This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
The vector stencils library "Semiconductors" contains 22 symbols of rectifiers, diodes, charge transfer and electronic conduction devices, switches, cathodes, transistors, thyristors, and transceivers for semiconductor (SIS) design.
"Semiconductor devices are electronic components that exploit the electronic properties of semiconductor materials, principally silicon, germanium, and gallium arsenide, as well as organic semiconductors. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most applications. They use electronic conduction in the solid state as opposed to the gaseous state or thermionic emission in a high vacuum.
Semiconductor devices are manufactured both as single discrete devices and as integrated circuits (ICs), which consist of a number - from a few (as low as two) to billions - of devices manufactured and interconnected on a single semiconductor substrate, or wafer. ...
All transistor types can be used as the building blocks of logic gates, which are fundamental in the design of digital circuits. In digital circuits like microprocessors, transistors act as on-off switches; in the MOSFET, for instance, the voltage applied to the gate determines whether the switch is on or off.
Transistors used for analog circuits do not act as on-off switches; rather, they respond to a continuous range of inputs with a continuous range of outputs. Common analog circuits include amplifiers and oscillators.
Circuits that interface or translate between digital circuits and analog circuits are known as mixed-signal circuits.
Power semiconductor devices are discrete devices or integrated circuits intended for high current or high voltage applications. Power integrated circuits combine IC technology with power semiconductor technology, these are sometimes referred to as "smart" power devices. Several companies specialize in manufacturing power semiconductors." [Semiconductor device. Wikipedia]
The shapes example "Design elements - Semiconductors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Semiconductor elements
Semiconductor elements, turn-off triode, thyristor, turn off rectifier, gate turn off rectifier, triac, thyristor, bi-directional triode-type, gated switch, thyristor, diac, controlled switch, thyristor, reverse-blocking tetrode-type, semiconductor controlled switch, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
The vector stencils library "Semiconductors" contains 22 symbols of rectifiers, diodes, charge transfer and electronic conduction devices, switches, cathodes, transistors, thyristors, and transceivers.
Use these shapes for semiconductor (SIS) design in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
Diac
Diac, diac,
Triac, env
Triac, env, triac, thyristor, bi-directional triode-type, gated switch,
Triac
Triac, triac, thyristor, bi-directional triode-type, gated switch,
Controlled switch, env
Controlled switch, env, controlled switch, thyristor, reverse-blocking tetrode-type, semiconductor controlled switch,
Controlled switch
Controlled switch, controlled switch, thyristor, reverse-blocking tetrode-type, semiconductor controlled switch,
Controlled rectifier, env
Controlled rectifier, env, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
Controlled rectifier
Controlled rectifier, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
Controlled rectifier, N, env
Controlled rectifier, N, env, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
Controlled rectifier, N
Controlled rectifier, N, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
Controlled rectifier, P, env
Controlled rectifier, P, env, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
Controlled rectifier, P
Controlled rectifier, P, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,
Turn off rectifier, env
Turn off rectifier, env, turn off rectifier, gate turn off rectifier,
Turn off rectifier
Turn off rectifier, turn off rectifier, gate turn off rectifier,
Turn-off triode, env
Turn-off triode, env, turn-off triode, thyristor,
Turn-off triode
Turn-off triode, turn-off triode, thyristor,
Turn-off triode, N, env
Turn-off triode, N, env, turn-off triode, thyristor,
Turn-off triode, N
Turn-off triode, N, turn-off triode, thyristor,
Turn-off triode, P, env
Turn-off triode, P, env, turn-off triode, thyristor,
Turn-off triode, P
Turn-off triode, P, turn-off triode, thyristor,
Thyristor, env
Thyristor, env, thyristor,
Thyristor
Thyristor, thyristor,
The vector stencils library "Semiconductor diodes" contains 24 symbols of semiconductor diodes for drawing electronic schematics and circuit diagrams.
"In electronics, a diode is a two-terminal electronic component with asymmetric conductance; it has low (ideally zero) resistance to current in one direction, and high (ideally infinite) resistance in the other. A semiconductor diode, the most common type today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals. A vacuum tube diode has two electrodes, a plate (anode) and a heated cathode. Semiconductor diodes were the first semiconductor electronic devices. ...
