This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements for drawing electronic circuits diagrams.
"A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode. ... Another line is drawn parallel to the channel for the gate.
The "bulk" or "body" connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). ...
For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source... This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors." [MOSFET. Wikipedia]
The symbols example "Design elements - MOSFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
MOSFET symbols
MOSFET symbols, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
The vector stencils library "Transistors" contains 30 symbols of transistors drawing electronic schematics and circuit diagrams.
"A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. ...
Transistors are categorized by:
(1) Semiconductor material...: the metalloids germanium ... and silicon ... in amorphous, polycrystalline and monocrystalline form; the compounds gallium arsenide ... and silicon carbide ..., the alloy silicon-germanium ..., the allotrope of carbon graphene ...
(2) Structure: BJT, JFET, IGFET (MOSFET), insulated-gate bipolar transistor, "other types"
(3) Electrical polarity (positive and negative): n–p–n, p–n–p (BJTs); n-channel, p-channel (FETs)
(4) Maximum power rating: low, medium, high
(5) Maximum operating frequency: low, medium, high, radio (RF), microwave frequency...
(6) Application: switch, general purpose, audio, high voltage, super-beta, matched pair
(7) Physical packaging: through-hole metal, through-hole plastic, surface mount, ball grid array, power modules...
(8) Amplification factor..." [Transistor. Wikipedia]
The shapes example "Design elements - Transistors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Transistor symbols
Transistor symbols, unijunction FET, P-type channel, unijunction FET, N-type channel, transistor with transverse biased base, PNP, transistor with transverse biased base, NPN, transistor with ohmic connection to the intrinsic region, PNIP, transistor with ohmic connection to the intrinsic region, PNIN, transistor with ohmic connection to the intrinsic region, NPIP, transistor with ohmic connection to the intrinsic region, NPIN, transistor latch, junction, FET, field-effect transistorl, P-type channel, junction, FET, field-effect transistor, P-type channel, junction, FET, field-effect transistor, N-type channel, bipolar transistor, bipolar junction transistor, BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, NPN, Darlington transistor, PNP, Darlington transistor, NPN,

