This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.

Electrical Symbols — MOSFET

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of transistor used for amplifying or switching electronic signals. Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET is often connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. 26 libraries of the Electrical Engineering Solution of ConceptDraw DIAGRAM make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

Electrical Symbols — IGFET

There are several types of insulated gate field-effect transistors (IGFETs) in common use. The early term metal oxide semiconductor field-effect transistor (MOSFET) is still in use, and MOSFET is usually acceptable as a generic term for IGFETs. The metal oxide, and the insulation in the IGFET, is the insulating material between the gate terminal and the substrate between the source and drain terminals. This insulator must have very low leakage, of course, but another requirement for good performance of the transistor is that the dielectric constant of the material must be very high. 26 libraries of the Electrical Engineering Solution of ConceptDraw DIAGRAM make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

Electrical Symbols — Semiconductor

Semiconductors are crystalline or amorphous solids with distinct electrical characteristics. They are of high resistance — higher than typical resistance materials, but still of much lower resistance than insulators. Their resistance decreases as their temperature increases, which is behavior opposite to that of a metal. Finally, their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities into the crystal structure, which lowers its resistance but also permits the creation of semiconductor junctions between differently-doped regions of the extrinsic semiconductor crystal. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. 26 libraries of the Electrical Engineering Solution of ConceptDraw DIAGRAM make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

Electrical Symbols — Transistors

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits. 26 libraries of the Electrical Engineering Solution of ConceptDraw DIAGRAM make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.
The vector stencils library "Transistors" contains 30 symbols of transistors drawing electronic schematics and circuit diagrams.
"A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. ...
Transistors are categorized by:
(1) Semiconductor material...: the metalloids germanium ... and silicon ... in amorphous, polycrystalline and monocrystalline form; the compounds gallium arsenide ... and silicon carbide ..., the alloy silicon-germanium ..., the allotrope of carbon graphene ...
(2) Structure: BJT, JFET, IGFET (MOSFET), insulated-gate bipolar transistor, "other types"
(3) Electrical polarity (positive and negative): n–p–n, p–n–p (BJTs); n-channel, p-channel (FETs)
(4) Maximum power rating: low, medium, high
(5) Maximum operating frequency: low, medium, high, radio (RF), microwave frequency...
(6) Application: switch, general purpose, audio, high voltage, super-beta, matched pair
(7) Physical packaging: through-hole metal, through-hole plastic, surface mount, ball grid array, power modules...
(8) Amplification factor..." [Transistor. Wikipedia]
The shapes example "Design elements - Transistors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Transistor symbols
Transistor symbols, unijunction FET, P-type channel, unijunction FET, N-type channel, transistor with transverse biased base, PNP, transistor with transverse biased base, NPN, transistor with ohmic connection to the intrinsic region, PNIP, transistor with ohmic connection to the intrinsic region, PNIN, transistor with ohmic connection to the intrinsic region, NPIP, transistor with ohmic connection to the intrinsic region, NPIN, transistor latch, junction, FET, field-effect transistorl, P-type channel, junction, FET, field-effect transistor, P-type channel, junction, FET, field-effect transistor, N-type channel, bipolar transistor, bipolar junction transistor, BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, NPN, Darlington transistor, PNP, Darlington transistor, NPN,

Wiring Diagrams with ConceptDraw DIAGRAM

A Wiring Diagram is a comprehensive schematic that depicts the electrical circuit system, shows all the connectors, wiring, signal connections (buses), terminal boards between electrical or electronic components and devices of the circuit. Wiring Diagram illustrates how the components are connected electrically and identifies the wires by colour coding or wire numbers. These diagrams are necessary and obligatory for identifying and fixing faults of electrical or electronic circuits, and their elimination. For designing Wiring Diagrams are used the standardized symbols representing electrical components and devices. ConceptDraw Solution Park offers the Electrical Engineering solution from the Engineering area with 26 libraries of graphics design elements and electrical schematic symbols for easy drawing various Wiring Diagrams, Electrical Circuit and Wiring Blueprints, Electrical and Telecom schematics of any complexity, Electrical Engineering Diagrams, Power Systems Diagrams, Repair Diagrams, Maintenance Schemes, etc. in ConceptDraw DIAGRAM software.

