to change the fill color of a rectanlge in CMYK format.
dim s as shape

ConceptDraw DIAGRAM Third Party Developer’s Guide

834

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetCMYK(33,25,66,5) ' Change the Shape's fill color in CMYK

format

s.PropertyChanged(CDPT_FILLCOLOR)

See Also SetRGB Method

SetDefaultFormula Method

SetDefaultFormula Method

Creates a default formula for the property.

Applies to: Shape object, ServObj

Syntax
object.SetDefaultFormula(propTag [, num[, geom]])

The SetDefaultFormula method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from collections of the object.

geom

Optional. Only for Shape object. An expression that returns a Long value.

An additional identifying argument. It's used for specifying properties

from geometry collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

ConceptDraw DIAGRAM Third Party Developer’s Guide

835

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetDoubleProperty Method

SetDoubleProperty Method

Sets the value of a Double type property.

Applies to objects: Shape, ServObj

Syntax
object.SetDoubleProperty(data, propTag [, num[, geom]])

The SetDoubleProperty method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

data
Required. An expression that returns a Double value. The value to be set

to the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from collections of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

836

geom

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from geometry collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetFillColor Method

SetFillColor Method

Sets the fill color (pattern) of an object (shape) for the current style of the document.

Applies to: Style object

Syntax

object. SetFillColor (r, g, b)

The SetFillColor method syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

837

r Required. An expression that returns a Byte value. The red color component in

RGB.Valid values range from 0 to 255.

g Required. An expression that returns a Byte value. The green color component in

RGB.Valid values range from 0 to 255.

b Required. An expression that returns a Byte value. The blue color component in

RGB.Valid values range from 0 to 255.

Remarks

For the fill color you can use the object FillColor Style, which is also a table

setting CDPT_STYLED_FILLBACKGND object.

See

Also

Style object, FillColor Property, Property FillPatColor, penColor Property, PropertyShadowColor, ShadowPatColor Property, Method

SetFillPatColor , setPenColorMethod, Method SetShadowColor, SetShadowPatColor Method.

SetFillPatColor Method

SetFillPatColor Method

Sets the color of the fill pattern of the object (shape) for the current style of the document.

Applies to: Style object

Syntax

object. SetFillPatColor (r, g, b)

The SetFillPatColor method syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

r Required. An expression that returns a Byte value. The red color component in

RGB.Valid values range from 0 to 255.

g Required. An expression that returns a Byte value. The green color component in

RGB.Valid values range from 0 to 255.

b Required. An expression that returns a Byte value. The blue color component in

RGB.Valid values range from 0 to 255.

Remarks

http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.setfillpatcolor_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.setfillpatcolor_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

838

For color fill pattern you can use the object FillPatColor Style, which is also a table

setting CDPT_STYLED_FILLFOREGND object.

See Also
Style object, FillColor property, FillPatColor property, PenColor property,

ShadowColor property, ShadowPatColor property, SetFillColor method,

SetPenColor method, SetShadowColor method, SetShadowPatColor method.

SetIcon Method

SetIcon Method

Sets the image from a graphic file as the icon for the specified library shape.

Applies to: Master object

Syntax
[[Let] booleanRet =] object.SetIcon (iconName)

The SetIcon method syntax has these Elements:

Element Description

object Required. An expression that returns a Master object.

iconName
Required. An expression that returns a String value. The name and path

(full or relative) to the file that contains the icon image.

booleanRet Optional. A Boolean type variable.

Remarks

If the file with the iconName name can't be opened, is not a graphic file, or is not supported by

ConceptDraw, the SetIcon method doesn't change the current icon of the library shape and returns

False. If the icon has been replaced successfully, the method returns True.

See Also Equal method, SetShape method

ConceptDraw DIAGRAM Third Party Developer’s Guide

839

SetIntegerProperty Method

SetIntegerProperty Method

Sets the value of an Integer type property.

Applies to objects: Shape

Syntax
object.SetIntegerProperty(data, propTag [, num[, geom]])

The SetIntegerProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

data
Required. An expression that returns a Integer value. The value to be set

to the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

ConceptDraw DIAGRAM Third Party Developer’s Guide

840

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetLongProperty Method

SetLongProperty Method

Sets the value of a Long type property.

Applies to: Shape object

Syntax
object.SetLongProperty(data, propTag [, num[, geom]])

The SetLongProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

data
Required. An expression that returns a Long value. The value to be set to

the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

ConceptDraw DIAGRAM Third Party Developer’s Guide

841

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetNullFormula Method

SetNullFormula Method

Deletes the formula of the specified table property of the shape.

Applies to: Shape object, ServObj

Syntax
object.SetNullFormula(propTag [, num[, geom]])

The SetNullFormula method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

propTag
Required. It is used only for the objectShape. An expression that returns a

Long value. A tag that identifies the property of the object.

num

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from collections of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

842

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetParaAfterSpacing Method

SetParaAfterSpacing Method

Sets the distance between the specified paragraph and the next paragraph of the shape's text.

Applies to: Shape object

Syntax
object.SetParaAfterSpacing (iFrom, iTo, AfterSpacing)

The SetParaAfterSpacing method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

ConceptDraw DIAGRAM Third Party Developer’s Guide

843

AfterSpacing
Required. An expression that returns a Single value. The interval between

this paragraph and the next one.

Remarks

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaAfterSpacing method adds a

new paragraph and applies the specified interval to it.

If the iFrom and iTo parameters were specified incorrectly, no changes are made. The paragraph

spacing is measured in internal units (InternalUnit).

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaBeforeSpacing method, SetParaFirstInd

method, SetParaHAlign method, SetParaLeftInd method,

SetParaLineSpacing method, SetParaRightInd method, Paragraph object

SetParaBeforeSpacing Method

SetParaBeforeSpacing Method

Sets the distance between the specified paragraph and the previous paragraph of the shape's text.

Applies to: Shape object

Syntax
object.SetParaBeforeSpacing (iFrom, iTo, BeforeSpacing)

The SetParaBeforeSpacing method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

BeforeSpacing
Required. An expression that returns a Single value. The interval between

this paragraph and the previous one.

ConceptDraw DIAGRAM Third Party Developer’s Guide

844

Remarks

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaBeforeSpacing method adds

a new paragraph and applies the specified interval to it.

If the iFrom and iTo parameters were specified incorrectly, no changes are made. The paragraph

spacing is measured in internal units (InternalUnit).

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaAfterSpacing method, SetParaFirstInd

method, SetParaHAlign method, SetParaLeftInd method,

SetParaLineSpacing method, SetParaRightInd method, Paragraph object

SetParaFirstInd Method

SetParaFirstInd Method

Sets the first line indent for the specified paragraph of the shape.

Applies to: Shape object

Syntax
object.SetParaFirstInd (iFrom, iTo, FirstInd)

The SetParaFirstInd method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

FirstInd
Required. An expression that returns a Single value. The first line indent

value for the paragraph.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

845

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaFirstInd method adds a new

paragraph and applies the specified first line indent to it.

If the iFrom and iTo parameters were specified incorrectly, no changes are made. The first line

indent size is measured in internal units (InternalUnit).

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaAfterSpacing method,

SetParaBeforeSpacing method, SetParaHAlign method, SetParaLeftInd

method, SetParaLineSpacing method, SetParaRightInd method, Paragraph

object

SetParaHAlign Method

SetParaHAlign Method

Sets the horizontal alignment type of text with respect to its text box for the specified paragraph

of the shape.

Applies to: Shape object

Syntax
object.SetParaHAlign (iFrom, iTo, HAlign)

The SetParaHAlign method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

HAlign
Required. An expression that returns a Single value. The horizontal

alignment type.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

846

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaHAlign method adds a new

paragraph and applies the specified horizontal alignment type to it.

The HAlign parameter can take the following values:

Constant Value Description

cdHorizLeft 0 Align to the left edge.

cdHorizCenter 1 Align to the center.

cdHorizRight 2 Align to the right edge.

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaAfterSpacing method,

SetParaBeforeSpacing method, SetParaFirstInd method, SetParaLeftInd

method, SetParaLineSpacing method, SetParaRightInd method, Paragraph

object

SetParaLeftInd Method

SetParaLeftInd Method

Sets the distance the paragraph's text is indented from the left edge of the text block.

Applies to: Shape object

Syntax
object.SetParaLeftInd (iFrom, iTo, LeftInd)

The SetParaLeftInd method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

LeftInd
Required. An expression that returns a Single value. The paragraph indent

from the left edge of the text box.

ConceptDraw DIAGRAM Third Party Developer’s Guide

847

Remarks

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaLeftInd method adds a new

paragraph and applies the specified left indent to it.

If the iFrom and iTo parameters were specified incorrectly, no changes are made. The paragraph

spacing is measured in internal units (InternalUnit).

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaAfterSpacing method,

SetParaBeforeSpacing method, SetParaFirstInd method, SetParaHAlign

method, SetParaLineSpacing method, SetParaRightInd method, Paragraph

object

SetParaLineSpacing Method

SetParaLineSpacing Method

Sets the line spacing for the specified paragraph of the shape.

Applies to: Shape object

Syntax
object.SetParaLineSpacing (iFrom, iTo, LineSpacing)

The SetParaLineSpacing method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

LineSpacing
Required. An expression that returns a Single value. The line spacing

value for the specified paragraph.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

848

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaLineSpacing method adds a

new paragraph and sets the specified line spacing to it.

If the iFrom and iTo parameters were specified incorrectly, no changes are made. The paragraph

spacing is measured in internal units (InternalUnit).

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaAfterSpacing method,

SetParaBeforeSpacing method, SetParaFirstInd method, SetParaHAlign

method, SetParaLeftInd method, SetParaRightInd method, Paragraph object

SetParaRightInd Method

SetParaRightInd Method

Sets the distance the paragraph's text is indented from the right edge of the text block.

Applies to: Shape object

Syntax
object.SetParaRightInd (iFrom, iTo, RightInd)

The SetParaRightInd method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

iFrom
Required. An expression that returns a Long value. The index of the first

character of the paragraph.

iTo
Required. An expression that returns a Long value. The index of the last

character of the paragraph.

RightInd
Required. An expression that returns a Single value. The paragraph indent

from the right edge of the text box.

Remarks

Note, that if the paragraph collection of the shape doesn't contain the paragraph that corresponds

to the character sequence within the iFrom to iTo range, the SetParaLeftInd method adds a new

paragraph and applies the specified right indent to it.

ConceptDraw DIAGRAM Third Party Developer’s Guide

849

If the iFrom and iTo parameters were specified incorrectly, no changes are made. The paragraph

spacing is measured in internal units (InternalUnit).

See Also

GetParagraphIndex method, Paragraph method, ParagraphsNum method,

RemoveParagraph method, SetParaAfterSpacing method,

SetParaBeforeSpacing method, SetParaFirstInd method, SetParaHAlign

method, SetParaLeftInd method, SetParaLineSpacing method, Paragraph

object

SetPenColor Method

SetPenColor Method

Establishes color of lines of object (shape) for the current style of the document.

Applies to: Style object

Syntax
object.SetPenColor (r, g, b)

The SetPenColor method syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

r
Required. An expression that returns a Byte value. Red color component

in the RGB format. A range of admissible values from 0 to 255.

g
Required. An expression that returns a Byte value. Green color component

in the RGB format. A range of admissible values from 0 to 255.

b
Required. An expression that returns a Byte value. Blue color component

in the RGB format. A range of admissible values from 0 to 255.

Remarks

For obtaining color of lines it is possible to use FillPenColor property of object of Style which

also is the tabular CDPT_STYLED_LINECOLOR parameter of object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

850

See Also

Style object, FillColor property, FillPatColor property, PenColor property,

ShadowColor property, ShadowPatColor property, SetFillColor method,

SetFillPatColor method, SetShadowColor method, SetShadowPatColor

method.

SetPropertyFormula Method

SetPropertyFormula Method

Sets a table formula for a property. Returns True if the formula has been assigned correctly

(doesn't contain errors), otherwise returns False.

Applies to objects: Shape, ServObj

Syntax
[[Let]ret =]object.SetPropertyFormula(formulaStr, propTag [, num[, geom]])

The SetPropertyFormula method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

formulaStr
Required. An expression that returns a String value. The formula to be

assigned to the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from collections of the object.

geom

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from geometry collections of the object.

ret Optional. A variable that gets the value returned by the method.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

ConceptDraw DIAGRAM Third Party Developer’s Guide

851

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetRectEmpty Method

SetRectEmpty Method

Resets to zero the properties of a DRect object.

Applies to objects: DRect

Syntax
object.SetRectEmpty ()

The SetRectEmpty method syntax has these Elements:

Element Description

object A reference to an instance of the object.

Example

This example uses the SetRectEmpty method.
' Create an instance of the object

Dim MyObject as new DRect

' set left,top,right,bottom properties

MyObject.SetRect(100,100,200,300)

' Reset the left,top,right,bottom properties to zero

MyObject.SetRectEmpty()

ConceptDraw DIAGRAM Third Party Developer’s Guide

852

See Also DRect Object

SetRect Method

SetRect Method

Sets the left, top, right, bottom coordinates of an instance of the object.

Applies to objects: DRect

Syntax
object.SetRect(left, top, right, bottom)

The SetRect statement syntax has these Elements:

Element Description

object A reference to an instance of the object.

left, top, right,

bottom
The coordinates of the rectanlge, Double values.

Remarks

This method offers a faster way of setting the coordinates of a rectangle, rather then setting them

for each property separately.

Example
' Create an instance of the object

Dim MyObject as new DRect

' Set left,top,right,bottom properties

MyObject.SetRect(100,100,1000,1000)

See Also DRect Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

853

SetRGB Method

SetRGB Method

Sets the color scheme to RGB and initializes the color components with the specified values.

Applies to: Color object, ColorEntry object

Syntax
object.SetRGB (red, green, blue)

The SetRGB method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object in the

Applies to list.

red
Required. An expression that returns an Integer value. The value of the

red component.

green
Required. An expression that returns an Integer value. The value of the

green component.

blue
Required. An expression that returns an Integer value. The value of the

blue component.

Remarks

After the SetRGB method has been called, the color is converted to the RGB format regardless of

its previous format. The values of the red, green and blue can be in the range of 0 to 255, and are

used to set respective components of the color.

Example

This example contains a document-level script. It demonstrates how to change the fill color of a

rectanlge in RGB format.
dim s as shape

' Create a Shape object

s = thisDoc.ActivePage.DrawRect(100,100,1000,1000)

s.FillColor.SetRGB(30,230,178) ' Change the Shape's fill color in RGB format

s.PropertyChanged(CDPT_FILLCOLOR)

See Also SetCMYK method

ConceptDraw DIAGRAM Third Party Developer’s Guide

854

SetShadowColor Method

SetShadowColor Method

Establishes color of a shadow of object (shape) for the current style of the document.

Applies to: Style object

Syntax
object.SetShadowColor (r, g, b)

The SetShadowColor method syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

r
Required. An expression that returns a Byte value. Red color component

in the RGB format. A range of admissible values from 0 to 255.

g
Required. An expression that returns a Byte value. Green color component

in the RGB format. A range of admissible values from 0 to 255.

b
Required. An expression that returns a Byte value. Blue color component

in the RGB format. A range of admissible values from 0 to 255.

Remarks

For obtaining color of a shadow it is possible to use ShadowColor property of object of Style

which also is the tabular CDPT_STYLED_SHADOWBACKGND parameter of object.

See Also
Style object, FillColor property, FillPatColor property, PenColor property,

ShadowColor property, ShadowPatColor property, SetFillColor method,

SetFillPatColor method, SetPenColor method, SetShadowPatColor method.

SetShadowPatColor Method

SetShadowPatColor Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

855

Establishes color of a pattern (template) of a shadow of object (shape) for the current style of the

document.

Applies to: Style object

Syntax
object.SetShadowPatColor (r, g, b)

The SetShadowPatColor method syntax has these Elements:

Element Description

object Required. An expression that returns a Style object.

r
Required. An expression that returns a Byte value. Red color component

in the RGB format. A range of admissible values from 0 to 255.

g
Required. An expression that returns a Byte value. Green color component

in the RGB format. A range of admissible values from 0 to 255.

b
Required. An expression that returns a Byte value. Blue color component

in the RGB format. A range of admissible values from 0 to 255.

Remarks

For obtaining color of a pattern (template) of a shadow it is possible to use ShadowPatColor

property of object of Style which also is the tabular CDPT_STYLED_SHADOWFOREGND

parameter of object.

See Also
Style object, FillColor property, FillPatColor property, PenColor property,

ShadowColor property, ShadowPatColor property, SetFillColor method,

SetFillPatColor method, SetPenColor method, SetShadowColor method.

SetShape Method

SetShape Method

Copies a shape into the specified master object. Alters the contents of the master object (the

Shape property).

Applies to: Master object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

856

object.SetShape (shapeSrc)

The SetShape method syntax has these Elements:

Element Description

object Required. An expression that returns a Master object.

countRet Optional. A Long type variable.

Remarks

If the shape specified by shapeSrc couldn't be copied, the SetShape method doesn't change the

shape in the Shape property. If the shape has been copied successfully, the shape contained in this

master object becomes identical to the one specified by shapeSrc.

See Also Shape property, Equal method, SetIcon method, Shape object

SetSingleProperty Method

SetSingleProperty Method

Sets the value of a Single type property.

Applies to objects: Shape

Syntax
object.SetSingleProperty(data, propTag [, num[, geom]])

The SetSingleProperty method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Shape object.

data
Required. An expression that returns a Single value. The value to be set to

the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

857

num

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from collections

of the object.

geom

Optional. An expression that returns a Long value. An additional

identifying argument. It's used for specifying properties from geometry

collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object, which allow to access the properties from

a ConceptDraw Basic script. Such methods use three arguments for choosing the needed property:

propTag, num, geom. Here, propTag is the tag that corresponds to the name of the property, and

num and geom indicate the numbers of the properties in the collections. ConceptDraw Basic has a

set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

SetStringProperty Method

SetStringProperty Method

Sets the value of a String type property.

