This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
The vector stencils library "Dimensioning and tolerancing" contains 45 symbols of geometric dimensions and mechanical tolerances, geometric symbols, callouts, and text boxes and inserts.
Use these geometric dimensioning and tolerancing (GD&T) shapes to create annotated mechanical drawings.
"Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances. It uses a symbolic language on engineering drawings and computer-generated three-dimensional solid models that explicitly describes nominal geometry and its allowable variation. It tells the manufacturing staff and machines what degree of accuracy and precision is needed on each controlled feature of the part. GD&T is used to define the nominal (theoretically perfect) geometry of parts and assemblies, to define the allowable variation in form and possible size of individual features, and to define the allowable variation between features." [Geometric dimensioning and tolerancing. Wikipedia]
The shapes example "Design elements - Dimensioning and tolerancing" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the ConceptDraw Solution Park.
Dimensioning and tolerancing symbols
Dimensioning and tolerancing symbols, total runout, text block, symmetry, surface, finish, roughness, surface profile, straightness, statistical tolerance, slope, position, positioning, perpendicularity, parallelism, material condition, line profile, flatness, diameter, depth, datum, reference, circle, datum, feature control, datum target, point, datum target, line, datum target, area, datum, cylindricity, countersink, counterbore, spotface, conical taper, concentricity, circularity, circular runout, callout, arc length, angularity,
The vector stencil library "HVAC equipment" contains 84 HVAC equipment symbols as pumps, fans, condensers, pipe coils, silencers, etc.
Use it for drawing HVAC system diagrams, heating, ventilation, air conditioning, refrigeration, automated building control, and environmental control design floor
plans and equipment layouts.
"HVAC (heating, ventilation, and air conditioning) is the technology of indoor and vehicular environmental comfort. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Refrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in HACR (such as the designation of HACR-rated circuit breakers).
HVAC is important in the design of medium to large industrial and office buildings such as skyscrapers and in marine environments such as aquariums, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors." [HVAC. Wikipedia]
The vector stencils example "Design elements - HVAC equipment" is included in HVAC Plans solution from the Building Plans area of ConceptDraw Solution Park.
HVAC equipment symbols
HVAC equipment symbols, zone damper, water tower, ventilator, valve, vacuum pump, vacuum gauge, unit ventilator, unit heater, thermometer, the heater, the filter, surface air cooler, supply air grill, strainer, steam separator, steam, solenoid valve, solenoid air valve, silencer, rotary, screw pump, screw compressor, rotary pump, compressor, fan, return air grill, relief valve, regulator, refrigerant receiver, reciprocating pump, reciprocating compressor, pump, primary filter, mid-effect filter, pressurizer system, pressure/electric switch, pressure-reducing valve, pressure gauge and cock, preheating system, pipeline, pipe network, pipe coil, ozone generator, oxygen-enriched filter, outside air duct, nozzle, moisture eliminator, modulating return air capillary thermostat, membrane clear box, louver opening, humidifier, high efficiency filter, heat engine, flow valve, fan blades, fan and motor with belt guard, exhaust hood, duplex strainer, dryer, dehumidifying system, cooling coil, condenser, water cooled, condenser, condensate tank, cold water pump, chiller, centrifugal pump, centrifugal compressor, centrifugal fan, booster fan, boiler, axial fan, automatic 3-way valve, automatic 2-way valve, airline valve, air volume control valve, air filter, air compressor, access door,
The vector stencils library "Switches and relays" contains 58 symbols of electrical contacts, switches, relays, circuit breakers, selectors, connectors, disconnect devices, switching circuits, current regulators, and thermostats for electrical devices.
"In electrical engineering, a switch is an electrical component that can break an electrical circuit, interrupting the current or diverting it from one conductor to another.
The most familiar form of switch is a manually operated electromechanical device with one or more sets of electrical contacts, which are connected to external circuits. Each set of contacts can be in one of two states: either "closed" meaning the contacts are touching and electricity can flow between them, or "open", meaning the contacts are separated and the switch is nonconducting. The mechanism actuating the transition between these two states (open or closed) can be either a "toggle" (flip switch for continuous "on" or "off") or "momentary" (push-for "on" or push-for "off") type.