Electrical Symbols, Electrical Diagram Symbols

When drawing Electrical Schematics, Electrical Circuit Diagrams, Power Systems Diagrams, Circuit and Wiring Diagrams, Digital and Analog Logic Schemes, you will obligatory need the electrical symbols and pictograms to represent various electrical and electronic devices, such as resistors, wires, transistors, inductors, batteries, switches, lamps, readouts, amplifiers, repeaters, relays, transmission paths, semiconductors, generators, and many more. Today these symbols are internationally standardized, so the diagrams designed using them are recognizable and comprehensible by specialists from different countries. Electrical Engineering Solution included to ConceptDraw Solution Park provides 26 libraries with 926 commonly used electrical schematic and electrical engineering symbols making the reality the easy drawing of Electrical diagrams, schematics and blueprints. Now you need only a few minutes to create great-looking Electrical diagram, simply choose required electrical design elements from the libraries, drag them on the needed places at the document and connect in a suitable way.
The vector stencils library "Logic gate diagram" contains 17 element symbols for drawing the logic gate diagrams.
"To build a functionally complete logic system, relays, valves (vacuum tubes), or transistors can be used. The simplest family of logic gates using bipolar transistors is called resistor-transistor logic (RTL). Unlike simple diode logic gates (which do not have a gain element), RTL gates can be cascaded indefinitely to produce more complex logic functions. RTL gates were used in early integrated circuits. For higher speed and better density, the resistors used in RTL were replaced by diodes resulting in diode-transistor logic (DTL). Transistor-transistor logic (TTL) then supplanted DTL. As integrated circuits became more complex, bipolar transistors were replaced with smaller field-effect transistors (MOSFETs); see PMOS and NMOS. To reduce power consumption still further, most contemporary chip implementations of digital systems now use CMOS logic. CMOS uses complementary (both n-channel and p-channel) MOSFET devices to achieve a high speed with low power dissipation." [Logic gate. Wikipedia]
The symbols example "Design elements - Logic gate diagram" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Logic gate symbols
Logic gate symbols, operational amplifier, gate, open-collector output, gate, Schmitt trigger input, buffer, OR gate, Norton opamp, Norton operational amplifier, NOT gate, inverter, NOR gate, NOT OR, NAND gate, NOT AND, EX-OR gate, exclusive-OR gate, EX-NOR gate, exclusive-NOR gate, AND gate,
The vector stencils library "IGFET" contains 18 symbols of IGFET (insulated-gate field-effect transistor) elements for drawing electronic circuit diagrams.
"The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a transistor used for amplifying or switching electronic signals. Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET often is connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. ...
An insulated-gate field-effect transistor or IGFET is a related term almost synonymous with MOSFET. The term may be more inclusive, since many "MOSFETs" use a gate that is not metal, and a gate insulator that is not oxide. Another synonym is MISFET for metal–insulator–semiconductor FET." [MOSFET
From Wikipedia]
The symbols example "Design elements - IGFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
IGFET elements
IGFET elements, IGFET, insulated gate field effect transistor, P-type channel, IGFET, insulated gate field effect transistor, N-type channel,
The vector stencils library "Transistors" contains 30 symbols of transistors.
Use these shapes for drawing electronic schematics and circuit diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
BJT, PNP, env
BJT, PNP, env, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, PNP
BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, NPN, env
BJT, NPN, env, bipolar transistor, bipolar junction transistor, BJT, NPN,
BJT, NPN
BJT, NPN, bipolar transistor, bipolar junction transistor, BJT, NPN,
JFET, P, env
JFET, P, env, junction, FET, field-effect transistorl, P-type channel,
JFET, P
JFET, P, junction, FET, field-effect transistor, P-type channel,
JFET, N, env
JFET, N, env, junction, FET, field-effect transistor, N-type channel,
JFET, N
JFET, N, junction, FET, field-effect transistor, N-type channel,
Transverse biased base, PNP, env
Transverse biased base, PNP, env, transistor with transverse biased base, PNP,
Transverse biased base, PNP
Transverse biased base, PNP, transistor with transverse biased base, PNP,
Transverse biased base, NPN, env
Transverse biased base, NPN, env, transistor with transverse biased base, NPN,
Transverse biased base, NPN
Transverse biased base, NPN, transistor with transverse biased base, NPN,
Ohmic, NPIN, env
Ohmic, NPIN, env, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIN
Ohmic, NPIN, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIP, env
Ohmic, NPIP, env, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, NPIP
Ohmic, NPIP, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, PNIN, env
Ohmic, PNIN, env, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIN
Ohmic, PNIN, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIP, env
Ohmic, PNIP, env, transistor with ohmic connection to the intrinsic region, PNIP,
Ohmic, PNIP
Ohmic, PNIP, transistor with ohmic connection to the intrinsic region, PNIP,
Unijunction FET, P, env
Unijunction FET, P, env, unijunction FET, P-type channel,
Unijunction FET, P
Unijunction FET, P, unijunction FET, P-type channel,
Unijunction FET, N, env
Unijunction FET, N, env, unijunction FET, N-type channel,
Unijunction FET, N
Unijunction FET, N, unijunction FET, N-type channel,
Darlington transistor, PNP, env
Darlington transistor, PNP, env, Darlington transistor, PNP,
Darlington transistor, PNP
Darlington transistor, PNP, Darlington transistor, PNP,
Darlington transistor, NPN, env
Darlington transistor, NPN, env, Darlington transistor, NPN,
Darlington transistor, NPN
Darlington transistor, NPN, Darlington transistor, NPN,
Transistor latch, env
Transistor latch, env, transistor latch,
Transistor latch
Transistor latch, transistor latch,

Electrical Symbols, Electrical Schematic Symbols

Electrical Schematics and Electrical Circuit Diagrams are included to the number of obligatory diagrams and documents while developing the package of construction documentation for the building project. It is comfortable to use the special drawing software for designing diagrams of this type. ConceptDraw DIAGRAM diagramming and vector drawing software extended with Electrical Engineering solution from Industrial Engineering Area of ConceptDraw Solution Park provides the powerful drawing tools, a lot of specific samples and templates, and numerous libraries with incredibly large quantity of predesigned electrical schematic symbols, including analog and digital logic electrical symbols, electrical circuits symbols, inductors, power sources, lamps, resistors, transistors, delay elements, switches and relays, terminals and connectors, and many other useful electrical symbols, which will be helpful for easy designing professional looking Electrical Schematics, Electrical Engineering Diagrams, Circuit and Wiring Diagrams, Power Systems Diagrams, Digital and Analog Logic Schematics.