Applies to objects: Shape, ServObj

Syntax
object.SetStringProperty(data, propTag [, num[, geom]])

ConceptDraw DIAGRAM Third Party Developer’s Guide

858

The SetStringProperty method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

data
Required. An expression that returns a String value. The value to be set to

the property.

propTag
Required. An expression that returns a Long value. A tag that identifies

the property of the object.

num

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from collections of the object.

geom

Optional. It is used only for the objectShape. An expression that returns a

Long value. An additional identifying argument. It's used for specifying

properties from geometry collections of the object.

Remarks

ConceptDraw shapes are described by sets of properties which can have so called table formulas.

Properties can be viewed or edited in the shape parameter table, called from a menu or using the

F3 key in ConceptDraw. Each property is described by its value and a table formula.

This method is one of the methods of the Shape object and ServObj object, which allow to

access the properties from a ConceptDraw Basic script. Such methods use three arguments for

choosing the needed property: propTag, num, geom. Here, propTag is the tag that corresponds to

the name of the property, and num and geom indicate the numbers of the properties in the

collections. ConceptDraw Basic has a set of constants that define all possible property tags.

See Also

GetByteProperty method, GetBooleanProperty method, GetIntegerProperty

method, GetLongProperty method, GetSingleProperty method,

GetDoubleProperty method, GetStringProperty method, ColorProperty

method,

SetByteProperty method, SetBooleanProperty method, SetIntegerProperty

method, SetLongProperty method, SetSingleProperty method,

SetDoubleProperty method, SetStringProperty method, IsDefaultFormula

method, IsNullFormula method, GetPropertyFormula method,

SetPropertyFormula method, SetDefaultFormula method, SetNullFormula

method, RecalcProperty method, PropertyChanged method

ConceptDraw DIAGRAM Third Party Developer’s Guide

859

SetStyle Method

SetStyle Method

Sets a style to the shape. The style is specified by its name (the Name property).

Applies to: Shape object

Syntax
[[Let] booleanRet =] object.SetStyle (styleName)

The SetStyle method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

styleName
Required. An expression that returns a String value. The name of the style

(the Name property).

shapeRet Optional. A Boolean type variable.

Remarks

If styleName is an empty string, the SetStyle method applies a null style (No Style) to the shape

and returns True. If there is not style with the styleName name in the style collection of the

document, which owns object, the SetStyle method doesn't change the current style and returns

false. Otherwise, the method applies the new style to the shape and returns True.

SetWindowRect Method

SetWindowRect Method

Sets the size and position of the window.

Applies to: Window object

Syntax
object.SetWindowRect (left, top, width, height)

The SetWindowRect method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Window object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

860

left Required Long. The x-coordinate of the left upper corner of the window.

top Required Long. The y-coordinate of the left upper corner of the window.

width
Required Long. The distance from the left side to the right side of the

window.

height
Required Long. The distance from the top side to the bottom side of the

window.

Remarks

Note, that the size and position of the window are measured in screen pixels, and the coordinate

origin is located in the left top corner of the parent window frame. Use the SetWindowRect to

change the size and position of the window. To get the current size and position of the window,

use the Left, Top, Height and Width properties.

See Also Left property, Top property, Height property, Width property

ShapeByID Method

ShapeByID Method

Searches for a shape with the specified ID (ID property) in the shape collection of the group/page.

Returns an instance of the Shape object that corresponds to the found shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.ShapeByID (shapeID)

The ShapeByID method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

shapeID
Required. An expression that returns a Long value. The ID of the shape to

be found.

ConceptDraw DIAGRAM Third Party Developer’s Guide

861

shapeRet Optional. A Shape type variable.

Remarks

If there is no shape with the shapeID ID in the collection, the ShapeByID method returns

Nothing.

See Also
ID property, ShapeBySubID method, RemoveAllShapes method,

RemoveShape method, RemoveShapeByID method, ReorderShape method,

ReorderShapeByID method, Shape method, ShapesNum method

ShapeBySubID Method

ShapeBySubID Method

Searches for a shape with the specified SubID (SubID property) in the shape collection of the

group/page. Returns an instance of the Shape object that corresponds to the found shape.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.ShapeBySubID (shapeSubID)

The ShapeBySubID method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

shapeSubID
Required. An expression that returns a Long value. The SubID of the

shape to be found.

shapeRet Optional. A Shape type variable.

Remarks

If there is no shape with the shapeSubID SubID in the collection, the ShapeBySubID method

returns Nothing.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

862

This example contains a shape-level script. In the first example the object (shape) having SubID

equal 4, is looked for on page. In the second example the object (shape) having SubID equal 4, is

looked for in group of objects.

dim sh as Shape

sh = thisPage.ShapeBySubID(4)

or

sh = thisShape.ShapeBySubID(4)

See Also
SubID property, ShapeByID method, RemoveAllShapes method,

RemoveShape method, RemoveShapeByID method, ReorderShape method,

ReorderShapeByID method, Shape method, ShapesNum method

ShapesNum Method

ShapesNum Method

Returns the number of shapes in the shape collection of the group/page.

Applies to: Page object, Shape object

Syntax
[[Let] countRet =] object.ShapesNum ()

The ShapesNum method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

countRet Optional. A Long type variable.

Remarks

If there are no shapes in the shape collection of the group/page, the ShapesNum method returns

0.

See Also
RemoveAllShapes method, RemoveShape method, RemoveShapeByID

method, ReorderShape method, ReorderShapeByID method, Shape method,

ShapeByID method

ConceptDraw DIAGRAM Third Party Developer’s Guide

863

Shape Method

Shape Method

Returns an instance of the Shape object, that corresponds to a shape with the specified index in

the shape collection of the group/page.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.Shape (index)

The Shape method syntax has these Elements:

Element Description

object
Required. An expression that returns an instance of an object from the

Applies to list.

index
Required. An expression that returns a Long value. The index of the shape

in the shape collection of the group/page.

shapeRet Optional. A Shape type variable.

Remarks

If index is less than 1 or greater than the number of shapes in the group/page, the Shape method

returns Nothing. Use the ShapesNum method to find out the number of shapes in the group/page.

See Also
RemoveAllShapes method, RemoveShape method, RemoveShapeByID

method, ReorderShape method, ReorderShapeByID method, ShapeByID

method, ShapesNum method

SplineStart Method

SplineStart Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

864

Starts creating a new spline segment. Returns a Shape object that corresponds to the shape in

which the spline segment has been built.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.SplineStart (xBegin, yBegin, xA, yB)

The SplineStart method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

xStart
Required. An expression that returns a Double value. The X-coordinate of

the begin point of the spline.

yStart
Required. An expression that returns a Double value. The Y-coordinate of

the begin point of the spline.

xA
Required. An expression that returns a Double value. The X-coordinate of

the guiding point.

yB
Required. An expression that returns a Double value. The Y-coordinate of

the guiding point.

shapeRet Optional. A Shape type variable.

Remarks

The SplineStart method adds a new spline start segment to the shape. The spline start segment is

described by two points: the begin point of the spline (xStart, yStart) and the guiding point (xA,

yB).

If object is a page or a group, the SplineStart method adds the spline start segment to the current

Basic shape and returns a Shape object that corresponds to that shape. If the method was called

prior to the BeginShape method or after the EndShape method, the SplineStart method doesn't

create anything and returns Nothing.

If object is a simple shape, the SplineStart method adds to object a new geometry that contains

the spline start segment with the specified coordinates and returns object.

The coordinates of the points are in the coordinate system of the shape, group or the page to

which object corresponds. The coordinates are measured in internal units (InternalUnit).

See Also
ArcTo method, BeginShape method, EndShape method, LineTo method,

MoveTo method, SplineTo method

ConceptDraw DIAGRAM Third Party Developer’s Guide

865

SplineTo Method

SplineTo Method

Builds a spline segment in a shape. Returns an instance of the Shape object, corresponding to the

shape where the spline segment has been built.

Applies to: Page object, Shape object

Syntax
[[Set] shapeRet =] object.SplineTo (xKnot, yKnot, xA, yB)

The SplineTo method syntax has these Elements:

Element Description

object Required. An expression that returns an object in the Applies to list.

xKnot
Required. An expression that returns a Double value. The X-coordinate of

the end point of the spline segment.

yKnot
Required. An expression that returns a Double value. The Y-coordinate of

the end point of the spline segment.

xA
Required. An expression that returns a Double value. The X-coordinate of

the end guiding point of the spline segment.

yB
Required. An expression that returns a Double value. The Y-coordinate of

the end guiding point of the spline segment.

shapeRet Optional. A Shape type variable.

Remarks

The SplineTo method adds to the shape a new spline segment, described by four points: the begin

point (the X and Y fields of the previous segment), the begin guiding point (the A and B fields of

the previous segment), the end point (specified by the xKnot and yKnot parameters), the end

guiding point (xA and xB parameters). Note, that a spline segment can only be added to a start

spline segment or previous spline segment. That is, the SplineStart method must be called prior

to the SplineTo method.

If object is a page or a group, the SplineTo method adds the spline start segment to the current

Basic shape and returns a Shape object that corresponds to that shape. If the method was called

prior to the BeginShape method or after the EndShape method, the SplineTo method doesn't

create anything and returns Nothing.

If object is a simple shape, the SplineTo method adds a new spline segment to this shape and

returns object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

866

The coordinates of the points are in the coordinate system of the shape, group or the page to

which object corresponds. The coordinates are measured in internal units (InternalUnit).

See Also
ArcTo method, BeginShape method, EndShape method, LineTo method,

MoveTo method, SplineStart method

StartRebuild Method

StartRebuild Method

Informs the ConceptDraw Engine about the beginning of changing some properties of the shapes

of the document.

Applies to: Document object

Syntax
object.StartRebuild ()

The StartRebuild method syntax has these Elements:

Element Description

object Required. An expression that returns an instance of the Document object.

Remarks

In order to inform the ConceptDraw application about the end of changing groups of properties of

the shapes, and re-calculate all modified properties, use the EndRebuild method. Such scheme of

changing shape properties applies when you need to change several properties of shapes without

re-calculating all dependent properties after each change. In this case all properties are re-

calculated just once on calling the EndRebuild method.

See Also EndRebuild method, UpdateAllViews method

ConceptDraw DIAGRAM Third Party Developer’s Guide

867

StepBack Method

StepBack Method

Moves the object (shape) back by one position in the collection of objects (shapes) of the parent

group. Returns the index of the object (shape) in a collection of objects (shapes) of the parent

group.

Applies to: Shape object

Syntax

[[Let] index =] object. StepBack ()

The StepBack method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Optional. A Long type variable.

Remarks

If the object is an object directly on the document page, then the parent of this object is a page

(Property Page). If an object is placed in a group, then its parent is a group of objects. The

numbering of objects starting with 0. In case of error the method returns -1.

Example
dim index as Integer

index = thisShape.GetIndex()

trace index

index = thisShape.StepBack()

trace index

See Also
GetIndex method, Page property, Parent property, SendBack method,

SendFront method, StepFront method

StepFront Method

StepFront Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

868

Moves the object (shape) by one position in the collection of objects (shapes) of the parent

group. Returns the index of the object (shape) in a collection of objects (shapes) of the parent

group.

Applies to: Shape object

Syntax

[[Let] index =] object. StepFront ()

The StepFront method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index Optional. A Long type variable.

Remarks

If the object is an object directly on the document page, then the parent of this object is a page

(Property Page). If an object is placed in a group, then its parent is a group of objects. The

numbering of objects starting with 0. In case of error the method returns -1.

Example
dim index as Integer

index = thisShape.GetIndex()

trace index

index = thisShape.StepFront()

trace index

See Also
GetIndex method, Page property, Parent property, SendBack method,

SendFront method, StepBack method

StyleByName Method

StyleByName Method

Searches for a style with the specified name (the Name property) in the style collection of the

document. Returns a Style object, that corresponds to the found style.

Applies to: Document object

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

869

[[Set] styleRet =] object.StyleByName (styleName)

The StyleByName method syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

styleName
Required. An expression that returns a String value. The name (the Name

property) of the style to be found.

styleRet Optional. A Style type variable.

Remarks

If there is no style with the specified styleName in the style collection of the document, the

StyleByName method returns Nothing.

See Also
AddStyle method, FindStyle method, RemoveStyle method,

RemoveStyleByName method, RenameStyle method, Style method,

StylesNum method, Style object

StylesNum Method

StylesNum Method

Returns the number of the styles in the style collection of the document.

Applies to: Document object

Syntax
[[Let] countRet =] object.StylesNum ()

The StyelsNum method syntax has these Elements:

Element Description

object Required. An expression, that returns an instance of the Document object.

countRet Optional. A Long type variable.

Remarks

If there are no styles in the style collection of the document, the StylesNum method returns 0.

ConceptDraw DIAGRAM Third Party Developer’s Guide

870

See Also
AddStyle method, FindStyle method, RemoveStyle method,

RemoveStyleByName method, RenameStyle method, Style method,

StyleByName method, Style object

Style Method

Style Method

Returns an instance of the Style object by the specified ID of the style in the style collection of

the document.

Applies to: Document object

Syntax
[[Set] styleRet =] object.Style (index)

The Style method syntax has these Elements:

Element Description

object Required. An expression, that returns a Document object.

index
Required. An expression that returns a Long value. Indicates the style

index in the style collection of the document.

styleRet Optional. A Style type variable.

Remarks

If index is less than 1 or greater than the number of styles in the style collection of the document,

the Style method returns Null. Use the StylesNum method find out the number of styles in the

document.

See Also
AddStyle method, FindStyle method, RemoveStyle method,

RemoveStyleByName method, RenameStyle method, StyleByName method,

StylesNum method, Style object

ConceptDraw DIAGRAM Third Party Developer’s Guide

871

TabStopsNum Method

TabStopsNum Method

Returns the number of tab stops in the specified text block.

Applies to: TextBlock object

Syntax
[[Let] countRet =] object.TabStopsNum ()

The TabStopsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

countRet Optional. A Long type variable.

Remarks

If the text block doesn't contain any tab stops, the method returns 0.

Example

This example demonstrates using the TabStopsNum method. It assumes that the active page

already contains the Shape with ID1, which has text, and probably one or more tab stops.
Dim s as Shape

s = thisDoc.ActivePage.ShapeByID(1)

' Display the number of tab stops.

trace s.TextBlock.TabStopsNum()

See Also AddTabStop method, RemoveTabStop method, TabStop method

TabStop Method

TabStop Method

Returns a TabStop object, that corresponds to a tab stop with the specified index in the tab stop

collection of the text block.

ConceptDraw DIAGRAM Third Party Developer’s Guide

872

Applies to: TextBlock object

Syntax
[[Set] tabStopRet =] object.TabStop (index)

The TabStop method syntax has these Elements:

Element Description

object Required. An expression that returns a TextBlock object.

index
Required. An expression that returns a Long value. The index of the tab

stop in the tab stop collection of object's text block.

tabStopRet Optional. A TabStop type variable.

Remarks

If index is less than 1 or greater than the number of tab stops in the text block, the TabStop

method returns Nothing. Use the TabStopsNum method to find out the number of tab stops in

the text block.

See Also
AddTabStop method, RemoveTabStop method, TabStopsNum method,

TabStop object

UnionRect Method

UnionRect Method

Calculates the coordinates of a rectangle with the least possible square enough to encompass to

specified rectangles. Returns a Boolean value: FALSE, if the specified rectangles are empty,

otherwise - TRUE.

Applies to objects: DRect

Syntax
[[Let] res =] object.UnionRect (inRect1, inRect2)

The UnionRect method syntax has these Elements:

Element Description

object A reference to an instance of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

873

inRect1,

inRect2
References to instances of the DRect object.

res Variable of a Boolean type.

Remarks

If inRect1 and inRect2 have zero square, this method returns False, and the properties of the

instance of the object object, for which the method was called, are reset to zero.

Example
Dim outRect as new DRect, inRect1 as new DRect, inRect2 as new DRect, res as

Boolean

inRect1.SetRect(100,100,200,200)

inRect2.SetRect(200,200,400,400)

'outRect properties take these values: 100,100,400,400

res = outRect.UnionRect(inRect1,inRect2) ' return TRUE

See Also DRect Object

UpdateAllViews Method

UpdateAllViews Method

Re-draws all document windows.

Applies to: Document object

Syntax
object.UpdateAllViews ()

The UpdateAllViews method syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

874

See Also EndRebuild method, StartRebuild method

VariablesNum Method

VariablesNum Method

Returns the number of user-defined variables in the shape.

Applies to: Shape object

Syntax
[[Let] coutnRet =] object.VariablesNum ()

The VariablesNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

countRet Optional. A Long type variable.

Remarks

If the shape doesn't contain any user-defined variable, the VariablesNum method returns 0.

See Also
AddVariable method, Variable method, RemoveVariable method, Variable

object

Variable Method

Variable Method

Returns a Variable object that corresponds to a user-defined variable with the specified index in

the user-defined variable collection of the shape.

ConceptDraw DIAGRAM Third Party Developer’s Guide

875

Applies to: Shape object

Syntax
[[Set] variableRet =] object.Variable (index)

The Variable method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

index
Required. An expression that returns a Long value. The index of the

variable in the variable collection of the shape.

variableRet Optional. A Variable type variable.

Remarks

If index is less than 1 or greater than the number of user-defined variables in the variable

collection of the shape, the Variable method returns Nothing. Use the VariablesNum method

find out the number of variables in the shape.

See Also
AddVariable method, VariablesNum method, RemoveVariable method,

Variable object

ViewByID Method

ViewByID Method

Searches for a window with the specified ID (the ID property) in the window collection of the

document. Returns a Window object that corresponds to the found document window.

Applies to: Document object

Syntax
[[Let] windowRet =] object.ViewByID (viewID)

The ViewByID method syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

876

viewID
Required. An expression that returns a Long value. The ID (ID property)

of the window to be found.

windowRet Optional. A Window type variable.

Remarks

If there is no window with the viewID ID in the collection, the ViewByID method returns

Nothing.