Today, most diodes are made of silicon, but other semiconductors such as selenium or germanium are sometimes used." [Diode. Wikipedia]
The shapes example "Design elements - Semiconductor diodes" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Semiconductor diode symbols
Semiconductor diode symbols, zener diode, varactor, capacitive diode, tunnel diode, photo-diode, photosensitive diode, four layer diode, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier, breakdown diode, uni-directional, breakdown diode, bi-directional, backward diode, unitunnel diode, LED, light emitting diode,
The vector stencils library "Semiconductor diodes" contains 24 symbols of semiconductor diodes.
Use these shapes for drawing electronic schematics and circuit diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
Diode, env
Diode, env, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier,
Diode
Diode, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier,
Diode, reverse blocking, env
Diode, reverse blocking, env, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier,
Diode, reverse blocking
Diode, reverse blocking, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier,
Diode, reverse conducting, env
Diode, reverse conducting, env, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier,
Diode, reverse conducting
Diode, reverse conducting, diode, semiconductor diode, semiconductor rectifier diode, metallic rectifier,
Tunnel diode, env
Tunnel diode, env, tunnel diode,
Tunnel diode
Tunnel diode, tunnel diode,
Zener diode, env
Zener diode, env, zener diode,
Zener diode
Zener diode, zener diode,
Backward diode, env
Backward diode, env, backward diode, unitunnel diode,
Backward diode
Backward diode, backward diode, unitunnel diode,
Varactor, env
Varactor, env, varactor, capacitive diode,
Varactor
Varactor, varactor, capacitive diode,
Four layer diode, env
Four layer diode, env, four layer diode,
Four layer diode
Four layer diode, four layer diode,
LED, env
LED, env, LED, light emitting diode,
LED
LED, LED, light emitting diode,
Photo-diode, env
Photo-diode, env, photo-diode, photosensitive diode,
Photo-diode
Photo-diode, photo-diode, photosensitive diode,
Breakdown diode, uni-directional, env
Breakdown diode, uni-directional, env, breakdown diode, uni-directional,
Breakdown diode, uni-directional
Breakdown diode, uni-directional, breakdown diode, uni-directional,
Breakdown diode, bi-directional, env
Breakdown diode, bi-directional, env, breakdown diode, bi-directional,
Breakdown diode, bi-directional
Breakdown diode, bi-directional, breakdown diode, bi-directional,

Electrical Symbols, Electrical Diagram Symbols

When drawing Electrical Schematics, Electrical Circuit Diagrams, Power Systems Diagrams, Circuit and Wiring Diagrams, Digital and Analog Logic Schemes, you will obligatory need the electrical symbols and pictograms to represent various electrical and electronic devices, such as resistors, wires, transistors, inductors, batteries, switches, lamps, readouts, amplifiers, repeaters, relays, transmission paths, semiconductors, generators, and many more. Today these symbols are internationally standardized, so the diagrams designed using them are recognizable and comprehensible by specialists from different countries. Electrical Engineering Solution included to ConceptDraw Solution Park provides 26 libraries with 926 commonly used electrical schematic and electrical engineering symbols making the reality the easy drawing of Electrical diagrams, schematics and blueprints. Now you need only a few minutes to create great-looking Electrical diagram, simply choose required electrical design elements from the libraries, drag them on the needed places at the document and connect in a suitable way.

Electrical Symbols, Electrical Schematic Symbols

Electrical Schematics and Electrical Circuit Diagrams are included to the number of obligatory diagrams and documents while developing the package of construction documentation for the building project. It is comfortable to use the special drawing software for designing diagrams of this type. ConceptDraw DIAGRAM diagramming and vector drawing software extended with Electrical Engineering solution from Industrial Engineering Area of ConceptDraw Solution Park provides the powerful drawing tools, a lot of specific samples and templates, and numerous libraries with incredibly large quantity of predesigned electrical schematic symbols, including analog and digital logic electrical symbols, electrical circuits symbols, inductors, power sources, lamps, resistors, transistors, delay elements, switches and relays, terminals and connectors, and many other useful electrical symbols, which will be helpful for easy designing professional looking Electrical Schematics, Electrical Engineering Diagrams, Circuit and Wiring Diagrams, Power Systems Diagrams, Digital and Analog Logic Schematics.