ERD Symbols and Meanings

Entity Relationship Diagram (ERD) is a popular software engineering tool for database modeling and illustration the logical structure of databases, which uses one of two notations - Chen's or Crow’s Foot. Crow's foot notation is effective when used in software engineering, information engineering, structured systems analysis and design. Each of these notations applies its own set of ERD symbols. Crow's foot diagrams use boxes to represent entities and lines between these boxes to show relationships. Varied shapes at the ends of lines depict the cardinality of a given relationship. Chen's ERD notation is more detailed way to represent entities and relationships. ConceptDraw DIAGRAM application enhanced with all-inclusive Entity-Relationship Diagram (ERD) solution allows design professional ER diagrams with Chen's or Crow’s Foot notation on your choice. It contains the full set of ready-to-use standardized ERD symbols and meanings helpful for quickly drawing, collection of predesigned ERD samples, examples and templates. ConceptDraw Pro is a great alternative to Visio for Mac users as it offers more features and can easily handle the most demanding professional needs.
How to Build an Entity Relationship Diagram (ERD)
How to Build an Entity Relationship Diagram (ERD)

Process Flow Chart Symbols

Process Flow Chart is a visual diagram which shows the processes and relationships between the major components in a system, and uses for this the special process flow chart symbols: special shapes to represent different types of actions and process steps, lines and arrows to represent relationships and sequence of steps. It often named process flow diagram, it use colored flowchart symbols. It is incredibly convenient to use the ConceptDraw DIAGRAM software extended with Flowcharts Solution from the "Diagrams" Area of ConceptDraw Solution Park for designing professional looking Process Flow Charts.

Electrical Symbols, Electrical Diagram Symbols

When drawing Electrical Schematics, Electrical Circuit Diagrams, Power Systems Diagrams, Circuit and Wiring Diagrams, Digital and Analog Logic Schemes, you will obligatory need the electrical symbols and pictograms to represent various electrical and electronic devices, such as resistors, wires, transistors, inductors, batteries, switches, lamps, readouts, amplifiers, repeaters, relays, transmission paths, semiconductors, generators, and many more. Today these symbols are internationally standardized, so the diagrams designed using them are recognizable and comprehensible by specialists from different countries. Electrical Engineering Solution included to ConceptDraw Solution Park provides 26 libraries with 926 commonly used electrical schematic and electrical engineering symbols making the reality the easy drawing of Electrical diagrams, schematics and blueprints. Now you need only a few minutes to create great-looking Electrical diagram, simply choose required electrical design elements from the libraries, drag them on the needed places at the document and connect in a suitable way.

Electrical Symbols — Integrated Circuit

An integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small plate ("chip") of semiconductor material, normally silicon. This can be made much smaller than a discrete circuit made from independent electronic components. ICs can be made very compact, having up to several billion transistors and other electronic components in an area the size of a human fingernail. 26 libraries of the Electrical Engineering Solution of ConceptDraw DIAGRAM make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements for drawing electronic circuits diagrams.
"A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode. ... Another line is drawn parallel to the channel for the gate.
The "bulk" or "body" connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). ...
For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source... This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors." [MOSFET. Wikipedia]
The symbols example "Design elements - MOSFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
MOSFET symbols
MOSFET symbols, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
The vector stencils library "IGFET" contains 18 symbols of IGFET (insulated-gate field-effect transistor) elements for drawing electronic circuit diagrams.
"The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a transistor used for amplifying or switching electronic signals. Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET often is connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. ...
An insulated-gate field-effect transistor or IGFET is a related term almost synonymous with MOSFET. The term may be more inclusive, since many "MOSFETs" use a gate that is not metal, and a gate insulator that is not oxide. Another synonym is MISFET for metal–insulator–semiconductor FET." [MOSFET
From Wikipedia]
The symbols example "Design elements - IGFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
IGFET elements
IGFET elements, IGFET, insulated gate field effect transistor, P-type channel, IGFET, insulated gate field effect transistor, N-type channel,