See Also
FirstView method, NextView method, ViewsNum method, UpdateAllViews

method

ViewsNum Method

ViewsNum Method

Returns the number of open windows for the specified ConceptDraw document.

Applies to: Document object

Syntax
[[Let] countRet =] object.ViewsNum ()

The ViewsNum method syntax has these Elements:

Element Description

object Required. An expression that returns a Document object.

countRet Optional. A Long type variable.

Remarks

The ViewsNum returns a value equal to or greater than 1, as an open ConceptDraw document

always has at least one window.

ConceptDraw DIAGRAM Third Party Developer’s Guide

877

See Also
FirstView method, NextView method, ViewByID method, UpdateAllViews

method

WPtoLP Method

WPtoLP Method

Converts the coordinates of the specified point from the world coordinate system to the local

coordinate system of this shape.

Applies to: Shape object

Syntax
object.WPtoLP (srcPoint)

The WPtoLP method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

srcPoint Required. A DPoint type variable. The coordinates of the point.

Remarks

This method modifies the input argument srcPoint and uses it to return the resulting coordinates.

The coordinates are measured in internal units (InternalUnit).

See Also GPtoLp, LAtoWA method, LPtoGP method, LPtoWP method

XPathText Method

XPathText Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

878

Returns the text written in the specified XML file data source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. XPathText (dsIndex, xPathExpr, defVal)

The XPathText method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

xPathExpr Required. An expression that returns a String value. XPATH expression.

defVal Required. An expression that returns a String value. The default value.

ret Optional. A String type variable.

Remarks

The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set out in the case of addressing the range of the table or in the case of missing

data or not corresponding to the data type and return type.

Example

Getting the data that resides in the XPATH expression "/ Localization / XPATHText" a second

source of data sources in the collection of data object (shape).
dim res as String
res = thisShape.XPathText (2, "/ Localization / XPATHText", "Error")
trace res

A fragment of xml file:
<Localization Version="1">
<XPATHValue> 776 </ XPATHValue>
<XPATHValueD> 776.68 </ XPATHValueD>
<XPATHText> Reed the XPATH Text </ XPATHText>
</ Localization>

See Also

DataSource object , FileText , XPathValue , XPathValueD

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.filetext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.xpathvalue_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.xpathvalued_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

879

XPathValueD Method

XPathValueD Method

Returns the value of the specified XML file data source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. XPathValueD (dsIndex, xPathExpr, defVal)

The XPathValueD method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

xPathExpr Required. An expression that returns a String value. XPATH expression.

defVal Required. An expression that returns a Double value. The default value.

ret Optional. A Double type variable.

Remarks

The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set out in the case of addressing the range of the table or in the case of missing

data or not corresponding to the data type and return type.

Example

Getting the data that resides in the XPATH expression "/ Localization / XPATHValueD" a second

source of data sources in the collection of data object (shape).
dim res as Double
res = thisShape.XPathValueD (2, "/ Localization / XPATHValueD", -1.5)
trace res

A fragment of xml file:
<Localization Version="1">
<XPATHValue> 776 </ XPATHValue>
<XPATHValueD> 776.68 </ XPATHValueD>
<XPATHText> Reed the XPATH Text </ XPATHText>
</ Localization>

See Also

DataSource object , XPathText , XPathValue

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.xpathtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.xpathvalue_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

880

XPathValue Method

XPathValue Method

Returns the integer value from the specified XML file data source object (shape).

Applies to: Shape object

Syntax

[[Let] ret =] object. XPathValue (dsIndex, xPathExpr, defVal)

The XPathValue method syntax has these Elements:

Element Description

object Required. An expression that returns a Shape object.

dsIndex Required. An expression that returns a Long value. Index data source in the

collection of data source object (shape).

xPathExpr Required. An expression that returns a String value. XPATH expression.

defVal Required. An expression that returns a Long value. The default value.

ret Optional. A Long type variable.

Remarks

The numbering of the data sources in the collection of data sources, the object starts at 1. The

default value is set out in the case of addressing the range of the table or in the case of missing

data or not corresponding to the data type and return type.

Example

Getting the data that resides in the XPATH expression "/ Localization / XPATHValue" a second

source of data sources in the collection of data object (shape).
dim res as Long
res = thisShape.XpathValue (2, "/ Localization / XPATHValue", -1)
trace res

A fragment of xml file:
<Localization Version="1">
<XPATHValue> 776 </ XPATHValue>
<XPATHValueD> 776.68 </ XPATHValueD>
<XPATHText> Reed the XPATH Text </ XPATHText>
</ Localization>

ConceptDraw DIAGRAM Third Party Developer’s Guide

881

See Also

DataSource object , XPathText , XPathValueD

ConceptDraw access Objects Constants

Import / Export Constants

These constants are used in the Import/Export methods (such as Import method, Export method).

Constant Value Import Export Description

cdf_UNKNOWN 0 - - Means unknown format of file.

cdf_CDD 1 Yes Yes ConceptDraw V document file format.

cdf_CDT 2 Yes Yes ConceptDraw V template file format.

cdf_CDL 3 Yes Yes ConceptDraw V library file format.

cdf_CDW 4 Yes Yes ConceptDraw V workspace file format.

cdf_CDD1X 5 Yes Yes ConceptDraw 1.x document file format.

cdf_CDT1X 6 Yes Yes ConceptDraw 1.x template file format.

cdf_CDL1X 7 Yes Yes ConceptDraw 1.x library file format.

cdf_CDW1X 8 Yes Yes ConceptDraw 1.x workspace file format.

cdf_CDB 9 No No ConceptDraw Basic script source file format.

cdf_BMP 10 Yes Yes Bitmap file format.

cdf_DIB 11 Yes Yes Device-independent bitmap file format.

cdf_DCM 12

cdf_GIF 13 Yes Yes Graphics Interchange format.

cdf_ICO 14 Yes Yes Windows icon file format.

cdf_ICON 15 Yes Yes Windows icon file format.

cdf_JPEG 16 Yes Yes Joint Photographic Experts Group file format.

cdf_JPG 17 Yes Yes Joint Photographic Experts Group file format.

cdf_PNG 18 Yes Yes Portable Network Graphics file format.

cdf_PCD 19 Yes Yes

cdf_PCDS 20

cdf_PCX 21 Yes Yes

cdf_SGI 22 Yes Yes

cdf_RAS 23 Yes Yes

cdf_SUN 24

cdf_TGA 25 Yes Yes

cdf_ICB 26

cdf_VDA 27

cdf_VST 28

http://translate.googleusercontent.com/translate_f#topic_Cdobj.datasource_obj
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.xpathtext_mtd
http://translate.googleusercontent.com/translate_f#topic_Cdobj.methods.xpathvalued_mtd

ConceptDraw DIAGRAM Third Party Developer’s Guide

882

cdf_TIF 29 Yes Yes Tag Image file format.

cdf_TIFF 30 Yes Yes Tag Image file format.

cdf_WPG 31 Yes Yes

cdf_XBM 32 Yes Yes

cdf_XPM 33 Yes Yes

cdf_PCT 34 Yes Yes

cdf_DXF 35 Yes Yes

cdf_HTM 36 No Yes Hypertext Markup Language file format.

cdf_HTML 37 No Yes Hypertext Markup Language file format.

cdf_EPS 38 No Yes Encapsulated postscript file format

cdf_CDX 39 Yes Yes XML for ConceptDraw file format.

cdf_OUTLINE 40 Yes Yes ConceptDraw outline file format. It is text
format file.

cdf_FLOWDATA 41 Yes Yes ConceptDraw flowdata file format.

cdf_PPT 42 Yes Yes MS PowerPoint file format

cdf_EMF 43 Yes Yes Enhanced Metafile format.

cdf_WMF 44 Yes Yes Windows Metafile format.

cdf_PAL 45

cdf_SWF 46 No Yes Macromedia Flash format.

cdf_PDF 47 No Yes

cdf_PSD 48 Yes Yes Adobe Photoshop Drawing format.

cdf_VDX 49 Yes No Microsoft Visio XML format.

cdf_SVG 50 No Yes Scalable Vector Graphic.

cdf_PICT 51 Yes No Macintosh PICT.

cdf_CDOCMD 52 Yes YES Conceptdraw Office command file format.

cdf_CDLX 53 Yes Yes ConceptDraw XML Libraries file format.

cdf_CDTX 54 Yes Yes ConceptDraw XML Template file format.

Property Tag Constants

Constant Value

CDPT_WIDTH 1

CDPT_HEIGHT 2

CDPT_ANGLE 3

CDPT_GPINX 4

CDPT_GPINY 5

CDPT_FLIPX 6

CDPT_FLIPY 7

ConceptDraw DIAGRAM Third Party Developer’s Guide

883

CDPT_LPINX 8

CDPT_LPINY 9

CDPT_BEGINX 10

CDPT_BEGINY 11

CDPT_ENDX 12

CDPT_ENDY 13

CDPT_GEOMETRY_X 14

CDPT_GEOMETRY_Y 15

CDPT_GEOMETRY_A 16

CDPT_GEOMETRY_B 17

CDPT_GEOMETRY_C 18

CDPT_GEOMETRY_D 19

CDPT_GEOMETRY_VISIBLE 20

CDPT_GEOMETRY_FILLED 21

CDPT_TEXTWIDTH 26

CDPT_TEXTHEIGHT 27

CDPT_TEXTANGLE 28

CDPT_TEXTPINX 29

CDPT_TEXTPINY 30

CDPT_TEXTGPINX 31

CDPT_TEXTGPINY 32

CDPT_VALIGN 33

CDPT_TOPMARGIN 34

CDPT_BOTTOMMARGIN 35

CDPT_LEFTMARGIN 36

CDPT_RIGHTMARGIN 37

CDPT_TEXTBKGND 38

CDPT_DEFTABSTOP 39

CDPT_TABALIGN 40

CDPT_TABPOS 41

CDPT_TEXT 42

CDPT_LINEPATTERN 43

CDPT_LINEWEIGHT 44

CDPT_LINECOLOR 45

CDPT_LINEBEGIN 46

CDPT_LINEEND 47

CDPT_LINEENDSIZE 48

CDPT_FILLPATTERN 49

ConceptDraw DIAGRAM Third Party Developer’s Guide

884

CDPT_FILLPATCOLOR 50

CDPT_FILLCOLOR 51

CDPT_SHADOWPATTERN 52

CDPT_SHADOWPATCOLOR 53

CDPT_SHADOWCOLOR 54

CDPT_LOCKWIDTH 55

CDPT_LOCKHEIGHT 56

CDPT_LOCKMOVEX 57

CDPT_LOCKMOVEY 58

CDPT_LOCKASPECT 59

CDPT_LOCKCALCWH 60

CDPT_LOCKROTATE 61

CDPT_LOCKDELETE 62

CDPT_LOCKBEGIN 63

CDPT_LOCKEND 64

CDPT_LOCKVERTEX 65

CDPT_LOCKFLIPX 66

CDPT_LOCKFLIPY 67

CDPT_SHOWSHAPEHANDLES 68

CDPT_SHOWCONTROLHANDLES 69

CDPT_SHOWALIGNBOX 70

CDPT_NONPRINTING 71

CDPT_RESIZEBEHAVIOUR 72

CDPT_SHOWTEXT 73

CDPT_VARIABLE_X 74

CDPT_VARIABLE_Y 75

CDPT_CONTROL_X 76

CDPT_CONTROL_Y 77

CDPT_CONTROL_XDYN 78

CDPT_CONTROL_YDYN 79

CDPT_CONTROL_XBEHAVIOUR 80

CDPT_CONTROL_YBEHAVIOUR 81

CDPT_CONTROL_COMMENT 82

CDPT_CONNECT_X 83

CDPT_CONNECT_Y 84

CDPT_CHAR_FONT 85

CDPT_CHAR_SIZE 86

CDPT_CHAR_COLOR 87

ConceptDraw DIAGRAM Third Party Developer’s Guide

885

CDPT_CHAR_STYLE 88

CDPT_CHAR_POS 90

CDPT_CHAR_LANGUAGE 91

CDPT_CHAR_SPACING 92

CDPT_CHAR_HYPERLINK 93

CDPT_PARA_FIRSTIND 94

CDPT_PARA_LEFTIND 95

CDPT_PARA_RIGHTIND 96

CDPT_PARA_HALIGN 97

CDPT_PARA_BEFORESPACING 99

CDPT_PARA_AFTERSPACING 100

CDPT_PARA_LINESPACING 101

CDPT_ACTION_ACTION 102

CDPT_ACTION_MENU 103

CDPT_ACTION_PROMPT 104

CDPT_ACTION_CHECKED 105

CDPT_ACTION_DISABLED 106

CDPT_CUSTOM_LABEL 107

CDPT_CUSTOM_PROMPT 108

CDPT_CUSTOM_TYPE 109

CDPT_CUSTOM_FORMAT 110

CDPT_CUSTOM_VALUE 111

CDPT_CUSTOM_INVISIBLE 112

CDPT_CUSTOM_VERIFY 113

CDPT_CONNECTOBJBEGIN 129

CDPT_CONNECTOBJEND 130

CDPT_CONNECTTYPEBEGIN 131

CDPT_CONNECTTYPEEND 132

CDPT_TEXTFLIPX 133

CDPT_TEXTFLIPY 134

CDPT_LAYER 142

CDPT_HYPERLINK 143

CDPT_DBLCLICK 144

CDPT_DBLCLICKACTION 145

CDPT_ROUNDCORNERS 148

CDPT_CONNECTMODE 149

CDPT_CONNECTORKNEELIMIT 150

CDPT_CONNECTBYPASSGROUPS 151

ConceptDraw DIAGRAM Third Party Developer’s Guide

886

CDPT_EVENTPAGESREORDER 152

CDPT_EVENTPAGESCOUNT 153

CDPT_EVENTIDLE 154

CDPT_EVENTTIMER 155

CDPT_EVENTLOAD 156

CDPT_CHARPROPEVENT 157

CDPT_EVENTFILENAME 158

CDPT_LINEALPHA 159

CDPT_FILLFOREGNDALPHA 160

CDPT_FILLBACKGNDALPHA 161

CDPT_SHADOWFOREGNDALPHA 162

CDPT_SHADOWBACKGNDALPHA 163

CDPT_TEXTBKGNDALPHA 164

CDPT_CHAR_ALPHA 165

CDPT_FILLTEXTURE 166

CDPT_REGULAR_PROPS_NUM 167

CDPT_STYLED_LINEPATTERN 210

CDPT_STYLED_LINEWEIGHT 211

CDPT_STYLED_LINECOLOR 212

CDPT_STYLED_BEGINARROW 213

CDPT_STYLED_ENDARROW 214

CDPT_STYLED_ARROWSIZE 215

CDPT_STYLED_FILLPATTERN 216

CDPT_STYLED_FILLFOREGND 217

CDPT_STYLED_FILLBACKGND 218

CDPT_STYLED_SHADOWPATTERN 219

CDPT_STYLED_SHADOWFOREGND 220

CDPT_STYLED_SHADOWBACKGND 221

CDPT_STYLED_CHAR_FONT 222

CDPT_STYLED_CHAR_SIZE 223

CDPT_STYLED_CHAR_COLOR 224

CDPT_STYLED_CHAR_STYLE 225

CDPT_STYLED_CHAR_POS 226

CDPT_STYLED_CHAR_SET 227

CDPT_STYLED_CHAR_SPACING 228

CDPT_STYLED_PARA_FIRSTIND 229

CDPT_STYLED_PARA_LEFTIND 230

CDPT_STYLED_PARA_RIGHTIND 231

ConceptDraw DIAGRAM Third Party Developer’s Guide

887

CDPT_STYLED_PARA_HALIGN 232

CDPT_STYLED_PARA_BEFOREIND 233

CDPT_STYLED_PARA_AFTERIND 234

CDPT_STYLED_PARA_BETWEENLN 235

CDPT_STYLED_VERTICALALIGN 236

CDPT_STYLED_TOPMARGIN 237

CDPT_STYLED_BOTTOMMARGIN 238

CDPT_STYLED_LEFTMARGIN 239

CDPT_STYLED_RIGHTMARGIN 240

CDPT_STYLED_TEXTBKGND 241

CDPT_STYLED_TXTDEFTABSTOP 242

CDPT_STYLED_LINEALPHA 243

CDPT_STYLED_FILLFOREGNDALPHA 244

CDPT_STYLED_FILLBACKGNDALPHA 245

CDPT_STYLED_SHADOWFOREGNDALPHA 246

CDPT_STYLED_SHADOWBACKGNDALPHA 247

CDPT_STYLED_CHAR_ALPHA 248

CDPT_STYLED_TEXTBKGNDALPHA 249

CDPT_DS_DATASOURCE 250

CDPT_DS_REFRESH_TIME 251

CDPT_DS_ACTION 252

CDPT_DS_VALID 253

CDPT_DS_ACTIVE 254

CDPT_DS_DATASOURCE_PATH 255

CDPT_DS_RELIABILITY 256

CDPT_DS_SHOW_WARNINGS 257

CDPT_DS_SHOW_ERRORS 258

CDPT_DSV_NAME 259

CDPT_DSV_VALUE 260

CDPT_DSV_TYPE 261

CDPT_DSV_VISIBLE 262

CDPT_DSV_OBJECT_TYPE 263

CDPT_DSV_SHOW_DIALOG 264

CDPT_LOCKTEXTBOUND 265

CDPT_LOCKGROUP 266

CDPT_LOCKFILL 267

CDPT_LOCKLINE 268

CDPT_RAPIDDRAW 269

ConceptDraw DIAGRAM Third Party Developer’s Guide

888

CDPT_HIDEINSLIDESHOW 270

CDPT_RD_LIB_NAME 271

CDPT_RD_OBJ_NAME 272

CDPT_RD_ICON_NAME 273

CDPT_RD_LEFT_PLACING 274

CDPT_RD_RIGHT_PLACING 275

CDPT_RD_TOP_PLACING 276

CDPT_RD_BOTTOM_PLACING 277

CDPT_RD_CONNECTOR_TYPE 278

CDPT_RD_CONN_LIB_NAME 279

CDPT_RD_CONN_OBJ_NAME 280

CDPT_RD_AUTO_BALANCE 281

CDPT_RD_SPACING_X 282

CDPT_RD_SPACING_Y 283

CDPT_RD_START_CONN_POINT 284

CDPT_RD_END_CONN_POINT 285

CDPT_RD_SPACING_X_VERT_MOVE 286

CDPT_RD_SPACING_Y_HOR_MOVE 287

CDPT_RAPIDDRAW_OBJECT_BOUND 288

CDPT_RAPIDDRAW_TOP_AUTO_STEP 289

CDPT_RAPIDDRAW_LEFT_AUTO_STEP 290

CDPT_RAPIDDRAW_RIGHT_AUTO_STEP 291

CDPT_RAPIDDRAW_BOTTOM_AUTO_STEP 292

CDPT_RD_OBJECT_DESCRIPTION 293

Databases access Objects

About optionality of a collection object name

About optionality of a collection object name

At creation of a new collection object the parameter that defines the object being created is

optional. For example,

Dim engine As dbEngine, wspace As Workspace

Set engine = new dbEngine

Set wspace = engine.CreateWorkspace()

Last code line creates a new instance of the object Workspace and adds it to the Workspace

collection of engine. At that the object’s name is not specified.

