This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
The vector stencils library "Transistors" contains 30 symbols of transistors drawing electronic schematics and circuit diagrams.
"A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. ...
Transistors are categorized by:
(1) Semiconductor material...: the metalloids germanium ... and silicon ... in amorphous, polycrystalline and monocrystalline form; the compounds gallium arsenide ... and silicon carbide ..., the alloy silicon-germanium ..., the allotrope of carbon graphene ...
(2) Structure: BJT, JFET, IGFET (MOSFET), insulated-gate bipolar transistor, "other types"
(3) Electrical polarity (positive and negative): n–p–n, p–n–p (BJTs); n-channel, p-channel (FETs)
(4) Maximum power rating: low, medium, high
(5) Maximum operating frequency: low, medium, high, radio (RF), microwave frequency...
(6) Application: switch, general purpose, audio, high voltage, super-beta, matched pair
(7) Physical packaging: through-hole metal, through-hole plastic, surface mount, ball grid array, power modules...
(8) Amplification factor..." [Transistor. Wikipedia]
The shapes example "Design elements - Transistors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Transistor symbols
Transistor symbols, unijunction FET, P-type channel, unijunction FET, N-type channel, transistor with transverse biased base, PNP, transistor with transverse biased base, NPN, transistor with ohmic connection to the intrinsic region, PNIP, transistor with ohmic connection to the intrinsic region, PNIN, transistor with ohmic connection to the intrinsic region, NPIP, transistor with ohmic connection to the intrinsic region, NPIN, transistor latch, junction, FET, field-effect transistorl, P-type channel, junction, FET, field-effect transistor, P-type channel, junction, FET, field-effect transistor, N-type channel, bipolar transistor, bipolar junction transistor, BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, NPN, Darlington transistor, PNP, Darlington transistor, NPN,
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements for drawing electronic circuits diagrams.
"A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode. ... Another line is drawn parallel to the channel for the gate.
The "bulk" or "body" connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). ...
For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source... This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors." [MOSFET. Wikipedia]
The symbols example "Design elements - MOSFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
MOSFET symbols
MOSFET symbols, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements for drawing electronic circuits diagrams.
"A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode. ... Another line is drawn parallel to the channel for the gate.
The "bulk" or "body" connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). ...
For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source... This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors." [MOSFET. Wikipedia]
The symbols example "Design elements - MOSFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
MOSFET symbols
MOSFET symbols, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
The vector stencils library "Logic gate diagram" contains 17 element symbols for drawing the logic gate diagrams.
"To build a functionally complete logic system, relays, valves (vacuum tubes), or transistors can be used. The simplest family of logic gates using bipolar transistors is called resistor-transistor logic (RTL). Unlike simple diode logic gates (which do not have a gain element), RTL gates can be cascaded indefinitely to produce more complex logic functions. RTL gates were used in early integrated circuits. For higher speed and better density, the resistors used in RTL were replaced by diodes resulting in diode-transistor logic (DTL). Transistor-transistor logic (TTL) then supplanted DTL. As integrated circuits became more complex, bipolar transistors were replaced with smaller field-effect transistors (MOSFETs); see PMOS and NMOS. To reduce power consumption still further, most contemporary chip implementations of digital systems now use CMOS logic. CMOS uses complementary (both n-channel and p-channel) MOSFET devices to achieve a high speed with low power dissipation." [Logic gate. Wikipedia]
The symbols example "Design elements - Logic gate diagram" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Logic gate symbols
Logic gate symbols, operational amplifier, gate, open-collector output, gate, Schmitt trigger input, buffer, OR gate, Norton opamp, Norton operational amplifier, NOT gate, inverter, NOR gate, NOT OR, NAND gate, NOT AND, EX-OR gate, exclusive-OR gate, EX-NOR gate, exclusive-NOR gate, AND gate,
The vector stencils library "Transistors" contains 30 symbols of transistors.
Use these shapes for drawing electronic schematics and circuit diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
BJT, PNP, env
BJT, PNP, env, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, PNP
BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, NPN, env
BJT, NPN, env, bipolar transistor, bipolar junction transistor, BJT, NPN,
BJT, NPN
BJT, NPN, bipolar transistor, bipolar junction transistor, BJT, NPN,
JFET, P, env
JFET, P, env, junction, FET, field-effect transistorl, P-type channel,
JFET, P
JFET, P, junction, FET, field-effect transistor, P-type channel,
JFET, N, env
JFET, N, env, junction, FET, field-effect transistor, N-type channel,
JFET, N
JFET, N, junction, FET, field-effect transistor, N-type channel,
Transverse biased base, PNP, env
Transverse biased base, PNP, env, transistor with transverse biased base, PNP,
Transverse biased base, PNP
Transverse biased base, PNP, transistor with transverse biased base, PNP,
Transverse biased base, NPN, env
Transverse biased base, NPN, env, transistor with transverse biased base, NPN,
Transverse biased base, NPN
Transverse biased base, NPN, transistor with transverse biased base, NPN,
Ohmic, NPIN, env
Ohmic, NPIN, env, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIN
Ohmic, NPIN, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIP, env
Ohmic, NPIP, env, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, NPIP
Ohmic, NPIP, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, PNIN, env
Ohmic, PNIN, env, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIN
Ohmic, PNIN, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIP, env
Ohmic, PNIP, env, transistor with ohmic connection to the intrinsic region, PNIP,
Ohmic, PNIP
Ohmic, PNIP, transistor with ohmic connection to the intrinsic region, PNIP,
Unijunction FET, P, env
Unijunction FET, P, env, unijunction FET, P-type channel,
Unijunction FET, P
Unijunction FET, P, unijunction FET, P-type channel,
Unijunction FET, N, env
Unijunction FET, N, env, unijunction FET, N-type channel,
Unijunction FET, N
Unijunction FET, N, unijunction FET, N-type channel,
Darlington transistor, PNP, env
Darlington transistor, PNP, env, Darlington transistor, PNP,
Darlington transistor, PNP
Darlington transistor, PNP, Darlington transistor, PNP,
Darlington transistor, NPN, env
Darlington transistor, NPN, env, Darlington transistor, NPN,
Darlington transistor, NPN
Darlington transistor, NPN, Darlington transistor, NPN,
Transistor latch, env
Transistor latch, env, transistor latch,
Transistor latch
Transistor latch, transistor latch,