How To use House Electrical Plan Software

How we can conduct the electricity at house correctly without a plan? It is impossible. The House electrical diagram depicts locations of switches, outlets, dimmers and lights, and lets understand how you will connect them. But design of House Electrical Plan looks a complex task at a glance, which requires a lot of tools and special experience. But now all is simple with all-inclusive floor plan software - ConceptDraw DIAGRAM. As a house electrical plan software, the ConceptDraw DIAGRAM contains libraries with a large range of professional lighting and electrical symbols, ready-to-use electrical plans samples and examples, and built-in templates for creating great-looking Home floor electrical plans. It is a fastest way to draw Electrical circuit diagrams, Electrical wiring and Circuit schematics, Digital circuits, Electrical equipment, House electrical plans, Satellite television, Cable television, Home cinema, Closed-circuit television when are used the tools of Electric and Telecom Plans Solution from ConceptDraw Solution Park. Files created in Visio for Mac app can be easily imported to ConceptDraw DIAGRAM. Also you may import stencils and even libraries. Try for free an alternative to Visio that Apple users recommend.
Create an Electrical Diagram
Create an Electrical Diagram

Electrical Diagram Software

Electrical engineering and electronic engineering are extensive fields dedicated to research, design, development, manufacturing, test, and montage of systems and devices of electricity, electronics, microelectronics, telecommunications, power engineering, etc. These fields use various types of schemes, diagrams, technical drawings and require a special precision, accuracy and attention at their construction and using. The availability of modern specialized software has great importance for electrical engineers and electronic specialists, it assists them in drawing Electrical schematics and diagrams, Electrical drawings and Wiring schemes, Electronic Circuit schematics, etc. One of such software is ConceptDraw DIAGRAM extended with Electrical Engineering Solution that offers powerful drawing tools, wide variety of samples and libraries with numerous quantity of predesigned electrical symbols and vector objects of electrical devices. All they help design with minimal efforts Electrical diagrams and blueprints of any complexity, now drawing process is easy even for beginners.
Create an Electrical Diagram
Create an Electrical Diagram
The vector stencils library "Transistors" contains 30 symbols of transistors.
Use these shapes for drawing electronic schematics and circuit diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
BJT, PNP, env
BJT, PNP, env, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, PNP
BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, NPN, env
BJT, NPN, env, bipolar transistor, bipolar junction transistor, BJT, NPN,
BJT, NPN
BJT, NPN, bipolar transistor, bipolar junction transistor, BJT, NPN,
JFET, P, env
JFET, P, env, junction, FET, field-effect transistorl, P-type channel,
JFET, P
JFET, P, junction, FET, field-effect transistor, P-type channel,
JFET, N, env
JFET, N, env, junction, FET, field-effect transistor, N-type channel,
JFET, N
JFET, N, junction, FET, field-effect transistor, N-type channel,
Transverse biased base, PNP, env
Transverse biased base, PNP, env, transistor with transverse biased base, PNP,
Transverse biased base, PNP
Transverse biased base, PNP, transistor with transverse biased base, PNP,
Transverse biased base, NPN, env
Transverse biased base, NPN, env, transistor with transverse biased base, NPN,
Transverse biased base, NPN
Transverse biased base, NPN, transistor with transverse biased base, NPN,
Ohmic, NPIN, env
Ohmic, NPIN, env, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIN
Ohmic, NPIN, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIP, env
Ohmic, NPIP, env, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, NPIP
Ohmic, NPIP, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, PNIN, env
Ohmic, PNIN, env, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIN
Ohmic, PNIN, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIP, env
Ohmic, PNIP, env, transistor with ohmic connection to the intrinsic region, PNIP,
Ohmic, PNIP
Ohmic, PNIP, transistor with ohmic connection to the intrinsic region, PNIP,
Unijunction FET, P, env
Unijunction FET, P, env, unijunction FET, P-type channel,
Unijunction FET, P
Unijunction FET, P, unijunction FET, P-type channel,
Unijunction FET, N, env
Unijunction FET, N, env, unijunction FET, N-type channel,
Unijunction FET, N
Unijunction FET, N, unijunction FET, N-type channel,
Darlington transistor, PNP, env
Darlington transistor, PNP, env, Darlington transistor, PNP,
Darlington transistor, PNP
Darlington transistor, PNP, Darlington transistor, PNP,
Darlington transistor, NPN, env
Darlington transistor, NPN, env, Darlington transistor, NPN,
Darlington transistor, NPN
Darlington transistor, NPN, Darlington transistor, NPN,
Transistor latch, env
Transistor latch, env, transistor latch,
Transistor latch
Transistor latch, transistor latch,
The vector stencils library "Logic gate diagram" contains 17 element symbols for drawing the logic gate diagrams.
"To build a functionally complete logic system, relays, valves (vacuum tubes), or transistors can be used. The simplest family of logic gates using bipolar transistors is called resistor-transistor logic (RTL). Unlike simple diode logic gates (which do not have a gain element), RTL gates can be cascaded indefinitely to produce more complex logic functions. RTL gates were used in early integrated circuits. For higher speed and better density, the resistors used in RTL were replaced by diodes resulting in diode-transistor logic (DTL). Transistor-transistor logic (TTL) then supplanted DTL. As integrated circuits became more complex, bipolar transistors were replaced with smaller field-effect transistors (MOSFETs); see PMOS and NMOS. To reduce power consumption still further, most contemporary chip implementations of digital systems now use CMOS logic. CMOS uses complementary (both n-channel and p-channel) MOSFET devices to achieve a high speed with low power dissipation." [Logic gate. Wikipedia]
The symbols example "Design elements - Logic gate diagram" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Logic gate symbols
Logic gate symbols, operational amplifier, gate, open-collector output, gate, Schmitt trigger input, buffer, OR gate, Norton opamp, Norton operational amplifier, NOT gate, inverter, NOR gate, NOT OR, NAND gate, NOT AND, EX-OR gate, exclusive-OR gate, EX-NOR gate, exclusive-NOR gate, AND gate,