ConceptDraw DIAGRAM Third Party Developer’s Guide

889

Getting access to such an object is possible by reference or by index in the collection. However,

an unnamed object cannot be added to a database. To be added to a database it needs naming by

using the property Name.

See Also

CreateField Method, CreateIndex Method,

CreateParameter Method, CreateProperty Method,

CreateQueryDef Method, CreateRelation Method,

CreateTableDef Method, CreateWorkspace Method

Connections Object

Connections Object

The Connections object is a collection of Connection objects and represents methods for

controlling and accessing stored objects.

Methods

Count Returns the number of objects, stored in the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Remarks

The Connections object belongs to the Workspace object and can be retrieved by calling the

Connections method.

See Also Connection Object, Workspace Object, Connections Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

890

Connection Object

Connection Object

Describes a database connection. Provides access to transactions. Controls creating and using

stored procedures and direct queries in the SQL language. An instance of this object can be

retrieved by using the OpenConnection method of the Workspace collection or from the

Connections collection.

Properties

Name The name of the object for indentification in the collection.

DriverVersion The ODBC driver version.

ConformanceLevel The functionality level of the driver.

Transactions Transaction support level.

IsolationLevels A bit mask, describing available transaction isolation levels.

CursorTypes A bit mask that describes available cursors.

Methods

CreateQueryDef
Creates a stored procedure in the SQL language. Returns a

QueryDef object.

OpenRecordset

Is used for executing direct queries and stored procedures in

the SQL language. Returns the result of the query - a

Recordset object.

CreateProperty
Creates a Property object, that describes a user-defined

property.

QueryDefs Provides access to the QueryDefs collection.

Recordsets Provides access to the Recordsets collection.

Properties Provides access to the Properties collection.

BeginTrans
Begins a transaction. All subsequent actions on the database

will form Element of this transaction.

CommitTrans Applies all database changes since BeginTrans was called.

RollbackTrans

Ignores all changes in the database, occurred since

BeginTrans was called. The database will be in the same state

as before calling BeginTrans.

Close Breaks a database connection.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

891

The DriverVersion, ConformanceLevel, Transactions, IsolationLevels and CursorTypes

properties contain information, relating only to the given connection and have the Read-Only

attribute.

The SQL code of a QueryDef object, created with the CreateQueryDef method, will be input in

the database in the form of a stored procedure after calling the Append method of the QueryDefs

collection. It can be executed by using the OpenRecordset method, with the name of the

QueryDef object as the parameter.

Using transactions at this level assumes that transactions are applied to the given object

exclusively.

If the transaction hasn't been closed before calling the Close method, the CommitTrans function

will be called automatically for the changes to come into force.

See Also
Connections Object, Property Object, Properties Object, QueryDef Object,

QueryDefs Object, Recordset Object, Recordsets Object, Append Method,

OpenConnection Method

Databases Object

Databases Object

The Databases object represents a collection of Database objects and provides methods for

accessing and controlling the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Remarks

The Databases object belongs to the Workspace object and can be retrieved by calling the

Databases method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

892

See Also Database Object, Workspace Object, Databases Method

Database Object

Database Object

Describes a model of an open database. Controls transactions. Provides control over tables and

links between tables. Allows to create and use stored procedures and direct SQL queries for

controlling a database and getting information from it. An instance of this object can be retrieved

by using the OpenDatabase method of the Workspace object or from the Databases collection.

Properties

Name The name of the object for indentification in the collection.

DriverVersion The ODBC driver version.

ConformanceLevel The driver functionality level.

Transactions Transaction support level.

IsolationLevels A bit mask, describing available transaction isolation levels.

CursorTypes A bit mask that describes available cursors.

Methods

CreateTableDef Creates a new TableDef object, describing the data table.

CreateQueryDef
Creates a stored procedure in the SQL language. Returns a

QueryDef object.

CreateRelation
Creates a Relation object, describing relationship between the

tables.

OpenRecordset

Creates and executes a direct SQL query. Can also execute

stored procedures. Returns the result of the query - a

Recordset object.

CreateProperty
Creates a Property object, that describes a user-defined

property.

TableDefs Provides access to the TableDefs collection.

QueryDefs Provides access to the QueryDefs collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

893

Recordsets Provides access to the Recordsets collection.

Relations Provides access to the Relations collection.

Properties Provides access to the Properties collection.

BeginTrans
Begins a transaction. All subsequent actions on the database

will form Element of this transaction.

CommitTrans Applies all database changes since BeginTrans was called.

RollbackTrans

Ignores all changes in the database, occurred since

BeginTrans was called. The database will be in the same state

as before calling BeginTrans.

Close Breaks a database connection.

Remarks

The DriverVersion, ConformanceLevel, Transactions, CursorTypes and IsolationLevels

properties contain information, relating only to the given connection and have the Read-Only

attribute.

After calling the CreateTableDef method the new table will be created in the database only after

the TableDef object, describing the table, has been completely formed, all table fields have been

created, and the Append method of the TableDefs collection has been called.

Similarly, information about new relations between the tables will be added to the database only

after calling the Append method of the Relations collection.

The SQL code of a QueryDef object, created with the CreateQueryDef method, will be input in

the database in the form of a stored procedure after calling the Append method of the QueryDefs

collection. It can be executed by using the OpenRecordset method, with the name of the

QueryDef object as the parameter.

Using transactions at this level assumes that transactions are applied to the given object

exclusively.

If the transaction hasn't been closed before calling the Close method, the CommitTrans function

will be called automatically for the changes to come into force.

See Also

Databases Object, Property Object, Properties Object, QueryDef Object,

QueryDefs Object, Recordset Object, Recordsets Object, Relation Object,

Relations Object, TableDef Object, TableDefs Object, Workspace Object,

Append Method, OpenDatabase Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

894

DBEngine Object

DBEngine Object

The DBEngine object is used for controlling the database access driver and Workspace objects.

Properties

DriverManager The name of the used library.

DriverType The driver type.

Methods

CreateProperty
Creates a Property object, that describes a user-defined

property.

CreateWorkspace Creates a Workspace object.

Properties Provides access to the Properties collection.

Workspaces Provides access to the Workspaces collection.

Remarks

By default, the DriverManager property equals odbc32.dll for Windows and iODBC CFM

Bridge for Mac OS.

Presently, only ODBC drivers are fully supported. The DriverType property is reserved for future

use. The changes you make in this property are ignored.

See Also Property Object, Properties Object, Workspace Object, Workspaces Object

Fields Object

Fields Object

The Fields object represents a collection of Field objects and provides methods for controlling

and accessing the stored objects.

ConceptDraw DIAGRAM Third Party Developer’s Guide

895

Methods

Count Returns the number of objects, stored in the collection.

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Refresh Refreshes the object collection.

Remarks

The Fields object belongs to the Index, Recordset, Relation, TableDef objects and can be

retrieved by calling the Fields method.

See Also
Field Object, Index Object, Recordset Object, Relation Object, TableDef

Object, Fields Method

Field Object

Field Object

Describes a data field. An instance of this object can be retrieved by using the CreateField method

of the Index, TableDef and Relation objects or from the Fields collection.

Properties

Name The name of the object for indentification in the collection.

Type The field type.

Size The field size.

Scale The number of digits after the decimal point.

ForeignName The name of the field, connected with the given relation.

Required A flag, specifying whether this field is required.

SourceTable The name of the table in the database, containing this field.

SourceField The name of the field in the database.

ConceptDraw DIAGRAM Third Party Developer’s Guide

896

AsString Represents the contents of the field as a string.

AsLong Represents the contents of the field as an integer number.

AsDouble Represents the contents of the field as an real number.

AsBoolean Represents the contents of the field as a boolean value.

Methods

GetMoreData Checks if there are more data and gets the next portion.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Properties Provides access to the Properties collection.

Remarks

The ForeignName property is used for creating relations between tables. It refers to the field, on

which the external key of the related table will be based.

The Required flag is used for creating tables for determining required fields.

The SourceTable and SourceField properties have the Read-Only attribute.

See Also
Fields Object, Index Object, Property Object, Properties Object, Relation

Object, TableDef Object, CreateField Method

Indexes Object

Indexes Object

The Indexes object represents the collection of the Index objects and provides methods for

controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

ConceptDraw DIAGRAM Third Party Developer’s Guide

897

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Refresh Refreshes the object collection.

Remarks

The Indexes object belongs to the TableDef object and can be retrieved by calling the Indexes

method.

See Also Index Object, TableDef Object, Indexes Method

Index Object

Index Object

Represents an index of a database table. An instance of this object can be retrived by using the

CreateIndex method of the TableDef object, or from the Indexes collection.

Properties

Name The name of the object for indentification in the collection.

Foreign A flag, indicating whether the index is an external key.

Primary A flag, indicating whether the index is a primary key.

Unique
A flag, indicating whether the given index is unique within

the scope of the table, that contains it.

Methods

CreateField
Defines an existing table field, on which the given index will

be based. Returns a Field object.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Fields Provides access to the Fields collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

898

Properties Provides access to the Properties collection.

Remarks

New fields will be associated with the given index only after the Append method of the Fields

collection has been called.

See Also
Field Object, Fields Object, Indexes Object, Property Object, Properties

Object, TableDef Object, CreateIndex Method

Parameters Object

Parameters Object

The Parameters object represents a collection of the Parameter objects and provides methods for

controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Refresh Refreshes the object collection.

Remarks

The Parameters object belongs to the QueryDef object and can be retrieved by calling the

Parameters method.

For existing stored procedures the call of the Append, DeleteByName and DeleteByNum methods

does not cause an actual change of the number of parameters.

ConceptDraw DIAGRAM Third Party Developer’s Guide

899

See Also Parameter Object, QueryDef Object, Parameters Method

Parameter Object

Parameter Object

The Parameter object represents a parameter of stored procedure. An instance of this object can

be retrieved by using the CreateParameter method or from the Parameters collection.

Properties

Name The name of the object for indentification in the collection.

Description The parameter description.

Type The parameter type.

Size The parameter size.

Scale The number of digits after the decimal point.

AsString Represents the contents of the parameter as a string.

AsLong
Represents the contents of the parameter as an integer

number.

AsDouble Represents the contents of the parameter as an real number.

AsBoolean Represents the contents of the parameter as a boolean value.

Methods

CreateProperty
Creates a Property object, that describes a user-defined

property.

Properties Provides access to the Parameters collection.

Remarks

Property objects can be built-in or user-defined.

To create a user-defined Property object for one of the objects, call the CreateProperty method of

this object, and then add it to the Properties collection with the Append method. Only user-

defined objects can be removed from teh Properties collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

900

See Also Properties Object, Append Method, CreateProperty Method

Properties Object

Properties Object

The Properties object represents a collection of the Property objects and provides methods for

controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Remarks

The Properties object belongs to the Field and Index objects and can be retrieved by calling the

Properties method.

See Also Field Object, Index Object, Property Object, Properties Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

901

Property Object

Property Object

The Property object represents a certain property of an object. An instance of theProperty object

can be retrieved by using the CreateProperty method for all objects except collections, or from the

Properties collection.

Properties

Name The name of the object for indentification in the collection.

AsString Represents the contents of the property as a string.

AsLong Represents the contents of the property as an integer number.

AsDouble Represents the contents of the property as an real number.

AsBoolean Represents the contents of the property as a boolean value.

Remarks

Property objects can be built-in or user-defined.

To create a user-defined Property object for one of the objects, call the CreateProperty method of

this object, and then add it to the Properties collection with the Append method. Only user-

defined objects can be removed from teh Properties collection.

See Also Properties Object, Append Method, CreateProperty Method

QueryDefs Object

QueryDefs Object

The QueryDefs object represents a collection of the QueryDef objects and provides methods for

controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

902

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Remarks

The QueryDefs object belongs to the Connection and Database objects and can be retrieved by

calling the QueryDefs method.

See Also Connection Object, Database Object, QueryDef Object, QueryDefs Method

QueryDef Object

QueryDef Object

Represents a stored SQL procedure. An instance of this object can be retrieved with the

CreateQueryDef method of the Connection and Database objects, or from the QueryDefs

collection.

Properties

Name The name of the object for indentification in the collection.

SQL The stored SQL query.

Methods

CreateParameter
Creates a Parameter object, that describes a parameter of

stored procedure.

Parameters Provides access to the Parameters collection.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Properties Provides access to the Properties collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

903

Close Stops using the object and removes it from the collection.

Remarks

You can create a QueryDef object by using the CreateQueryDef method of the Connection and

Database objects. The stored variable is created in the database when calling the Append method

of the QueryDefs collection.

An SQL query stored in the QueryDef object can be executed with the help of the OpenRecordset

method of the Connection and Database objects, with the name of the QueryDef object as the

parameter.

QueryDef objects are based on the Transact-SQL standard. If the server doesn't support this

standard, using QueryDef will cause an error. In this case you can use stored procedures only

with the help of direct queries, executed by the OpenRecordset method.

See Also
Connection Object, Database Object, Property Object, Properties Object,

QueryDefs Object, Append Method, CreateQueryDef Method,

OpenRecordset Method.

Recordsets Object

Recordsets Object

The Recordsets method represents the collection of the Recordset objects and provides methods

for controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Remarks

The Recordsets object belongs to the Connection and Database objects and can be retrieved by

calling the Recordsets method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

904

See Also Connection Object, Database Object, Recordset Object, Recordsets Method

Recordset Object

Recordset Object

Represents the result of an SQL query to a database or executing a stored procedure. Provides

methods for viewing and modifying the resulting data. An instance of this object can be retrieved

by using the OpenRecordset method of the Connection, Database, TableDef objects or from the

Recordsets collection.

Properties

Name The name of the object for indentification in the collection.

BOF The sign that the beginning of the record has been reached.

EOF The sign that the end of the record has been reached.

Methods

GetRows Gets the number of records in the resulting multitude.

AddNew
Adds a new empty line to the open table. Returns a TRUE or

FALSE value.

Delete Removes a line from the table.

Update
Updates the read record in the table in accordance with the the

state of the object's record. Returns a TRUE or FALSE value.

RowsAffected The number of records, affected by the last operation.

CanMove

The method determines, whether the pointer can move in the

record within the specified direction. Returns a TRUE or

FALSE value.

Move
Moves the pointer within the record in the desired direction.

Returns a TRUE or FALSE value.

MoveFirst
Moves the pointer to the first line of the record. Returns a

TRUE or FALSE value.

MoveLast
Moves the pointer to the last line of the record. Returns a

TRUE or FALSE value.

ConceptDraw DIAGRAM Third Party Developer’s Guide

905

MoveNext
Moves the pointer to the next line of the record. Returns a

TRUE or FALSE value.

MovePrevious
Moves the pointer to the previous line of the record. Returns a

TRUE or FALSE value.

MoreResults

Checks whether there are more results of the query, updates

the resulting multitude and moves the pointer to the starting

position. Returns a TRUE or FALSE value.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Fields Provides access to the Fields collection.

Properties Provides access to the Properties collection.

Close Closes the Recordset object and releases data, related to it.

Remarks

In some cases it's not possible to determine the number of records in the resulting multitude. The

majority of data sources don't let determine the size of the resulting multitude when performing

the SELECT operation, but determine the size successfully after UPDATE, DELETE, INSERT.

If the number of strings is unknown, the GetRows method returns -1.

If the given object is not a table record, the AddNew, Delete and Update methods won't perform

any action and will return FALSE .

The RowsAffected method returns the number of records, affected by the AddNew, Delete and

Update methods. If the number of strings is unknown, the method returns -1.

The ability of the pointer to move in this or that direction is determined by its type, set in the

OpenRecordset method, and the level of support of this functionality by the driver and the

database. Use the CanMove method to find this out.

See Also
Connection Object, Database Object, Fields Object, Property Object,

Properties Object, Recordsets Object, TableDef Object, OpenRecordset

Method

Relations Object

Relations Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

906

The Relations object represents the collection of the Relation objects, and provides methods for

controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Refresh Refreshes the object collection.

Remarks

The Relations object belongs to the Database object and can be retrieved by calling the Relations

method.

See Also Database Object, Relation Object, Relations Method

Relation Object

Relation Object

Describes relations between the fields of the table. An instance of this object can be retrieved with

the help of the CreateRelation method of the Database object or from the Relations collection.

Properties

Name The name of the object for indentification in the collection.

Table The name of the table that contains the primary key.

ForeignTable The name of the table, to create relation with.

Methods

ConceptDraw DIAGRAM Third Party Developer’s Guide

907

CreateField
Defines the Field object, on which the given relation will be

based.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Fields Provides access to the Fields collection.

Properties Provides access to the Properties collection.

Remarks

The Relation object can be based only on the fields of the table, specified in Table, relating to the

primary field of this table.

For all created Field objects, the ForeignName property must be defined - it represents the name

of the field in the table, being related, on which the external key will be based. The number of

fields in the primary and external keys must be the same - i.e., all created fields must have

different names and ForeignName properties.