A switch may be directly manipulated by a human as a control signal to a system, such as a computer keyboard button, or to control power flow in a circuit, such as a light switch. Automatically operated switches can be used to control the motions of machines, for example, to indicate that a garage door has reached its full open position or that a machine tool is in a position to accept another workpiece. Switches may be operated by process variables such as pressure, temperature, flow, current, voltage, and force, acting as sensors in a process and used to automatically control a system. ... A switch that is operated by another electrical circuit is called a relay. Large switches may be remotely operated by a motor drive mechanism. Some switches are used to isolate electric power from a system, providing a visible point of isolation that can be padlocked if necessary to prevent accidental operation of a machine during maintenance, or to prevent electric shock." [Switch. Wikipedia]
"A relay is an electrically operated switch. Many relays use an electromagnet to mechanically operate a switch, but other operating principles are also used, such as solid-state relays. Relays are used where it is necessary to control a circuit by a low-power signal (with complete electrical isolation between control and controlled circuits), or where several circuits must be controlled by one signal. The first relays were used in long distance telegraph circuits as amplifiers: they repeated the signal coming in from one circuit and re-transmitted it on another circuit. Relays were used extensively in telephone exchanges and early computers to perform logical operations.
A type of relay that can handle the high power required to directly control an electric motor or other loads is called a contactor. Solid-state relays control power circuits with no moving parts, instead using a semiconductor device to perform switching. Relays with calibrated operating characteristics and sometimes multiple operating coils are used to protect electrical circuits from overload or faults; in modern electric power systems these functions are performed by digital instruments still called "protective relays"." [Relay. Wikipedia]
The shapes example "Design elements - Switches and relays" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Switch and relay symbols
Switch and relay symbols, two way contact, time delay make, open switch, time-delay closing, TDC, time delay make, normally open, time delay break, normally closed, time delay break, closed switch, time-delay opening, TDO, thermostat, temperature switch, temperature sensitive switch, temperature actuated switch, switch disconnector, isolating-switch, stay put, contact without spring return, spring return, make, spring return, break, spring return, shorting selector, make-before-break, shorting, bridging,  contact transfer, selector switch, break-before-make, nonshorting, nonbridging, contact transfer, safety interlock, circuit opening, relay contacts, relay coil, relay, pushbutton, make, circuit closing, mushroom head, push-pull head, pushbutton, break, circuit opening, mushroom head, push-pull head, pushbutton, 2-circuit, circuit opening, break, proximity limit switch, directly actuated, spring returned, normally closed, pressure actuated switch, pilot light, passing make-contact, mercury switch, manual switch, manually operated switch, make contact, liquid level actuated switch, limit switch, directly actuated, spring returned, normally open, limit switch, directly actuated, spring returned, normally closed, limit switch, isolator, inertia switch, gas flow actuated switch, fuse, flow actuated, circuit breaker, change-over contact, break contact, SPST, single-pole, single-throw, switch, SPDT, single-pole, double-throw, switch, DPST, double-pole, single-throw, switch, DPDT, double-pole, double-throw, switch, 4 position, switch, 3 position, three-position, switch, 2 position, switch,
The vector stencils library "Transformers and windings" contains 29 element symbols of transformers, windings, couplers, metering devices, transductors, magnetic cores, chokes, and a variometer.
Use it to design the electromechanical device schematics and electronic circuit diagrams.
"A transformer is an electrical device that transfers energy between two circuits through electromagnetic induction. Transformers may be used in step-up or step-down voltage conversion, which 'transforms' an AC voltage from one voltage level on the input of the device to another level at the output terminals. This special function of transformers can provide control of specified requirements of current level as an alternating current source, or it may be used for impedance matching between mismatched electrical circuits to effect maximum power transfer between the circuits.
A transformer most commonly consists of two windings of wire that are wound around a common core to induce tight electromagnetic coupling between the windings. The core material is often a laminated iron core. The coil that receives the electrical input energy is referred to as the primary winding, while the output coil is called the secondary winding.