Circuits and Logic Diagram Software

Circuit diagram is a graphical representation of electrical circuits, wire connections between devices, among them power and signal connections. Circuit diagrams are successfully used during design, construction and maintenance of different electrical and electronic equipment, and also for visualizing expressions using a boolean algebra in the computer science. These diagrams don't show a physical arrangement of components. One of advanced application of ConceptDraw DIAGRAM software is electrical engineering. Included to ConceptDraw Solution Park, Electrical Engineering solution from the Engineering area offers templates, samples and incredibly large quantity of vector design elements of circuits and logic symbols, which are helpful for professional drawing Circuit diagrams, Logic circuit diagrams, Wiring diagrams, Electrical schematics, Digital and Analog logic designs, Integrated circuit schematics, Circuit board and Amplifier diagrams, Power systems diagrams, Maintenance and Repair diagrams of any difficulty.
The vector stencils library "Transistors" contains 30 symbols of transistors drawing electronic schematics and circuit diagrams.
"A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. ...
Transistors are categorized by:
(1) Semiconductor material...: the metalloids germanium ... and silicon ... in amorphous, polycrystalline and monocrystalline form; the compounds gallium arsenide ... and silicon carbide ..., the alloy silicon-germanium ..., the allotrope of carbon graphene ...
(2) Structure: BJT, JFET, IGFET (MOSFET), insulated-gate bipolar transistor, "other types"
(3) Electrical polarity (positive and negative): n–p–n, p–n–p (BJTs); n-channel, p-channel (FETs)
(4) Maximum power rating: low, medium, high
(5) Maximum operating frequency: low, medium, high, radio (RF), microwave frequency...
(6) Application: switch, general purpose, audio, high voltage, super-beta, matched pair
(7) Physical packaging: through-hole metal, through-hole plastic, surface mount, ball grid array, power modules...
(8) Amplification factor..." [Transistor. Wikipedia]
The shapes example "Design elements - Transistors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Transistor symbols
Transistor symbols, unijunction FET, P-type channel, unijunction FET, N-type channel, transistor with transverse biased base, PNP, transistor with transverse biased base, NPN, transistor with ohmic connection to the intrinsic region, PNIP, transistor with ohmic connection to the intrinsic region, PNIN, transistor with ohmic connection to the intrinsic region, NPIP, transistor with ohmic connection to the intrinsic region, NPIN, transistor latch, junction, FET, field-effect transistorl, P-type channel, junction, FET, field-effect transistor, P-type channel, junction, FET, field-effect transistor, N-type channel, bipolar transistor, bipolar junction transistor, BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, NPN, Darlington transistor, PNP, Darlington transistor, NPN,
HelpDesk

How to Create an Electrical Diagram

There are many different electric circuit symbols that can be used in a circuit diagram. Knowing how to read circuit diagrams is a useful skill not only for professionals but for any person who can start creating his own small home electronic projects. The circuit diagram shows the scheme of a location of components and connections of the electrical circuit using a set of standard symbols. It can be used for graphical documentation of electrical circuit components. The ability to create electrical diagrams and schematic using ConceptDraw DIAGRAM is delivered by the Electrical Engineering solution. The solution supplied with samples, templates, and libraries of design elements for drawing electrical schematics, digital and analog logic, circuit and wiring schematics and diagrams, power systems diagrams, maintenance and repair diagrams for electronics and electrical engineering.
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements for drawing electronic circuits diagrams.
"A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode. ... Another line is drawn parallel to the channel for the gate.
The "bulk" or "body" connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). ...