The created fields are added to the Fields collection with the Append method.

The Relation object is created in the database on calling the Append method of the Relations

collection.

See Also
Database Object, Field Object, Fields Object, Property Object, Properties

Object, Relations Object, Append Method, CreateRelation Method,

ForeignName Property.

TableDefs Object

TableDefs Object

The TableDefs object represents the collection of the TableDef objects and provides methods for

controlling and accessing stored objects.

Methods

Count Returns the number of objects, stored in the collection.

Append Adds a new object to the collection.

GetByName Gets an object from the collection by its name.

ConceptDraw DIAGRAM Third Party Developer’s Guide

908

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Refresh Refreshes the object collection.

Remarks

The TableDefs object belongs to the Database object and can be retrieved by calling the

TableDefs method.

See Also Database Object, TableDef Object, TableDefs Method

TableDef Object

TableDef Object

Represents an object, describing a database. Controls existing fields and indexes of the table and

allows to create new ones. An instance of this object can be retrieved by using the

CreateTableDef method of the Database object, or from the TableDefs collection.

Properties

Name The name of the object for indentification in the collection.

Methods

CreateField Creates a new field in the table. Returns a Field object.

CreateIndex Creates a new index in the table. Returns an Index object.

OpenRecordset
Reads the entire contents of the table. Returns a Recordset

object.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Fields Provides access to the Fields collection.

Indexes Provides access to the Indexes collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

909

Properties Provides access to the Properties collection.

Remarks

New fields and indexes will be added to the table only on calling the Append method of the Fields

and Indexes collections respectively.

See Also
Database Object, Field Object, Fields Object, Index Object, Indexes Object,

Property Object, Properties Object, Recordset Object, TableDefs Object,

Append Method, CreateTableDef.

Workspaces Object

Workspaces Object

The Workspaces object represents the collection of the Workspace objects and provides methods

for controlling and accessing the stored objects.

Methods

Count Returns the number of objects, stored in the collection.

GetByName Gets an object from the collection by its name.

GetByNumber Gets an object from the collection by its number.

DeleteByName Removes an object from the collection by its name.

DeleteByNum Removes an object from the collection by its number.

Remarks

The Workspaces object belongs to the DBEngine object and can be retrieved by calling the

Workspaces method.

See Also DBEngine Object, Workspace Object, Workspaces Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

910

Workspace Object

Workspace Object

Controls connections with databases and transactions. An instance of this object can be retrieved

by using the CreateWorkspace method of the DBEngine object, or from the Workspaces

collection.

Properties

Name The name of the object for indentification in the collection.

UserName The name of the user for accessing the database.

Password The password for accessing the database.

LoginTimeout Database login timeout.

QueryTimeout Query timeout.

Methods

OpenConnection Creates a database connection. Returns a Connection object.

OpenDatabase
Creates a connection and projects the model of the database.

Returns a Database object.

CreateProperty
Creates a Property object, that describes a user-defined

property.

Connections Provides access to the Connections collection.

Databases Provides access to the Databases collection.

Properties Provides access to the Properties collection.

BeginTrans
Begins a transaction. All subsequent actions on the database

will form Element of this transaction.

CommitTrans Applies all database changes since BeginTrans was called.

RollbackTrans

Ignores all changes in the database, occurred since

BeginTrans was called. The database will be in the same state

as before calling BeginTrans.

Close Closes all open database connections.

Remarks

The UserName and Password properties will be used for authentification in the OpenConnection

and OpenDatabase methods, if the corresponding connection parameters are omitted.

ConceptDraw DIAGRAM Third Party Developer’s Guide

911

By default, the LoginTimeout and QueryTimeout properties set a 15 second interval.

Using transactions at this level assumes that transactions will be used for all Connection and

Database objects, that belong to the given Workspace object. Transactions can be also controlled

at the level of the Connection and Database objects.

If a transaction hasn't been closed before calling the Close method, the CommitTrans function

will be called automatically for the changes to come into force.

See Also
Connection Object, Connections Object, Database Object, Databases Object,

DBEngine Object, Property Object, Properties Object, Workspaces Object,

CreateWorkspace Method.

Databases access Objects Properties

AsBoolean Property

AsBoolean Property

The AsBoolean property provides access to the object as to a Boolean variable.

Applies to objects: Field, Property.

Syntax
[[Let] RetVal =] object.AsBoolean

[Let] object.AsBoolean = SetVal

The AsBoolean property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

SetVal Required. A Boolean type variable.

Remarks

There are also the AsDouble, AsLong and AsString properties, which treat an object as a Double,

Long or String variable respectively.

ConceptDraw DIAGRAM Third Party Developer’s Guide

912

Example
.......

See Also
Field Object, Property Object, AsDouble Property, AsLong Property,

AsString Property.

AsDouble Property

AsDouble Property

The AsDouble property provides access to the object as to a Double variable.

Applies to objects: Field, Property.

Syntax
[[Let] RetVal =] object.AsDouble

[Let] object.AsDouble = SetVal

The AsDouble property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Double type variable.

SetVal Required. A Double type variable.

Remarks

There are also the AsBoolean, AsLong and AsString properties, which treat an object as a

Boolean, Long or String variable respectively.

Example
.......

See Also
Field Object, Property Object, AsBoolean Property, AsLong Property,

AsString Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

913

AsLong Property

AsLong Property

The AsLong property provides access to the object as to a Long variable.

Applies to objects: Field, Property.

Syntax
[[Let] RetVal =] object.AsLong

[Let] object.AsLong = SetVal

The AsLong property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

SetVal Required. A Long type variable.

Remarks

There are also the AsBoolean, AsDouble and AsString properties, which treat an object as a

Boolean, Double or String variable respectively.

Example
.......

See Also
Field Object, Property Object, AsBoolean Property, AsDouble Property,

AsString Property.

AsString Property

AsString Property

The AsString property provides access to the object as to a String variable.

Applies to objects: Field, Property.

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

914

[[Let] RetVal =] object.AsString

[Let] object.AsString = SetVal

The AsString property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

There are also the AsBoolean, AsDouble and AsLong properties, which treat an object as a

Boolean, Double or Long variable respectively.

Example
.......

See Also
Field Object, Property Object, AsBoolean Property, AsDouble Property,

AsLong Property.

BOF Property

BOF Property

The BOF property indicates that the pointer has reached the beginning of the record and can't be

moved any more backwards.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.BOF

The BOF property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

915

This property is Read-Only.

Example
.......

See Also Recordset Object, EOF Property.

ConformanceLevel Property

ConformanceLevel Property

The ConformanceLevel property specifies the functionality level of the driver.

Applies to objects: Connection, Database.

Syntax
[[Let] RetVal =] object.ConformanceLevel

The ConformanceLevel property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

Remarks

The ConformanceLevel property can have the following values:

cdbLevel0 - supports the minimum SQL level.

cdbLevel1 - supports the basic SQL level.

cdbLevel2 - supports the advanced SQL level.

This property is Read-Only.

Example
.......

See Also Connection Object, Database Object, DriverVersion Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

916

CursorTypes Property

CursorTypes Property

The CursorTypes property is a bit mask, that indicates supported cursor types.

Applies to objects: Connection, Database, TableDef.

Syntax
[[Let] RetVal =] object.CursorTypes

The CursorTypes property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

Remarks

The CursorTypes property can contain a combination of the following values:

cdbCSForwardOnly - supports the cdbCursorForwardOnly cursor type.

cdbCSKeySet - supports the cdbCursorKeySet cursor type.

cdbCSDynamic - cursor type cdbCursorDynamic cursor type.

cdbCSStatic - cursor type cdbCursorStatic cursor type.

This property is Read-Only.

Example
.....

See Also
Connection Object, Database Object, TableDef Object, OpenRecordset

Method.

Description Property

Description Property

ConceptDraw DIAGRAM Third Party Developer’s Guide

917

The Description property indicates the purpose of stored procedure parameter.

Applies to objects: Parameter

Syntax
[[Let] RetVal =] object.Description

[Let] object.Description = SetVal

The Name property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. An Integer type variable.

SetVal Required. An Integer type variable.

Remarks

The description property of an object can possess the following values (see Parameter Types).

This property changes will be accepted only during parameter creation. In any other cases the

changes will be ignored.

Example
.......

See Also Parameter Object, Constants.

DriverManager Property

DriverManager Property

The DriverManager property contains the name of the used ODBC library.

Applies to objects: DBEngine.

Syntax
[[Let] RetVal =] object.DriverManager

ConceptDraw DIAGRAM Third Party Developer’s Guide

918

[Let] object.DriverManager = SetVal

The DriverManager property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

By default, the DriverManager property has the odbc32.dll value for Windows and iODBC

CFM Bridge for Mac OS.

This property must be modified before opening a database connection.

Example
.......

See Also DBEngine Object.

DriverType Property

DriverType Property

The DriverType property stores the type of the used driver.

Applies to objects: DBEngine.

Syntax
[[Let] RetVal =] object.DriverType

[Let] object.DriverType = SetVal

The DriverType property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

SetVal Required. A Long type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

919

Remarks

Presently, only ODBC drivers are fully supported. The DriverType property is reserved for

future use. The changes you make in this property are ignored.

Example
.......

See Also DBEngine Object.

DriverVersion Property

DriverVersion Property

The DriverVersion property specifies the version of the used ODBC driver.

Applies to objects: Connection, Database.

Syntax
[[Let] RetVal =] object.DriverVersion

The DriverVersion property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Double type variable.

Remarks

This property is Read-Only.

Example
.......

See Also Connection Object, Database Object, ConformanceLevel Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

920

EOF Property

EOF Property

The EOF property indicates that the pointer has reached the end of the record and can't be moved

forward any further.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.EOF

The BOF property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

Remarks

This property is Read-Only.

Example
.......

See Also Recordset Object, BOF Property.

ForeignName Property

ForeignName Property

The ForeignName stores the name of the field of the table, referenced by the Relation table, on

which the external key will be based.

Applies to objects: Field.

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

921

[[Let] RetVal =] object.ForeignName

[Let] object.ForeignName = SetVal

The ForeignName property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

The ForeignName must be necessarily set to all Field objects, located in the Fields collection of

the Relation object.

All ForeignName properties must have different values. The fields, specified in ForeignName

must exist in the referenced table.

Example
.......

See Also Field Object, Fields Object, Relation Object, CreateRelation Method.

ForeignTable Property

ForeignTable Property

The ForeignTable property stores the name of the table, in which the external key is to be

created.

Applies to objects: Relation.

Syntax
[[Let] RetVal =] object.ForeignTable

[Let] object.ForeignTable = SetVal

The ForeignTable property syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

922

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

On creating a Relation object, an external key will be created in the table, referenced by the

ForeignTable property. This key will be based on the fields of the table, specified in the

ForeignName properties of the Field objects that make Element of the Fields collection of the

Relation object.

The number of fields in the primary and external keys of the referenced table must coincide, that

is, all created fields must have different names and ForeignName properties.

Example
.......

See Also
Relation Object, Field Object, Fields Object, ForeignName Property, Table

Property, CreateRelation Method.

IsolationLevels Property

IsolationLevels Property

The IsolationLevels property is a bit mask, that indicates the level of transaction support.

Applies to objects: Connection, Database.

Syntax
[[Let] RetVal =] object.IsolationLevels

The Transactions property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

Remarks

The following situations may occur when using transactions:

ConceptDraw DIAGRAM Third Party Developer’s Guide

923

Dirty Read. Transaction 1 changes a row. Transaction 2 reads the changed row before transaction

1 commits the change. If transaction 1 rolls back the change, transaction 2 will have read a row

that is considered to have never existed.

Nonrepeatable Read. Transaction 1 reads a row. Transaction 2 updates or deletes that row and

commits this change. If transaction 1 attempts to reread the row, it will receive different row

values or discover that the row has been deleted.

Phantom. Transaction 1 reads a set of rows that satisfy some search criteria. Transaction 2

generates one or more rows (through either inserts or updates) that match the search criteria. If

transaction 1 reexecutes the statement that reads the rows, it receives a different set of rows.

The IsolationLevels property may contain a combination of the following values:

cdbTransReadUncommited - Dirty reads, nonrepeatable reads, and phantoms are possible.

cdbTransReadCommited - Dirty reads are not possible. Nonrepeatable reads and phantoms are

possible.

cdbTransRepeatableRead - Dirty reads and nonrepeatable reads are not possible. Phantoms are

possible.

cdbTransSerializable - Transactions are serializable. Serializable transactions do not allow dirty

reads, nonrepeatable reads, or phantoms.

If equal to 0 - transactions are not supported.

This property is Read-Only.

Example
.....

See Also
Connection Object, Database Object, Transactions Property, BeginTrans

Method.

LoginTimeout Property

LoginTimeout Property

The LoginTimeout specifies the maximum database connection timeout delay.

Applies to objects: Workspace.

Syntax
[[Let] RetVal =] object.LoginTimeout

[Let] object.LoginTimeout = SetVal

ConceptDraw DIAGRAM Third Party Developer’s Guide

924

The LoginTimeout property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

SetVal Required. A Long type variable.

Remarks

The default timeout delay is 15 seconds.

Example
.......

See Also Workspace Object, QueryTimeout Property.

Name Property

Name Property

The Name property stores the name of the object for identifying in the database and object

collection.

Applies to objects: Connection, Database, Field, Index, Property, QueryDef, Recordset, Relation,

TableDef, Workspace.

Syntax
[[Let] RetVal =] object.Name

[Let] object.Name = SetVal

The Name property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

925

The name property of an object must be unique within the scope of the collection.

Example
.......

See Also
Connection Object, Database Object, Field Object, Index Object, Property

Object, QueryDef Object, Recordset Object, Relation Object, TableDef

Object, Workspace Object.

Password Property

Password Property

The Password property stores the user password for accessing the database.

Applies to objects: Workspace.

Syntax
[[Let] RetVal =] object.Password

[Let] object.Password = SetVal

The Password property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

The UserName and Password properties will be used for all database connections within the

scope of the given Workspace object, unless the initialization string of the connection is not

specified in the OpenConnection and OpenDatabase methods, or the UID and PWD indetifiers

are missing in it.

Example
.......

ConceptDraw DIAGRAM Third Party Developer’s Guide

926

See Also
Workspace Object, UserName Property, OpenConnection Method,

OpenDatabase Method.

Primary Property

Primary Property

The Primary property indicates whether the given index is a primary key.

Applies to objects: Index.

Syntax
[[Let] RetVal =] object.Primary

[Let] object.Primary = SetVal

The Primary property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

SetVal Required. A Boolean type variable.

Remarks

This property can only be defined when index is created. Otherwise modifying this property is

ignored.

A table may have only one primary key.

Example
.......

See Also Index Object, TableDef Object, Unique Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

927

QueryTimeout Property

QueryTimeout Property

The QueryTimeout sets the maximum timeout for the operation.

Applies to objects: Workspace.

Syntax
[[Let] RetVal =] object.QueryTimeout

[Let] object.QueryTimeout = SetVal

The QueryTimeout property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

SetVal Required. A Long type variable.

Remarks

The default timeout delay is 15 seconds.

Example
.......

See Also Workspace Object, LoginTimeout Property.

Required Property

Required Property

The Required property specifies, whether the given field is required.

Applies to objects: Field.

Syntax
[[Let] RetVal =] object.Required

ConceptDraw DIAGRAM Third Party Developer’s Guide

928

[Let] object.Required = SetVal

The Required property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

SetVal Required. A Boolean type variable.

Remarks

This property can be set only when creating tables, for determining required fields. Otherwise

modifying this property is ignored.

Example
.......

See Also Field Object.

Scale Property

Scale Property

The Scale property stores object size.

Applies to objects: Field, Parameter

Syntax
[[Let] RetVal =] object.Scale

[Let] object.Scale = SetVal

The Scale property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. An Integer type variable.

SetVal Required. An Integer type variable.

ConceptDraw DIAGRAM Third Party Developer’s Guide

929

Remarks

This property can be used just for cddbCurrency, cddbNumeric and cddbDecimal types (see

Data Types).

This property changes will be accepted only during parameter creation. In any other cases the

changes will be ignored.

Example
.......

See Also Field Object, Parameter Object, Size Property, Constants.

Size Property

Size Property

The Size property stores object size.

Applies to objects: Field, Parameter

Syntax
[[Let] RetVal =] object.Size

[Let] object.Size = SetVal

The Size property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable.

SetVal Required. A Long type variable.

Remarks

This property can be used just for cddbText, cddbBinary, cddbMemo, cddbCurrency,

cddbNumeric and cddbDecimal types (see Data Types).

ConceptDraw DIAGRAM Third Party Developer’s Guide

930

This property changes will be accepted only during parameter creation. In any other cases the

changes will be ignored.

Example
.......

See Also Field Object, Parameter Object, Constants.

SourceField Property

SourceField Property

The SourceField property stores the name of the field as it's represented in the database.

Applies to objects: Field.

Syntax
[[Let] RetVal =] object.SourceField

The SourceField property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

Remarks

This property is Read-Only.

Example
.......

See Also Field Object, SourceTable Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

931

SourceTable Property

SourceTable Property

The SourceTable property contains the name of the table, that owns the given field, as it's

represented in the database.

Applies to objects: Field.

Syntax
[[Let] RetVal =] object.SourceTable

The SourceTable property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

Remarks

This property is Read-Only.

Example
.......

See Also Field Object, SourceField Property.

SQL Property

SQL Property

The SQL property stores the SQL code of the stored procedure.

Applies to objects: QueryDef.

Syntax
[[Let] RetVal =] object.SQL

[Let] object.SQL = SetVal

ConceptDraw DIAGRAM Third Party Developer’s Guide

932

The SQL property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

You can execute the given SQL query by using the OpenRecordset method, with the QueryDef

object name as the parameter.

Example
.......

See Also QueryDef Object, OpenRecordset Method.

Table Property

Table Property

The Table property stores the name of the table that contains the primary key.

Applies to objects: Relation.