An alternating electric current flowing through the primary winding (coil) of a transformer generates an electromagnetic field in its surroundings and a varying magnetic flux in the core of the transformer. By electromagnetic induction this magnetic flux generates a varying electromotive force in the secondary winding, resulting in a voltage across the output terminals. If a load impedance is connected across the secondary winding, a current flows through the secondary winding drawing power from the primary winding and its power source." [Transformer. Wikipedia]
"An electromagnetic coil (or simply a "coil") is formed when a conductor is wound around a core or form to create an inductor or electromagnet. When electricity is passed through a coil, it generates a magnetic field. One loop of wire is usually referred to as a turn or a winding, and a coil consists of one or more turns. For use in an electronic circuit, electrical connection terminals called taps are often connected to a coil. Coils are often coated with varnish or wrapped with insulating tape to provide additional insulation and secure them in place. A completed coil assembly with one or more set of coils and taps is often called the windings.
Windings are used in transformers, electric motors, inductors, solenoids, loudspeakers, and many other applications." [Electromagnetic coil. Wikipedia]
The shapes example "Design elements - Transformers and windings" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Transformer and winding symbols
Transformer and winding symbols, variometer, triplex, induction voltage regulator, transformer, magnetic-core, mutual inductor, transformer, magnetic-core, 2 windings, adjustable, transformer, magnetic-core, 1 winding, adjustable, transformer, magnetic-core, transformer, air-core, mutual inductor, transformer, air-core, 2 windings, adjustable, transformer, air-core, 1 winding, adjustable, transformer, air-core, transformer, transductor, saturating transformer, potential transformer, winding, potential transformer, outdoor metering device, magnetic core, linear coupler, induction voltage regulator, current transformer, bushing-type, current transformer, coaxial choke, magnetic core, choke, reactor, adjustable transformer, 1 winding, adjustable transformer,  mutual inductor, 1-phase, induction voltage regulator,
This engineering drawing present weld type symbols and fillet weld symbols.
The weld type symbol is typically placed above or below the center of the reference line, depending on which side of the joint it's on. The symbol is interpreted as a simplified cross-section of the weld.
"Fillet welding refers to the process of joining two pieces of metal together whether they be perpendicular or at an angle. These welds are commonly referred to as Tee joints which are two pieces of metal perpendicular to each other or Lap joints which are two pieces of metal that overlap and are welded at the edges. The weld is aesthetically triangular in shape and may have a concave, flat or convex surface depending on the welder’s technique. Welders use fillet welds when connecting flanges to pipes, welding cross sections of infrastructure, and when fastening metal by bolts isn't strong enough." [Fillet weld. Wikipedia]
The engineering drawing example Welding symbols is included in the Mechanical Engineering solution from Engineering area of ConceptDraw Solution Park.
Welding joint symbols
Welding joint symbols, square groove, insert, consumable insert, flare bevel groove, flared-bevel groove, flare V groove, flared-V groove, fillet, weld, cutaway, revealing detail, bevel groove, back, backing, arrow, V-groove, U-groove, J-groove,
The vector stencils library "Dimensioning" contains 18 dimensions shapes.
Use it to create your landscape design and garden plans.
"Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances. It uses a symbolic language on engineering drawings and computer-generated three-dimensional solid models that explicitly describes nominal geometry and its allowable variation. It tells the manufacturing staff and machines what degree of accuracy and precision is needed on each controlled feature of the part. GD&T is used to define the nominal (theoretically perfect) geometry of parts and assemblies, to define the allowable variation in form and possible size of individual features, and to define the allowable variation between features.
Dimensioning specifications define the nominal, as-modeled or as-intended geometry. One example is a basic dimension." [Geometric dimensioning and tolerancing. Wikipedia]
The dimensions shapes example "Design elements - Dimensioning" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Landscape & Garden solution from the Building Plans area of ConceptDraw Solution Park.
Dimension shapes
Dimension shapes, north arrow, dimensioning, sector measure, dimensioning, rectangular plot measure, dimensioning, dimension arrows, dimensioning, dimension angle, dimensioning, aligned dimension, dimensioning, compass, baseline, dimensioning,
"Directional control valves are one of the most fundamental parts in hydraulic machinery as well and pneumatic machinery. They allow fluid flow into different paths from one or more sources. They usually consist of a spool inside a cylinder which is mechanically or electrically controlled. The movement of the spool restricts or permits the flow, thus it controls the fluid flow. ...