Circuits and Logic Diagram Software

Circuit diagram is a graphical representation of electrical circuits, wire connections between devices, among them power and signal connections. Circuit diagrams are successfully used during design, construction and maintenance of different electrical and electronic equipment, and also for visualizing expressions using a boolean algebra in the computer science. These diagrams don't show a physical arrangement of components. One of advanced application of ConceptDraw DIAGRAM software is electrical engineering. Included to ConceptDraw Solution Park, Electrical Engineering solution from the Engineering area offers templates, samples and incredibly large quantity of vector design elements of circuits and logic symbols, which are helpful for professional drawing Circuit diagrams, Logic circuit diagrams, Wiring diagrams, Electrical schematics, Digital and Analog logic designs, Integrated circuit schematics, Circuit board and Amplifier diagrams, Power systems diagrams, Maintenance and Repair diagrams of any difficulty.
The vector stencils library "Semiconductors" contains 22 symbols of rectifiers, diodes, charge transfer and electronic conduction devices, switches, cathodes, transistors, thyristors, and transceivers for semiconductor (SIS) design.
"Semiconductor devices are electronic components that exploit the electronic properties of semiconductor materials, principally silicon, germanium, and gallium arsenide, as well as organic semiconductors. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most applications. They use electronic conduction in the solid state as opposed to the gaseous state or thermionic emission in a high vacuum.
Semiconductor devices are manufactured both as single discrete devices and as integrated circuits (ICs), which consist of a number - from a few (as low as two) to billions - of devices manufactured and interconnected on a single semiconductor substrate, or wafer. ...
All transistor types can be used as the building blocks of logic gates, which are fundamental in the design of digital circuits. In digital circuits like microprocessors, transistors act as on-off switches; in the MOSFET, for instance, the voltage applied to the gate determines whether the switch is on or off.
Transistors used for analog circuits do not act as on-off switches; rather, they respond to a continuous range of inputs with a continuous range of outputs. Common analog circuits include amplifiers and oscillators.
Circuits that interface or translate between digital circuits and analog circuits are known as mixed-signal circuits.
Power semiconductor devices are discrete devices or integrated circuits intended for high current or high voltage applications. Power integrated circuits combine IC technology with power semiconductor technology, these are sometimes referred to as "smart" power devices. Several companies specialize in manufacturing power semiconductors." [Semiconductor device. Wikipedia]
The shapes example "Design elements - Semiconductors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Semiconductor elements
Semiconductor elements, turn-off triode, thyristor, turn off rectifier, gate turn off rectifier, triac, thyristor, bi-directional triode-type, gated switch, thyristor, diac, controlled switch, thyristor, reverse-blocking tetrode-type, semiconductor controlled switch, controlled rectifier, thyristor, reverse-blocking triode-type, semiconductor controlled rectifier,

Electrical Engineering

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electromagnetism. ConceptDraw DIAGRAM extended with Electrical Engineering Solution from the Industrial Engineering Area of ConceptDraw Solution Park is the best Electrical Engineering software. You have an excellent possibility to make sure this right now.

electrical diagram, electrical engineering, electrical schematic, electrical schematic symbols, electrical diagram symbols  Electrical Engineering

electrical diagram, electrical engineering, electrical schematic, electrical schematic symbols, electrical diagram symbols
This solution extends ConceptDraw DIAGRAM.9.5 (or later) with electrical engineering samples, electrical schematic symbols, electrical diagram symbols, templates and libraries of design elements, to help you design electrical schematics, digital and analog