Syntax
[[Let] RetVal =] object.Table

[Let] object.Table = SetVal

The Table property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

ConceptDraw DIAGRAM Third Party Developer’s Guide

933

The Relation object can be based only on the fields of the table, specified in the Table property

and relating to the primary key of that table.

You need to create as many fields for the given Relation object, as there are fields relating to the

primary key, specified in the Table property.

Example
.......

See Also
Relation Object, Field Object, ForeignName Property, ForeignTable

Property, CreateField Method, CreateRelation Method.

Transactions Property

Transactions Property

The Transactions indicates transaction support.

Applies to objects: Connection, Database.

Syntax
[Let] RetVal = object.Transactions

The Transactions property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

Remarks

This property is Read-Only.

Example
Dim en As dbEngine

Set en = new dbEngine

Dim ws As Workspace

Set ws = en.CreateWorkspace("IBWorkspace")

Dim db As Database

Set db = ws.OpenDatabase("IBBase", FALSE, FALSE, "ODBC; UID=SYSDBA;

PWD=masterkey; DSN=IBBase")

If db.Transactions Then

 db.BeginTrans()

ConceptDraw DIAGRAM Third Party Developer’s Guide

934

 ...

 db.CommitTrans()

End IF

db.Close()

ws.Close()

See Also
Connection Object, Database Object, IsolationLevels Property, BeginTrans

Method.

Type Property

Type Property

The Type property represents object type.

Applies to objects: Field, Parameter

Syntax
[[Let] RetVal =] object.Type

[Let] object.Type = SetVal

The Type property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. An Integer type variable.

SetVal Required. An Integer type variable.

Remarks

The description property of an object can possess the following values (see Data Types).

This property changes will be accepted only during parameter creation. In any other cases the

changes will be ignored.

Example
.......

ConceptDraw DIAGRAM Third Party Developer’s Guide

935

See Also Field, Parameter Object, Constants.

Unique Property

Unique Property

The Unique property determines, whether the given index is unique.

Applies to objects: Index.

Syntax
[[Let] RetVal =] object.Unique

[Let] object.Unique = SetVal

The Unique property syntax has these Elements:

Element Description

object Required. Link to the object instance

RetVal Optional. A variable of Boolean type.

SetVal Required. A variable of Boolean type.

Remarks

This property can be set only when creating the index. Otherwise modifying this property is

ignored.

If the index is unique, it means that the fields it's based on, are different. This guarantees that all

operations that use this index will affect exactly the chosen records. Besides, indexing decreases

the record search time.

Example
.......

See Also Index Object, Pimary Property.

ConceptDraw DIAGRAM Third Party Developer’s Guide

936

UserName Property

UserName Property

The UserName property stores the user name for accessing the database.

Applies to objects: Workspace.

Syntax
[[Let] RetVal =] object.UserName

[Let] object.UserName = SetVal

The UserName property syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A String type variable.

SetVal Required. A String type variable.

Remarks

The UserName and Password properties will be used for all database connections within the

scope of the given Workspace object, unless the initialization string of the connection is not

specified in the OpenConnection and OpenDatabase methods, or the UID and PWD indetifiers

are missing in it.

Example
.......

See Also
Workspace Object, Password Property, OpenConnection Method,

OpenDatabase Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

937

Databases access Objects Methods

AddNew Method

AddNew Method

Adds a new empty string to the open table.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.AddNew()

The MethodName method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable, that indicates whether the string was

added.

Remarks

If the given object is not a table record, the method won't perform any action and will return

FALSE.

Example
.......

See Also Recordset Object, Delete Method.

Append Method

Append Method

Appends an object to the collection.

Applies to objects: Connections, Databases, Fields, Indexes, Properties, QueryDefs, Recordsets,

Relations, TableDefs, Workspaces.

ConceptDraw DIAGRAM Third Party Developer’s Guide

938

Syntax
object.Append(addObj)

The Append method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

addObj Required. An instance of the object to be added to the collection.

Remarks

The Append lets append to the collection an object with a unique Name property. If such object

already exists in the collection, the new object won't be added.

The Append method should be called after creating the Field, Index, Property, QueryDef,

Recordset, Relation, TableDef object with the CreateField, CreateIndex, CreateProperty,

CreateQueryDef, OpenRecordset, CreateRelation, CreateTableDef methods respectively and after

assigning all necessary properties to the created objects. After calling the Append method the

corresponding objects (except Property) will appear in the database.

Example
Examples for most common cases.

See Also

Connections Object, Databases Object, Field Object, Fields Object, Index

Object, Indexes Object, Property Object, Properties Object, QueryDef

Object, QueryDefs Object, Recordset Object, Recordsets Object, Relation

Object, Relations Object, TableDef Object, TableDefs Object, Workspaces

Object, Name Property, CreateField Method, CreateIndex Method,

CreateProperty Method, CreateQueryDef Method, CreateRelation Method,

CreateTableDef Method, OpenRecordset Method.

BeginTrans Method

BeginTrans Method

Begins a transaction.

Applies to objects: Connection, Database, Workspace.

Syntax
[[Let] RetVal =] object.BeginTrans([IsolationLevel])

ConceptDraw DIAGRAM Third Party Developer’s Guide

939

The BeginTrans method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable that indicates whether the transaction

could be started.

IsolationLevel
Optional. A Long type variable, indicating the isolation level of the

transaction.

Remarks

The BeginTrans method switches the transaction mechanism from automatical to manual

execution mode. In the automatical mode it's not possible to organize all database changes into

one block and is not possible to cancel transactions. In the manual execution mode all operations

following BeginTrans are treated as a single block, executed with the CommitTrans, and

cancelation of a transaction is handles by the RollbackTrans function.

The Connection and Database allow to define the transaction support and available transaction

isolation levels for the database connection described by them with the help of the Transactions

and IsolationLevels methods. The BeginTrans method, that belongs to these objects, can take the

IsolationLevel parameter, that sets the isolation level for the transaction. This parameter can be

omitted - then the default isolation level for the database will be accepted.

The Workspace object provides general control over transactions. On calling its method

BeginTrans, the BeginTrans of all Connection and Database objects, that belong to it and

support transactions, will be called without parameters. The BeginTrans method of the

Workspace object returns no result.

After calling the CommitTrans and RollbackTrans functions automatical transaction execution

mode is restored. To form the next transaction, the BeginTrans method must be called again.

If none of these functions is called, transaction will be committed by the CommitTrans function

on destroying or closing the object, controlling this transaction (Connection, Database,

Workspace).

Example
.......

See Also
Connection Object, Database Object, Workspace Object, Transactions

Property, IsolationLevels Property, CommitTrans Method, RollbackTrans

Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

940

CanMove Method

CanMove Method

This method determines whether the pointer can be moved in the record in the specified direction.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.CanMove(Direction)

The CanMove method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Boolean type variable.

Direction
Required. A Long type variable, that determines the direction in which the

pointer moves.

Remarks

The Direction parameter can be a combination of the following values:

cdbMoveNext - the MoveNext function can be used.

cdbMoveFirst - the MoveFirst function can be used.

cdbMoveLast - the MoveLast function can be used.

cdbMovePrevious - the MovePrevious function can be used.

cdbMoveAbsolute - the Move function can be used for absolute positioning.

cdbMoveRelative - the Move function can be used for relative positioning.

The ability of the pointer to move in this or that direction is determined by its type, set in the

OpenRecordset method, and by the level of support for this functionality by the driver and the

database.

Example
.......

See Also
Recordset Object, OpenRecordset Method, Move Method, MoveFirst

Method, MoveLast Method, MoveNext Method, MovePrevious Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

941

Close Method

Close Method

Terminates working with the object.

Applies to objects: Connection, Database, QueryDef, Recordset, Workspace.

Syntax
object.Close()

The MethodName method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

Remarks

For the Recordset object the Close method closes the pointer and releases the memory, alloted for

the records. For the Connection, Database, Workspace objects in closes the transaction.

For re-using a previously opened object you need to call the OpenConnection, OpenDatabase,

OpenRecordset, CreateQueryDef, CreateWorkspace methods.

Example
.......

See Also
Connection Object, Database Object, QueryDef Object, Recordset Object,

Workspace Object, CreateQueryDef Method, CreateWorkspace Method,

OpenConnection Method, OpenDatabase Method, OpenRecordset Method.

CommitTrans Method

CommitTrans Method

Commits a transaction.

Applies to objects: Connection, Database, Workspace.

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

942

[[Let] RetVal =] object.CommitTrans()

The CommitTrans method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable that indicates whether the transaction

has been committed.

Remarks

All operations between BeginTrans and CommitTrans will be performed.

On calling the CommitTrans method of the Workspace object, CommitTrans methods of all its

Connection and Database objects will be called. The CommitTrans method of the Workspace

object returns no result.

On calling the CommitTrans method the automatical transaction execution mode is restored. So,

to form the next transaction, BeginTrans must be called again.

If transaction is not closed, the CommitTrans function will be called on destroying or closing the

object, controlling the transaction so that the changes come in force.

Depending on the driver and the database, the CommitTrans and RollbackTrans methods can

close the open pointers of Recordset objects.

Example
.......

See Also
Connection Object, Database Object, Workspace Object, BeginTrans

Method, RollbackTrans Method.

Connections Method

Connections Method

Provides access to the Connections collection of the Workspace object.

Applies to objects: Workspace.

ConceptDraw DIAGRAM Third Party Developer’s Guide

943

Syntax
[[Set] RetVal =] object.Connections()

The Connections method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Connections type variable.

Example
' Declare and initialize variables

Dim engine As DBEngine

Set engine = new DBEngine

Dim wspace As Workspaces

Set wspace = engine.CreateWorkspace("MyWorkspace")

' Create connection

Dim conn As Connection

Set conn = wspace.OpenConnection("MyConnection", false, false, "ODBC;

UID=mylogin; PWD=mypassword; DSN=SQLBaseDSN")

'...

' Get the Connections collection

Dim cscoll As Connections

Set cscoll = wspace.Connections()

'...

See Also Connection Object, Connections Object, Workspace Object.

Count Method

Count Method

Returns the number of objects, stored in the collection.

Applies to objects: Workspaces, Connections, Databases, TableDefs, QueryDefs, Relations,

Indexes, Recordsets, Fields, Properties.

Syntax
[[Let] RetVal =] object.Count()

The Count method syntax has these Elements:

ConceptDraw DIAGRAM Third Party Developer’s Guide

944

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Long type variable that stores the number of objects in the

collection.

Example
A simple example.

See Also
Connections Object, Databases Object, Fields Object, Indexes Object,

Properties Object, QueryDefs Object, Recordsets Object, Relations Object,

TableDefs Object, Workspaces Object.

CreateField Method

CreateField Method

Creates a new Field object.

Applies to objects: Index, Relation, TableDef.

Syntax
[[Set] RetVal =] object.CreateField([Name], [Type], [Size])

The MethodName method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Field type variable.

Name Optional. A String type variable. The name of the field, being created.

Type Optional. A Long type variable. The type of the field.

Size Optional. A Long type variable. The size of the field.

Remarks

The Type determines the type of the value to be stored in the field. It can take one of the following

values:

cdbBoolean - A boolean variable.

cdbByte - Integer (1 byte).

ConceptDraw DIAGRAM Third Party Developer’s Guide

945

cdbInteger - Integer (2 bytes).

cdbLong - Integer (4 bytes).

cdbCurrency - Real (can support the currency symbol).

cdbSingle - Real.

cdbDouble - Double-precision real.

cdbDate - Date.

cdbBinary - Binary value.

cdbText - Text.

cdbLongBinary - Binary array.

cdbMemo - Binary array.

cdbGUID - Identifier (4 bytes).

cdbBigInt - Integer (8 bytes).

cdbVarBinary - Binary array.

cdbChar - Character (1 byte and 2 bytes if UNICODE).

cdbNumeric - Real number.

cdbDecimal - Real number.

cdbFloat - Real number.

cdbTime - Time.

cdbTimeStamp - Date and type.

Support for a type depends on the driver and the database.

The values specified in Type and Size are considered only when creating the table.

The created Field object needs to be added to the Fields collection by using the Append method.

For the Index and Relation objects the Name field must exist in the table, on which these objects

are based.

Example
.......

See Also
Field Object, Fields Object, Index Object, Relation Object, TableDef Object,

Name Property, Append Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

946

CreateIndex Method

CreateIndex Method

Creates a new Index object.

Applies to objects: TableDef.

Syntax
[[Set] RetVal =] object.CreateIndex([Name])

The CreateIndex method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. An Index type variable.

Name Optional. A String type variable. The name of the index.

Remarks

Once a new Index object has been created, you need to create the fields of the table, on which it

will be based. For each such field you need to call the CreateField method with its name and add

the created object to the Fields collection by using the Append method.

The index itself will be created in the table on calling the Append method of the Indexes

collection.

The index properties Primary and Unique can be defined before calling Append of the Indexes

collection. In other cases their changes will be ignored.

Example
.......

See Also
Index Object, Indexes Object, TableDef Object, Name Property, Primary

Property, Unique Property, Append Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

947

CreateParameter Method

CreateParameter Method

Creates a new Parameter, describing a parameter to a stored procedure..

Applies to objects: QueryDef

Syntax
[[Set] RetVal =] object.CreateParameter([Name], [Description], [Type], [Size], [Scale])

The CreateParameter method syntax has these Elements:

Element Description

object Required. Link to object. String variable

RetVal Optional. Parameter. variable

Name Optional. String variable. Name of new properties.

Description Optional. Integer variable..

Type Optional. Integer variable. Parameter type.

Size Optional. Long variable. Parameter size.

Scale Optional. Integer variable. The number of decimal places.

Remarks

Description variable determines whether the parameter is input (cddbInput),

output(cddbOutput) or both (cddbInputOutput) - see.Parameter Types.

The variable Size is used only for parameter types : cddbText, cddbBinary, cddbMemo,

cddbCurrency, cddbNumeric, cddbDecimal - см. Data Types.

The variable Scale is used only for parameter types : cddbCurrency, cddbNumeric,

cddbDecimal.

When the Parameter and its properties are created, it should be added to the Parameters

collection using the Append method.

Example
.......

See Also
Parameter Object, Parameters Object, QueryDef Object, Description

Property, Name Property, Size Property, Scale Property, Type Property,

Append Method, Constants.

ConceptDraw DIAGRAM Third Party Developer’s Guide

948

CreateProperty Method

CreateProperty Method

Creates a new Propery object, that describes a user-defined property of an object.

Applies to objects: Connection, Database, DBEngine, Field, Index, QueryDef, Recordset,

Relation, TableDef, Workspace.

Syntax
[[Set] RetVal =] object.CreateProperty([Name], [Value], [Inheritance])

The CreateProperty method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Property type variable.

Name Optional. A String type variable. The name of the property being created.

Value Optional. The value of the property being created.

Inheritance
Optional. A Boolean type variable. Defines, whether the property is

inherited by child object.

Remarks

If the Inheritance flag is set, this property will appear in all child objects of the object.

After creating the property you need to add it to the Properties collection by using the Append

method.

Example
.......

See Also

Connection Object, Database Object, DBEngine Object, Field Object, Index

Object, Propery Object, Properties Object, QueryDef Object, Recordset

Object, Relation Object, TableDef Object, Workspace Object, Name

Property, Append Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

949

CreateQueryDef Method

CreateQueryDef Method

Creates a new QueryDef object.

Applies to objects: Connection, Database

Syntax
[[Set] RetVal =] object.CreateQueryDef([Name], [SQLQuery])

The CreateQueryDef method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A QueryDef type variable.

Name Optional. A String type variable. The name of the object being created.

SQLQuery Optional. A String type variable. An SQL query.

Remarks

The stored procedure will be created in the database after calling the Append method of the

QueryDefs collection. It can be performed by the OpenRecordset record, with the name of the

QueryDef object as the parameter.

Example
.......

See Also
Connection Object, Database Object, QueryDef Object, QueryDefs Object,

Name Property, SQL Property, Append Method, OpenRecordset Method.

CreateRelation Method

CreateRelation Method

Creates a new Relation object.

Applies to objects: Database

ConceptDraw DIAGRAM Third Party Developer’s Guide

950

Syntax
[[Set] RetVal =] object.CreateRelation([Name], [PrimaryTableName], [ForeignTableName])

The CreateRelation method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Relation type variable.

Name Optional. A String type variable. The name of the relation, being created.

PrimaryTableN

ame

Optional. A String type variable. The name of the referenced table, that

contains the primary key.

ForeignTableN

ame

Optional. A String type variable. The name of the referenced table, in

which the external key will be created.

Remarks

Once a new Relation object has been created, you need to set the fields of the PrimaryTableName

table, on which it will be based. For each such field you need to call the CreateField method with

its name, set the ForeignName property to it and add the created object to the Fields collection by

using the Append method.

The relation itself will be created in the database on calling the Append method of the Relations

collection.

Example
.......

See Also
Database Object, Fields Object, Relation Object, Relations Object,

ForeignTable Property, Name Property, Table Property, Append Method,

CreateField Method.

CreateTableDef Method

CreateTableDef Method

Creates a new TableDef object.

Applies to objects: Database

ConceptDraw DIAGRAM Third Party Developer’s Guide

951

Syntax
[[Set] RetVal =] object.CreateTableDef([Name])

The CreateTableDef method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A TableDef type variable.

Name Optional. A String type variable. The name of the table being created.

Remarks

Once a new TableDef object has been created, you need to set the fields by using the CreateField

method. The created fields are added to the Fields collection by using the Append method.

The table itself will be created in the database on calling the Append method of the TableDefs

collection.

Example
.......

See Also
Database Object, Fields Object, TableDef Object, TableDefs Object, Name

Property, Append Method, CreateField Method.

CreateWorkspace Method

CreateWorkspace Method

Creates a Workspace object and adds it to the Workspaces collection of the DBEngine object.

Returns a reference to an instance of the Workspace object.

Applies to objects: DBEngine

Syntax
[[Set] RetVal =] object.CreateWorkspace ([workspaceName], [userName], [password])

The CreateWorkspace method syntax has these Elements:

Element Description

ConceptDraw DIAGRAM Third Party Developer’s Guide

952

object Required. A reference to an instance of the object.

workspaceNam

e

Optional. An expression that returns a String value. The name of the

Workspace object being created. It's used to identify the object in the

collection.

userName Optional. An expression that returns a String value. The name of the user.

password Optional. An expression that returns a String value. The password.