While working with layouts of hydraulic machinery it is cumbersome to draw actual picture of every valve and other components.instead of pictures symbols are used for variety of components in the hydraulic system to highlight the functional aspects. symbol for directional control valve is made of number of square boxes adjacent to each other depending on the number of positions.connections to the valve are shown on these squares by capital letters.usually they are named only in their normal position and not repeated in other positions.actuation system of the valve is also designated in its symbol." [Directional control valve. Wikipedia]
The Mac template "Pneumatic 5-ported 3-position valve" for the ConceptDraw PRO diagramming and vector drawing software is included in the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-mechanical
Pneumatic directional control valve
Pneumatic directional control valve, five-port, three-position, valve,
The vector stencils library "Dimensioning and tolerancing" contains 45 symbols of geometric dimensions and mechanical tolerances, geometric symbols, callouts, and text boxes and inserts.
Use these geometric dimensioning and tolerancing (GD&T) shapes to create annotated mechanical drawings in the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-mechanical
Datum (old)
Datum (old),
Box callout
Box callout, callout,
Datum symbol
Datum symbol, datum, reference, circle,
Callout
Callout, callout,
All around callout
All around callout, callout,
Text block
Text block, text block,
2 datum frame
2 datum frame, datum, feature control,
Simple frame
Simple frame,
Basic frame
Basic frame,
1 datum frame
1 datum frame, datum, feature control,
3 datum frame
3 datum frame, datum, feature control,
Straightness
Straightness, straightness,
Flatness
Flatness, flatness,
Line profile
Line profile, line profile,
Circularity
Circularity, circularity,
Cylindricity
Cylindricity, cylindricity,
Surface profile
Surface profile, surface profile,
Position
Position, position, positioning,
Concentricity
Concentricity, concentricity,
Symmetry
Symmetry, symmetry,
Parallelism
Parallelism, parallelism,
Perpendicularity
Perpendicularity, perpendicularity,
Angularity
Angularity, angularity,
Material condition
Material condition, material condition,
Arc length
Arc length, arc length,
Diameter
Diameter, diameter,
Counterbore/ spotface
Counterbore/ spotface, counterbore, spotface,
Countersink
Countersink, countersink,
Depth
Depth, depth,
Slope
Slope, slope,
Conical taper
Conical taper, conical taper,
Statistical tolerance
Statistical tolerance, statistical tolerance,
Datum (new)
Datum (new), datum,
Datum (new) 2
Datum (new) 2, datum,
Target point
Target point, datum target, point,
Target line
Target line, datum target, line,
Target area (circle)
Target area (circle), datum target, area,
Target area (rectangle)
Target area (rectangle), datum target, area,
Total runout
Total runout, total runout,
Total runout 2
Total runout 2, total runout,
Circular runout
Circular runout, circular runout,
Circular runout 2
Circular runout 2, circular runout,
Surface finish
Surface finish, surface, finish, roughness,
Surface finish, removal process
Surface finish, removal process, surface, finish, roughness,
Surface finish, no process permitted
Surface finish, no process permitted, surface, finish, roughness,
"The symbols and conventions used in welding documentation are specified in national and international standards such as ISO 2553 Welded, brazed and soldered joints -- Symbolic representation on drawings and ISO 4063 Welding and allied processes -- Nomenclature of processes and reference numbers. The US standard symbols are outlined by the American National Standards Institute and the American Welding Society and are noted as "ANSI/ AWS".
In engineering drawings, each weld is conventionally identified by an arrow which points to the joint to be welded. The arrow is annotated with letters, numbers and symbols which indicate the exact specification of the weld. In complex applications, such as those involving alloys other than mild steel, more information may be called for than can comfortably be indicated using the symbols alone. Annotations are used in these cases." [Symbols and conventions used in welding documentation. Wikipedia]
The example chart "Elements of welding symbol" is redesigned using the ConceptDraw PRO diagramming and vector drawing software from the Wikipedia file: Elements of a welding symbol.PNG.
[en.wikipedia.org/ wiki/ File:Elements_ of_ a_ welding_ symbol.PNG]
The diagram example "Elements location of a welding symbol" is contained in the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Welding joint symbol chart
Welding joint symbol chart, field weld, arrow,