For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source... This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors." [MOSFET. Wikipedia]
The symbols example "Design elements - MOSFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
MOSFET symbols
MOSFET symbols, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
The vector stencils library "IGFET" contains 18 symbols of IGFET (insulated-gate field-effect transistor) elements for drawing electronic circuit diagrams.
"The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a transistor used for amplifying or switching electronic signals. Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET often is connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. ...
An insulated-gate field-effect transistor or IGFET is a related term almost synonymous with MOSFET. The term may be more inclusive, since many "MOSFETs" use a gate that is not metal, and a gate insulator that is not oxide. Another synonym is MISFET for metal–insulator–semiconductor FET." [MOSFET
From Wikipedia]
The symbols example "Design elements - IGFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
IGFET elements
IGFET elements, IGFET, insulated gate field effect transistor, P-type channel, IGFET, insulated gate field effect transistor, N-type channel,
This picture graph sample shows how does manufacturing compare with other industries in U.S. It was designed using data from the U.S. Census Bureau website. [census.gov/ how/ img/ manufacturing_ 2014_ th.jpg]
"Manufacturing is the production of merchandise for use or sale using labour and machines, tools, chemical and biological processing, or formulation. The term may refer to a range of human activity, from handicraft to high tech, but is most commonly applied to industrial production, in which raw materials are transformed into finished goods on a large scale. Such finished goods may be used for manufacturing other, more complex products, such as aircraft, household appliances or automobiles, or sold to wholesalers, who in turn sell them to retailers, who then sell them to end users and consumers." [Manufacturing. Wikipedia]
The arrows bar chart example "Manufacturing in America" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Picture Graphs solution from the Graphs and Charts area of ConceptDraw Solution Park.
Arrows bar chart
Arrows bar chart, picture bar graph, picture graph, picture chart, pictorial chart,
The vector stencils library "Switches and relays" contains 58 symbols of electrical contacts, switches, relays, circuit breakers, selectors, connectors, disconnect devices, switching circuits, current regulators, and thermostats for electrical devices.
"In electrical engineering, a switch is an electrical component that can break an electrical circuit, interrupting the current or diverting it from one conductor to another.
The most familiar form of switch is a manually operated electromechanical device with one or more sets of electrical contacts, which are connected to external circuits. Each set of contacts can be in one of two states: either "closed" meaning the contacts are touching and electricity can flow between them, or "open", meaning the contacts are separated and the switch is nonconducting. The mechanism actuating the transition between these two states (open or closed) can be either a "toggle" (flip switch for continuous "on" or "off") or "momentary" (push-for "on" or push-for "off") type.
A switch may be directly manipulated by a human as a control signal to a system, such as a computer keyboard button, or to control power flow in a circuit, such as a light switch. Automatically operated switches can be used to control the motions of machines, for example, to indicate that a garage door has reached its full open position or that a machine tool is in a position to accept another workpiece. Switches may be operated by process variables such as pressure, temperature, flow, current, voltage, and force, acting as sensors in a process and used to automatically control a system. ... A switch that is operated by another electrical circuit is called a relay. Large switches may be remotely operated by a motor drive mechanism. Some switches are used to isolate electric power from a system, providing a visible point of isolation that can be padlocked if necessary to prevent accidental operation of a machine during maintenance, or to prevent electric shock." [Switch. Wikipedia]
"A relay is an electrically operated switch. Many relays use an electromagnet to mechanically operate a switch, but other operating principles are also used, such as solid-state relays. Relays are used where it is necessary to control a circuit by a low-power signal (with complete electrical isolation between control and controlled circuits), or where several circuits must be controlled by one signal. The first relays were used in long distance telegraph circuits as amplifiers: they repeated the signal coming in from one circuit and re-transmitted it on another circuit. Relays were used extensively in telephone exchanges and early computers to perform logical operations.