RetVal Optional. A Workspace type variable.

Remarks

The user name and password will be used for connecting to the database unless the connection

parameter string is specified in the OpenDatabase or OpenConnection methods of the Workspace

object.

The created Workspace object is immediately added to the Workspaces collection of the

DBEngine object, and it's not needed to call the Append method for it.

Example
Dim engine As dbEngine

Set engine = new dbEngine

' creating new Workspace

Dim wspace As Workspace

Set wspace = engine.CreateWorkspace("MyWorkspace", "mylogin", "mypassword")

'...

See Also DBEngine Object, Workspace Object, Workspaces Object.

Databases Method

Databases Method

Provides access to the Databases collection of the Workspace object.

Applies to objects: Workspace

Syntax
[[Set] RetVal =] object.Databases ()

ConceptDraw DIAGRAM Third Party Developer’s Guide

953

The Databases method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Databases type variable.

Example
' Declare and initialize variables

Dim engine As DBEngine

Set engine = new DBEngine

Dim wspace As Workspaces

Set wspace = engine.CreateWorkspace("MyWorkspace")

' Open database

Dim dbase As Database

Set dbase = wspace.OpenDatabase("MyDatabase", 0, false, "ODBC; UID=mylogin;

PWD=mypassword; DSN=SQLBaseDSN")

'...

' Get the Databases collection

Dim dbcoll As Databases

Set dbcoll = wspace.Databases()

'...

See Also Database Object, Databases Object, Workspace Object.

DeleteByName Method

DeleteByName Method

Deletes an object from the collection by its Name property.

Applies to objects: Connections, Databases, Fields, Indexes, Properties, QueryDefs, Recordsets,

Relations, TableDefs, Workspaces.

Syntax
object.DeleteByName(Name)

The DeleteByName method syntax has these Elements:

Element Description

object Required. An instance of one of the object collections listed above.

ConceptDraw DIAGRAM Third Party Developer’s Guide

954

Name
Required. An expression that returns a String value. The name of the

object to be deleted.

Remarks

If the object with the specified objName is missing in the collection, the following error occurs:

"The item 'objName' is not found in the collection"

Example
.......

See Also

Connection Object, Connections Object, Database Object, Databases Object,

Field Object, Fields Object, Index Object, Indexes Object, Property Object,

Properties Object, QueryDef Object, QueryDefs Object, Recordset Object,

Recordsets Object, Relation Object, Relations Object, TableDef Object,

TableDefs Object, Workspace Object, Workspaces Object, Name Property.

DeleteByNum Method

DeleteByNum Method

Deletes an object from the collection by its index.

Applies to objects: Connections, Databases, Fields, Indexes, Properties, QueryDefs, Recordsets,

Relations, TableDefs, Workspaces.

Syntax
object.DeleteByNum(Index)

The DeleteByNum method syntax has these Elements:

Element Description

object Required. An instance of one of the object collections listed above.

Index
Required. An expression that returns a Long value. The index of the object

to be deleted.

Remarks

If the specified objIndex index is outside the collection range, the following error occurs: "The

index is out of range".

ConceptDraw DIAGRAM Third Party Developer’s Guide

955

Example
.......

See Also

Connection Object, Connections Object, Database Object, Databases Object,

Field Object, Fields Object, Index Object, Indexes Object, Property Object,

Properties Object, QueryDef Object, QueryDefs Object, Recordset Object,

Recordsets Object, Relation Object, Relations Object, TableDef Object,

TableDefs Object, Workspace Object, Workspaces Object.

Delete Method

Delete Method

The Delete method deletes the current string from the table.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.Delete()

The Delete method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable that indicates whether the string could

be deleted.

Remarks

If the given object is not a table record, the method won't perform any action and will return

FALSE.Example
.......

See Also Recordset Object, AddNew Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

956

Fields Method

Fields Method

Provides access to the Fields collection of the Index, Relation, TableDef objects.

Applies to objects: Index, Relation, TableDef.

Syntax
[[Set] RetVal =] object.Fields()

The Fields method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Fields type variable.

Example
.......

See Also Fields Object, Index Object, Relation Object, TableDef Object.

GetByName Method

GetByName Method

Retrieves an object from the collection by its Name property.

Applies to objects: Connections, Databases, Fields, Indexes, Properties, QueryDefs, Recordsets,

Relations, TableDefs, Workspaces.

Syntax
[[Set] RetVal =] object.GetByName(Name)

The GetByName method syntax has these Elements:

Element Description

object Required. An instance of one of the object collections listed above.

ConceptDraw DIAGRAM Third Party Developer’s Guide

957

Name
Required. An expression that returns a String value. The name of the

object to be retrieved.

RetVal

Optional. An instance of an object, retrieved from the collection (of

Workspace, Connection, Database, TableDef, QueryDef, Relation, Index,

Recordset, Field, Property type respectively).

Remarks

If the object with the specified objName is missing in the collection, the following error occurs:

"The item 'objName' is not found in the collection".

Example
.......

See Also

Connection Object, Connections Object, Database Object, Databases Object,

Field Object, Fields Object, Index Object, Indexes Object, Property Object,

Properties Object, QueryDef Object, QueryDefs Object, Recordset Object,

Recordsets Object, Relation Object, Relations Object, TableDef Object,

TableDefs Object, Workspace Object, Workspaces Object, Name Property.

GetByNumber Method

GetByNumber Method

Retrieves an object from the collection by its index.

Applies to objects: Connections, Databases, Fields, Indexes, Properties, QueryDefs, Recordsets,

Relations, TableDefs, Workspaces.

Syntax
[[Set] RetVal =] object.GetByNumber (Index)

The GetByNumber method syntax has these Elements:

Element Description

object Required. An instance of one of the object collections listed above.

Index
Required. An expression that returns a Long value. The index of the object

to be retrieved.

ConceptDraw DIAGRAM Third Party Developer’s Guide

958

RetVal

Optional. An instance of an object retrieved from the collection (of

Workspace, Connection, Database, TableDef, QueryDef, Relation, Index,

Recordset, Field, Property type respectively).

Remarks

If the specified objIndex index is outside the collection range, the following error occurs: "The

index is out of range".

Example
.......

See Also

Connection Object, Connections Object, Database Object, Databases Object,

Field Object, Fields Object, Index Object, Indexes Object, Property Object,

Properties Object, QueryDef Object, QueryDefs Object, Recordset Object,

Recordsets Object, Relation Object, Relations Object, TableDef Object,

TableDefs Object, Workspace Object, Workspaces Object.

GetRows Method

GetRows Method

The GetRows method returns the number of records, gotten as the result of an SQL query.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.GetRows()

The GetRows method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable, that gets the number of records.

Remarks

In some cases it's not possible to determine the number of records in the resulting multitude. The

majority of data sources don't let determine the size of the resulting multitude when performing

ConceptDraw DIAGRAM Third Party Developer’s Guide

959

the SELECT operation, but determine the size successfully after UPDATE, DELETE, INSERT.

If the number of strings is unknown, the GetRows method returns -1.

Example
.......

See Also Recordset Object, RowsAffected Method.

Indexes Method

Indexes Method

Provides access to the Indexes collection of the TableDef object.

Applies to objects: TableDef.

Syntax
[[Set] RetVal =] object.Indexes()

The Indexes method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. An Indexes type variable.

Example
.......

See Also Indexes Object, TableDef Object.

MoveFirst Method

MoveFirst Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

960

Moves the pointer to the first position upon the result of the query.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.MoveFirst()

The MoveFirst method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable, that indicates whether the pointer was

moved to the necessary string.

Remarks

The ability of the pointer to move in such way is determined with the help of the CanMove

method with the cdbMoveFirst parameter.

Example
.......

See Also
Recordset Object, CanMove Method, Move Method, MoveLast Method,

MoveNext Method, MovePrevious Method.

MoveLast Method

MoveLast Method

Moves the pointer to the last string upon the result of the query.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.MoveLast()

The MoveLast method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

961

RetVal
Optional. A Boolean type variable, that indicates whether the pointer was

moved to the necessary string.

Remarks

The ability of the pointer to move in such way is determined with the help of the CanMove

method with the cdbMoveLast parameter.

Example
.......

See Also
Recordset Object, CanMove Method, Move Method, MoveFirst Method,

MoveNext Method, MovePrevious Method.

MoveNext Method

MoveNext Method

Moves the pointer to the next line upon the result of the query.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.MoveNext()

The MoveNext method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable, that indicates whether the pointer was

moved to the necessary string.

Remarks

Such repositioning is always possible.

Example
.......

ConceptDraw DIAGRAM Third Party Developer’s Guide

962

See Also
Recordset Object, Move Method, MoveFirst Method, MoveLast Method,

MovePrevious Method.

MovePrevious Method

MovePrevious Method

Moves the pointer to the previous position upon the result of the query.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.MovePrevious()

The MovePrevious method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable, that indicates whether the pointer was

moved to the necessary string.

Remarks

The ability of the pointer to move in such way is determined with the help of the CanMove

method with the cdbMovePrevious parameter.

Example
.......

See Also
Recordset Object, CanMove Method, Move Method, MoveFirst Method,

MoveLast Method, MoveNext Method.

Move Method

Move Method

Moves the pointer in the desired direction upon the result of the query.

ConceptDraw DIAGRAM Third Party Developer’s Guide

963

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.Move([Step], [Start])

The Move method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable, that indicates whether the pointer was

moved to the necessary string.

Step
Optional. A Long type variable, indicates the number of strings to move

by.

Start Optional. A Long type variable, indicates the string number to move to.

Remarks

If Start is not defined or equals 0, the pointer will be moved relative to the current string. The

ability of the pointer to move in such way is determined with the help of the CanMove method

with the cdbMoveRelative parameter.

If the Start and Step parameters are not defined or equal 0, the pointer will be moved one string

forward. The ability of the pointer to move in such way is determined with the help of the

CanMove method with the cdbMoveNext parameter.

If the Start is defined and not equal to 0, the pointer will be moved to the string described as Start

+ Step. The ability of the pointer to move in such way is determined with the help of the

CanMove method with the cdbMoveAbsolute parameter.

The Step parameter can take positive or negative values.

Example
.......

See Also
Recordset Object, CanMove Method, MoveFirst Method, MoveLast Method,

MoveNext Method, MovePrevious Method.

OpenConnection Method

OpenConnection Method

ConceptDraw DIAGRAM Third Party Developer’s Guide

964

Establishes connection with a database and creates a new Connection object.

Applies to objects: Workspace.

Syntax
[[Set] RetVal =] object.OpenConnection([Name], [Exclusive], [ReadOnly], [ConnectionString])

The OpenConnection method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Connection type variable.

Name
Optional. A String type variable. The name of the connection being

created.

Exclusive

Optional. A Boolean type variable. A flag that indicates that database

resources, used by the user will be blocked for other users. The default

value is FALSE.

ReadOnly
Optional. A Boolean type variable. A flag, that indicates that the database

is opened only for reading. The default value is FALSE.

ConnectionStri

ng
Optional. A String type variable. The connection initialization string.

Remarks

If the connection initialization string is omitted or doesn't contain the necessary parameters, the

necessary information will be taken from the Workspace object.

Example
.......

See Also Connection Object, Workspace Object, OpenDatabase Method.

OpenDatabase Method

OpenDatabase Method

Establishes connection with a database and creates a new Database object.

Applies to objects: Workspace.

ConceptDraw DIAGRAM Third Party Developer’s Guide

965

Syntax
[[Set] RetVal =] object.OpenDatabase([Name], [Exclusive], [ReadOnly], [ConnectionString])

The OpenDatabase method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Database type variable.

Name
Optional. A String type variable. The name of the connection being

created.

Exclusive

Optional. A Boolean type variable. A flag that indicates that database

resources, used by the user will be blocked for other users. The default

value is FALSE.

ReadOnly
Optional. A Boolean type variable. A flag, that indicates that the database

is opened only for reading. The default value is FALSE.

ConnectionStri

ng
Optional. A String type variable. The connection initialization string.

Remarks

If the connection initialization string is omitted or doesn't contain the necessary parameters, the

necessary information will be taken from the Workspace object.

Example
.......

See Also Database Object, Workspace Object, OpenConnection Method.

OpenRecordset Method

OpenRecordset Method

Creates a new Recordset object that describes the results of an SQL query.

Applies to objects: Connection, Database, TableDef.

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

966

[[Set] RetVal =] object.OpenRecordset([Name], [CursorType])

The OpenRecordset method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Recordset type variable.

Name
Optional. A String type variable. The name of the opened table, stored

procedure, or an SQL query.

CursorType
Optional. A Long type variable. The pointer type. The default value is

cdbCursorForwardOnly.

Remarks

The Name parameter may contain the name of the opened table, the stored procedure or an SQL

query. If the method is applied to the TableDef object, the Name parameter is omitted and the

method opens the table.

The CursorType variable defines the pointer type. Can have the following values:

cdbCursorForwardOnly - the pointer can move only forward and is not sensitive to changes in

the database.

cdbCursorStatic - the pointer is not sensitive to changes in the database.

cdbCursorKeySet - the pointer is sensitive to updates in the database.

cdbCursorDynamic - the pointer is sensitive to all changes in the database.

For defining the supported pointer types, the CursorTypes mask is used.

Example
.......

See Also
Connection Object, Database Object, Recordset Object, TableDef Object,

CursorTypes Property.

Parameters Method

Parameters Method

Provides access to the Parameters collection.

ConceptDraw DIAGRAM Third Party Developer’s Guide

967

Applies to objects: QueryDef

Syntax
[[Set] RetVal =] object.Parameters()

The Parameters method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Parameters type variable.

Example
.......

See Also Parameters Object, QueryDef Object.

Properties Method

Properties Method

Provides access to the Properties collection.

Applies to objects: Connection, Database, DBEngine, Field, Index, QueryDef, Recordset,

Relation, TableDef, Workspace.

Syntax
[[Set] RetVal =] object.Properties()

The Properties method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Properties type variable.

Example
.......

ConceptDraw DIAGRAM Third Party Developer’s Guide

968

See Also
Connection Object, Database Object, DBEngine Object, Field Object, Index

Object, Properties Object, QueryDef Object, Recordset Object, Relation

Object, TableDef Object, Workspace Object.

QueryDefs Method

QueryDefs Method

Provides access to the QueryDefs collection of the Connection and Database objects.

Applies to objects: Connection, Database.

Syntax
[[Set] RetVal =] object.QueryDefs()

The QueryDefs method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A QueryDefs type variable.

Example
.......

See Also Connection Object, Database Object, QueryDefs Object.

Recordsets Method

Recordsets Method

Provides access to the Recordsets collection of the Connection and Database objects.

Applies to objects: Connection, Database.

Syntax

ConceptDraw DIAGRAM Third Party Developer’s Guide

969

[[Set] RetVal =] object.Recordsets()

The Recordsets method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Recordsets type variable.

Example
.......

See Also Connection Object, Database Object, Recordsets Object.

Refresh Method

Refresh Method

Refreshes the contents of the collection.

Applies to objects: Fields, Indexes, Relations, TableDefs.

Syntax
object.Refresh()

The Refresh method syntax has these Elements:

Element Description

object Required. An instance of one of the object collections, listed above.

Remarks

The Refresh method is called automatically for all of the collections if necessary. The method

synchronizes the contents of the collection with the corresponding database structure. Calling the

Refresh method for the objects listed above guarantees that they will correspond to all latest

changes.

Example
.......

ConceptDraw DIAGRAM Third Party Developer’s Guide

970

See Also Fields Object, Indexes Object, Relations Object, TableDefs Object.

Relation Method

Relation Method

Provides access to the Relations collection of the Database object.

Applies to objects: Database.

Syntax
[[Set] RetVal =] object.Relation()

The Relation method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Relations type variable.

Example
.......

See Also Database Object, Relations Object.

ConceptDraw DIAGRAM Third Party Developer’s Guide

971

RollbackTrans Method

RollbackTrans Method

Cancels a transaction.

Applies to objects: Connection, Database, Workspace.

Syntax
[[Let] RetVal =] object.RollbackTrans()

The RollbackTrans method syntax has these Elements:

Element Description

object Required. An instance of an object.

RetVal
Optional. Boolean variable, Shows whether we were able to cancel the

transaction.

Remarks

All operations between BeginTrans and RollbackTrans will be cancelled.

After calling the RollbackTrans method the automatic transaction execution mode is restored. To

form the next transaction, call BeginTrans again.

Depending on the driver and the database, the CommitTrans and RollbackTrans method may

closes open pointers of Recordset objects.

Example
.......

See Also
Connection Object, Database Object, Workspace Object, BeginTrans

Method, CommitTrans Method.

ConceptDraw DIAGRAM Third Party Developer’s Guide

972

RowsAffected Method

RowsAffected Method

The RowsAffected method returns the number of records, affected by the last operation.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.RowsAffected()

The RowsAffected method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A Long type variable, that gets the number of records.

Remarks

The RowsAffected method returns the number of records, affected by the AddNew, Delete and

Update methods.

In some cases it's not possible to determine the number of records in the resulting multitude. The

majority of data sources don't let determine the size of the resulting multitude when performing

the SELECT operation, but determine the size successfully after UPDATE, DELETE, INSERT.

If the number of strings is unknown, the method returns -1.

Example
.......

See Also Recordset Object, GetRows Method.

TableDefs Method

TableDefs Method

Provides access to the TableDefs collection of the Database object.

Applies to objects: Database.

ConceptDraw DIAGRAM Third Party Developer’s Guide

973

Syntax
[[Set] RetVal =] object.TableDefs()

The TableDefs method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal Optional. A TableDefs type variable.

Example
.......

See Also Database Object, TableDefs Object.

Update Method

Update Method

The Update method updates the current string in the table.

Applies to objects: Recordset.

Syntax
[[Let] RetVal =] object.Update()

The MethodName method syntax has these Elements:

Element Description

object Required. A reference to an instance of the object.

RetVal
Optional. A Boolean type variable that indicates whether the string could

be updated.

Remarks

If the given object is the result of selection from the table fields, the method will take no action

and return FALSE.

This method is called automatically when closing and repositioning the pointer.

Example

ConceptDraw DIAGRAM Third Party Developer’s Guide

974

.......

See Also Recordset Object.

Workspaces Method

Workspaces Method

Provides access to the Workspaces collection of the DBEngine object.

Applies to objects: DBEngine.

Syntax
[[Set] workspacesRet =] object.Workspaces()

The Workspaces method syntax has these Elements:

Element Description

object Required. An instance of the DBEngine object.

workspacesRet Optional. A Workspaces type variable.

Example
 ' Declaring and initializing variables

Dim engine As dbEngine

Set engine = new dbEngine

Dim wspace As Workspace

Set wspace = engine.CreateWorkspace("MyWorkspace")

'...

' Get the Workspace object collection

Dim wscoll As Workspaces

Set wscoll = engine.Workspaces()

'...

See Also DBEngine Object, Workspaces Object

ConceptDraw DIAGRAM Third Party Developer’s Guide

975

Databases access Constants

Databases access Constants

Constants Value Descriptions

Databases types

cddbBigInt 16 Long Numeric type(8 bytes)

cddbBinary 9 Binary type

cddbBoolean 1 Boolean type (2 bytes)

cddbByte 2 Byte type (1 byte).

cddbChar 18 Char type (1or 2 bytes)

cddbCurrency 5 Currency type (4 bytes)

cddbDate 8 Date type

cddbDecimal 20 Decimal type

cddbDouble 7 Double (8 bytes)

cddbGUID 15 Identifier

cddbInteger 3 Integer type (2 bytes)

cddbLong 4 Long integer type (4 bytes)

cddbMemo 12 Memo type (for large text or binary data)

cddbNumeric 19 Numeric type

cddbSingle 6 Float type (4 bytes)

cddbText 10 String type (no more than 256 characters)

cddbTime 22 Time type

cddbTimeStamp 23 Date and time

Parameters types

cddbInput 1 Input

cddbInputOutpu

t
2 Input/Output

cddbOutput 4 Output

Cursor types

cddbCursorForw

ardOnly
1

The cursor can move only forward and is not sensitive to

changes in the database.

ConceptDraw DIAGRAM Third Party Developer’s Guide

976

cddbCursorKeys

et
2 The cursor is sensitive to updates in the database.

cddbCursorDyna

mic
4 The cursor is sensitive to all changes in the database.

cddbCursorStati

c
16 The cursor is not sensitive to changes in the database.

Cursor move direction

cddbMoveNext 1 Allows using MoveNext

cddbMoveFirst 2 Allows using MoveFirst

cddbMoveLast 4 Allows using MoveLast

cddbMovePrevio

us
8 Allows using MovePrevious

cddbMoveAbsolu

te
16 Allows using Move for absolute positioning

cddbMoveRelati

ve
32 Allows using Move for relative positioning

Transaction types

cddbTransRead

Uncommited
1

Transaction doesn't isolate each other. There are

following situations may occur:

Dirty Read. Transaction 1 changes a row. Transaction 2

reads the changed row before transaction 1 commits the

change. If transaction 1 rolls back the change, transaction

2 will have read a row that is considered to have never

existed.

Nonrepeatable Read. Transaction 1 reads a row.

Transaction 2 updates or deletes that row and commits

this change. If transaction 1 attempts to reread the row, it

will receive different row values or discover that the row

has been deleted.

Phantom. Transaction 1 reads a set of rows that satisfy

some search criteria. Transaction 2 generates one or

more rows (through either inserts or updates) that match

the search criteria. If transaction 1 reexecutes the

statement that reads the rows, it receives a different set of

rows.

cddbTransRead

Commited
2 "Dirty Read" not allowed.

cddbTransRepea

tableRead
4 "Dirty Read" and "Nonrepeatable Read" not allowed.

cddbTransSeriali

zable
8

"Dirty Read", "Nonrepeatable Read" and

"Phantom" not allowed.

ConceptDraw DIAGRAM Third Party Developer’s Guide

977

Conformance levels

cddbLevel0 0 Minimal conformance level

cddbLevel1 1 Base conformance level

cddbLevel2 2 Extended conformance level

Driver type

cddbODBC 0 ODBC driver

Trappable errors

Trappable errors

Trappable errors can occur while an execution is in progress. Some of these can also occur during

compilation. At run time you can test and respond to trappable errors using the On Error

statement and the Err function.

The following table lists trappable error messages and their detailed descriptions. Error number(#)

is the value used to trap or return the error at run time.

Message Description

1 parser_message Occurs during compile time.

2 Syntax error Оccurs during compile time.

3 Return without GoSub Оccurs during run time.

4 Too many parameters in

method or procedure

'procname' call

Оccurs during compile time.

5 Illegal method or procedure

'procname' call

Оccurs during compile time.

6 Overflow

7 Out of memory

8 Symbol 'symbol' is not a

constant. Constant is

required

Оccurs during compile time.

9 Subscript out of range or

missing

10 Duplicate definition

'symbol'

Оccurs during compile time.

ConceptDraw DIAGRAM Third Party Developer’s Guide

978

11 Division by zero

12 Expected function or

variable

Оccurs during compile time.

13 Type mismatch

14 Out of string space

15 Can't allocate symbol

'symbol'

16 Expression too complex

17 Can't perform requested

operation

18 User interrupt occurred

19 No Resume

20 Resume without error

21 Invalid event definition

22 Invalid event param

declaration

23 Undefined label 'labelname'

24 Assignment isn't permitted

25 Undefined symbol 'symbol'

26 Can't create object 'object'

27 Statement 'statement'

without 'Sub' ('Sub' is

missing)

28 Out of stack space

29 Statement 'statement'

without 'For' ('For' is

missing)

30 Statement 'statement'

without 'Do' ('Do' is

missing)

31 Statement 'statement'

without 'While' ('While' is

missing)

32 Illegal statement 'statement'

after beginning of

procedure ('End Sub' or

'End Function' is missing)

ConceptDraw DIAGRAM Third Party Developer’s Guide

979

33 Symbol 'symbol' declaration

without begriming of

procedure ('Sub' or

'Function' is missing)

34 Object 'object' not an array

35 Sub or Function not defined

36 Statement 'statement'

without 'Function'

('Function' is missing)

37 Undefined method or

property 'name'

38 Property 'name' is write-

only

39 Property 'name' is read-only

40 Property 'name' is not found

41 Can't open include

'filename' or recycling

include

42 Invalid object type 'symbol'

43 Can't define Function

'procname'

44 Can't define Sub 'procname'

45 Invalid object reference

46 Too many external library

application clients

47 Too many external library

application clients

48 Error in loading external

library 'name'

49 Bad external library calling

convention

50 Specified external library

procedure 'procname' not

found

51 Internal error

52 Bad file name or number

53 File not found

ConceptDraw DIAGRAM Third Party Developer’s Guide

980

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

59 Bad record length

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

67 Too many files

68 Device unavailable

69 Procedure param 'param' re-

declaration (type mismatch)

70 Permission denied

71 Disk not ready

74 Can't rename with different

drive

75 Path/File access error

76 Path not found

77 'Else' or 'End If' are missing

78 'End If' is missing

79 'Next' is missing

80 'Loop' is missing

81 'Wend' is missing

82 'End Sub' is missing

83 'End Function' is missing

84 'End Select' is missing

90 Database error: message

91 Object variable not set

92 For loop not initialized

93 Invalid pattern string

ConceptDraw DIAGRAM Third Party Developer’s Guide

981

94 Invalid use of Null

Glossary

Glossary

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

argument

A constant, variable, or expression passed to a procedure.

array

A set of sequentially indexed elements having the same intrinsic data type. Each element of an

array has a unique identifying index number. Changes made to one element of an array don't

affect the other elements.

Boolean data type

A data type with only two possible values, True (equal to 1 for arithmetical operations and -1 for

logical operations) or False (0). Boolean variables are stored as 16-bit (2-byte) numbers.

by reference

A way of passing the address of an argument to a procedure instead of passing the value. This

allows the procedure to access the actual variable. As a result, the variable's actual value can be

changed by the procedure to which it is passed. Unless otherwise specified, arguments are passed

by reference.

Byte data type

A data type used to hold positive integer numbers ranging from 0–255. Byte variables are stored

as single, unsigned 8-bit (1-byte) numbers.

by value

A way of passing the value of an argument to a procedure instead of passing the address. This

allows the procedure to access a copy of the variable. As a result, the variable's actual value can't

be changed by the procedure to which it is passed.

ConceptDraw DIAGRAM Third Party Developer’s Guide

982

comment

Text added to code that explains how the code works. In ConceptDraw Basic, a comment line can

start with either an apostrophe (') or with the Rem keyword followed by a space.

comparison operator

A character or symbol indicating a relationship between two or more values or expressions. These

operators include less than (<), less than or equal to (<=), greater than (>), greater than or equal to

(>=), not equal (<>), and equal (=). Additional comparison operators include Is and Like. Note

that Is and Like can't be used as comparison operators in a Select Case statement.

compile time

The period during which source code is translated to executable p-code.

compile-time error

An error that occurs when code is compiling.

constant

A named item that retains a constant value throughout the execution of a program. A constant can

be a string or numeric literal, another constant, or any combination that includes arithmetic or

logical operators. There are many embedded constants. Additional constants can be defined by the

user with the Const statement. You can use constants anywhere in your code in place of actual

values.

data type

The characteristic of a variable that determines what kind of data it can hold. Data types include

Byte, Boolean, Integer, Long, Single, Double, Date, String, Object, Variant (default), and

specific types of embedded objects.

Date data type

A data type used to store dates and times as a real number. Date variables are stored as 64-bit (8-

byte) numbers. The value to the left of the decimal represents a date, and the value to the right of

the decimal represents a time.

date expression

Any expression that can be interpreted as a date, including date literals, numbers that look like

dates, strings that look like dates, and dates returned from functions. A date expression is limited

to numbers or strings, in any combination, that can represent a date from January 1, 100 –

December 31, 9999.

ConceptDraw DIAGRAM Third Party Developer’s Guide

983

Dates are stored as Element of a real number. Values to the left of the decimal represent the date;

values to the right of the decimal represent the time. Negative numbers represent dates prior to

December 30, 1899.

declaration

Nonexecutable code that names a constant, variable, or procedure, and specifies its characteristics,

such as data type. For external procedures (DLL procedures), declarations specify names,

libraries, and arguments.

Double data type

A data type that holds double-precision floating-point numbers as 64-bit numbers in the range -

1.79769313486232E308 to -4.94065645841247E-324 for negative values; 4.94065645841247E-

324 to 1.79769313486232E308 for positive values.

dynamic-link library (DLL)

A library of routines loaded and linked into applications at run time. DLLs are created with other

programming languages such as C, MASM, or FORTRAN. This term is mostly used on the

Windows platform, on the Mac platform "Shared Library"is used instead.

Empty

A state of a variable. Indicates that no beginning value has been assigned to a variable. An Empty

variable is represented as 0 in a numeric context, a zero-length string ("") in a fixed-length string

context or as Null in a variable-length string context and in a object context.

error number

A whole number in the range 0 – 65,535 that corresponds to the error number returned by Err()

function.

execution level

The level of definition and execution of a script, that corresponds to the object, owning the script.

ConceptDraw supports the following execution levels: Application level, Document level, Page

level, Shape level. Any execution level contains at least a built-in module with code in

ConceptDraw Basic.

expression

A combination of keywords, operators, variables, and constants that yields a string, number, or

object. An expression can be used to perform a calculation, manipulate characters, or test data.

file number

ConceptDraw DIAGRAM Third Party Developer’s Guide

984

Number used in the Open statement to open a file.

Integer data type

A data type that holds integer variables stored as 2-byte whole

numbers in the range -32,768 to 32,767.

InternalUnit

Internal units of measure in ConceptDraw, 1 InternalUnit = 0.1 mm.

keyword

A word or symbol recognized as Element of the ConceptDraw Basic programming

language; for example, a statement, function name, or operator.

line label

Used to identify a single line of code. A line label can be any combination of characters that starts

with a letter and ends with a colon (:). Line labels are not case sensitive and must begin in the first

column.

line number

Used to identify a single line of code. A line number can be any combination of digits that is

unique within the module where it is used. Line numbers must begin in the first column.

locale

The set of information that corresponds to a given language and country. The code locale setting

affects the language of terms such as keywords and defines locale-specific settings such as the

decimal and list separators, date formats, and character sorting order.

The system locale setting affects the way locale-aware functionality behaves, for example, when

you display numbers or convert strings to dates.

Long data type

A 4-byte integer ranging in value from -2,147,483,648 to 2,147,483,647. The Long data type is

also used to represent enumerated values.

module

A set of declarations and definitions of procedures, variables and also a set of ConceptDraw Basic

instructions, united by the common global area of visibility of procedures and global variables.

ConceptDraw DIAGRAM Third Party Developer’s Guide

985

module level

Describes code in the Declarations section of a module. Any code outside a procedure is referred

to as module-level code.

Module level defines global visibility area of variables and procedures.

Null

A value, equal to zero. It's used to assign zero links to objects and strings of variable length. All

non-initialized variables take the Null value together with the Empty state. In ConceptDraw

Basic the Null value is also equivalent to the Nothing value.

numeric expression

Any expression that can be evaluated as a number. Elements of an expression can include any

combination of keywords, variables, constants, and operators that result in a number.

numeric type

Any intrinsic numeric data type (Byte, Boolean, Integer, Long, Single, Double, or Date) or any

Variant numeric subtype (Integer, Long, Single, Double, Date, Boolean, or Byte).

Object data type

A data type that represents any Object reference. Object variables are stored as 32-bit (4-byte)

addresses that refer to objects.

object type

A type of embedded object exposed by an application, for example, Application, Document,

Page and Shape.

object variable

A variable that contains a reference to an object.

parameter

Variable name by which an argument passed to a procedure is known within the procedure. This

variable receives the argument passed into the procedure. Its scope ends when the procedure ends.

pixel

The smallest element that can be displayed on a screen or printer. Pixels are screen-dependent.

Contrast twip.

ConceptDraw DIAGRAM Third Party Developer’s Guide

986

point

A unit of measurement for type whereby 12 points equal 1 pica, and 6 picas equal 1 inch; thus, 1

point equals 1/72 inch. See also twip.

print zone

Print zones begin every 14 columns. The width of each column is an average of the width of all

characters in the point size for the selected font.

procedure

A named sequence of statements executed as a unit. For example, Function and Sub are types of

procedures.

procedure level

Describes statements located within a Function or Sub procedure. Declarations are usually listed

first, followed by assignments and other executable code.

Note that module-level code resides outside a procedure block.

Procedure level defines the local visibility area of variables.

property

A named attribute of an object. Properties define object characteristics such as size, color, and

location, or the state of an object, such as enabled or disabled.

run time

The time during which code is running. During run time, you can't

edit the code.

run-time error

An error that occurs when code is running. A run-time error results when a statement attempts an

invalid operation.

seed

An initial value used to generate pseudo-random numbers. For example, the Randomize

statement creates a seed number used by the Rnd function to create unique pseudo-random

number sequences.

Single data type

ConceptDraw DIAGRAM Third Party Developer’s Guide

987

A data type that stores single-precision floating-point variables as 32-bit (4-byte) floating-point

numbers, ranging in value from -3.402823E38 to -1.401298E-45 for negative values, and

1.401298E-45 to 3.402823E38 for positive values.

sort order

A sequencing principle used to order data, for example, alphabetic, numeric, ascending,

descending, and so on.

statement

A syntactically complete unit that expresses one kind of action, declaration, or definition. A

statement generally occupies a single line, although you can use a colon (:) to include more than

one statement on a line.

String data type

A data type consisting of a sequence of contiguous characters that represent the characters

themselves rather than their numeric values. A String can include letters, numbers, spaces, and

punctuation. The String data type can store fixed-length strings ranging in length from 0 to

approximately 63K characters and dynamic strings ranging in length from 0 to approximately 2

billion characters. In any case String stores text in the Unicode encoding, each symbol taking 2

bytes.

string expression

Any expression that evaluates to a sequence of contiguous characters. Elements of a string

expression can include a function that returns a string, a string literal, a string constant, a string

variable, a string Variant, or a function that returns a string Variant (VarType 8).

twip

A unit of measurement, implemented as 1/20 of a point, or 1/1440 of an inch. There are 567 twips

to a centimeter. Twips are screen-independent measurements. See also point. Contrast pixel.

unit

A unit of measure in ConceptDraw. Units are screen-independent measurements. 1 millimeter

contains 10 units.

variable

A named storage location that can contain data that can be modified during program execution.

Each variable has a name that uniquely identifies it within its scope. A data type can be specified

or not.

ConceptDraw DIAGRAM Third Party Developer’s Guide

988

Variable names must begin with an alphabetic character, must be unique within the same scope,

can't be longer than 32 characters, and can't contain an embedded period or type-declaration

character.

Variant data type

A special data type that can contain numeric, string, or date data as well as the special values

Empty and Null. The Variant data type has a numeric storage size of 16 bytes and can contain

data up to the range of a Double, or a character storage size of 22 bytes (plus string length), and

can store any character text. The VarType function defines how the data in a Variant is treated.

All variables become Variant data types if not explicitly declared as some other data type.

ConceptDraw DIAGRAM Third Party Developer’s Guide

989

CS Odessa

US/Canada/Mexico

Technical Support:
+1 (877) 441 - 1150 ext 4 Toll Free

+1 (408) 441 - 1150 ext 4

Sales:

+1 (877) 441 - 1150 ext 3 Toll Free
+1 (408) 441 - 1150 ext 3

Rest of the World

Technical Support/Sales:
+44 (203) 514 - 70 - 40

support@conceptdraw.com

sales@conceptdraw.com

© 2021, CS Odessa corp.

mailto:sales@conceptdraw.com