A type of relay that can handle the high power required to directly control an electric motor or other loads is called a contactor. Solid-state relays control power circuits with no moving parts, instead using a semiconductor device to perform switching. Relays with calibrated operating characteristics and sometimes multiple operating coils are used to protect electrical circuits from overload or faults; in modern electric power systems these functions are performed by digital instruments still called "protective relays"." [Relay. Wikipedia]
The shapes example "Design elements - Switches and relays" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Switch and relay symbols
Switch and relay symbols, two way contact, time delay make, open switch, time-delay closing, TDC, time delay make, normally open, time delay break, normally closed, time delay break, closed switch, time-delay opening, TDO, thermostat, temperature switch, temperature sensitive switch, temperature actuated switch, switch disconnector, isolating-switch, stay put, contact without spring return, spring return, make, spring return, break, spring return, shorting selector, make-before-break, shorting, bridging,  contact transfer, selector switch, break-before-make, nonshorting, nonbridging, contact transfer, safety interlock, circuit opening, relay contacts, relay coil, relay, pushbutton, make, circuit closing, mushroom head, push-pull head, pushbutton, break, circuit opening, mushroom head, push-pull head, pushbutton, 2-circuit, circuit opening, break, proximity limit switch, directly actuated, spring returned, normally closed, pressure actuated switch, pilot light, passing make-contact, mercury switch, manual switch, manually operated switch, make contact, liquid level actuated switch, limit switch, directly actuated, spring returned, normally open, limit switch, directly actuated, spring returned, normally closed, limit switch, isolator, inertia switch, gas flow actuated switch, fuse, flow actuated, circuit breaker, change-over contact, break contact, SPST, single-pole, single-throw, switch, SPDT, single-pole, double-throw, switch, DPST, double-pole, single-throw, switch, DPDT, double-pole, double-throw, switch, 4 position, switch, 3 position, three-position, switch, 2 position, switch,
"A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs a logical operation on one or more logical inputs, and produces a single logical output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device...
Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathematics that can be described with Boolean logic.
Logic circuits include such devices as multiplexers, registers, arithmetic logic units (ALUs), and computer memory, all the way up through complete microprocessors, which may contain more than 100 million gates. In practice, the gates are made from field-effect transistors (FETs), particularly MOSFETs (metal–oxide–semiconductor field-effect transistors).
Compound logic gates AND-OR-Invert (AOI) and OR-AND-Invert (OAI) are often employed in circuit design because their construction using MOSFETs is simpler and more efficient than the sum of the individual gates.
In reversible logic, Toffoli gates are used." [Logic gate. Wikipedia]
The logic gate diagram template for the ConceptDraw PRO diagramming and vector drawing software is included in the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Logic gate diagram
Logic gate diagram, OR gate, AND gate,
The vector stencils library "Machines and equipment" contains 24 symbols of industrial machines and equipment.
Use the design elements library "Machines and equipment" for drawing plant interior design plans, manufacturing equipment layouts and factory floor plans using the ConceptDraw PRO diagramming and vector drawing software.
"Manufacturing is the production of goods for use or sale using labor and machines, tools, chemical and biological processing, or formulation. The term may refer to a range of human activity, from handicraft to high tech, but is most commonly applied to industrial production, in which raw materials are transformed into finished goods on a large scale.
Modern manufacturing includes all intermediate processes required for the production and integration of a product's components. Some industries, such as semiconductor and steel manufacturers use the term fabrication instead.
The manufacturing sector is closely connected with engineering and industrial design." [Manufacturing. Wikipedia]
The shapes library "Machines and equipment" is included in the Plant Layout Plans solution from the Building Plans area of ConceptDraw Solution Park.
Machines and equipment symbols
Machines and equipment symbols, vertical milling machine, milling machine, vertical band saw, band saw, turret milling machine, tungsten inert gas welding, gas tungsten arc welding, GTAW, TIG welding, surface grinder, shearing machine, shaping machine, sawing machine, platform trolley, operator, mobile tool box, metal inert gas welding, gas metal arc welding, GMAW, metal inert gas welding, MIG welding, horizontal milling machine, milling machine, horizontal band saw, band saw, hand roller press, generator, folding machine, first aid cabinet, fire extinguisher, extinguisher, drilling machine, drill press, computer numerical control lathe, CNC lathe, compressor, centre lathe,