Electrical Symbols — Lamps, Acoustics, Readouts

Wiring and circuit diagrams use special symbols recognized by everyone who uses the drawings. The symbols on the drawings show how components like resistors, capacitors, inductors, switches, lamps, acoustic devices, measuring devices and other electrical and electronic components are connected together. 26 libraries of the Electrical Engineering Solution of ConceptDraw DIAGRAM make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements.
Use these shapes for drawing electronic circuits diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
MOSFET, P, dep, 2 gates, env
MOSFET, P, dep, 2 gates, env, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, P, dep, 2 gates
MOSFET, P, dep, 2 gates, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, N, dep, 2 gates, env
MOSFET, N, dep, 2 gates, env, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, N, dep, 2 gates
MOSFET, N, dep, 2 gates, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, P, dep, 1 gate, env
MOSFET, P, dep, 1 gate, env, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, P, dep, 1 gate
MOSFET, P, dep, 1 gate, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, N, dep, 1 gate, env
MOSFET, N, dep, 1 gate, env, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, N, dep, 1 gate
MOSFET, N, dep, 1 gate, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, P, enh, 2 gates, env
MOSFET, P, enh, 2 gates, env, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, P, enh, 2 gates
MOSFET, P, enh, 2 gates, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, N, enh, 2 gates, env
MOSFET, N, enh, 2 gates, env, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, N, enh, 2 gates
MOSFET, N, enh, 2 gates, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, P, enh, 1 gate, env
MOSFET, P, enh, 1 gate, env, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, P, enh, 1 gate
MOSFET, P, enh, 1 gate, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel,
MOSFET, N, enh, 1 gate, env
MOSFET, N, enh, 1 gate, env, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, N, enh, 1 gate
MOSFET, N, enh, 1 gate, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
MOSFET, P, enh, Sedra
MOSFET, P, enh, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra,
MOSFET, N, enh, Sedra
MOSFET, N, enh, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra,

Mechanical Drawing Symbols

Mechanical Drawings are the special type of technical diagrams that visualize the structure of complex systems and illustrate the information about ventilation, heating, air conditioning, i.e. HVAC systems. These drawings are created on the base of floor plans and reflected ceiling plans, and then become an obligatory part of construction project which is needed directly for construction a building and for receiving a permit on it. Mechanical drawings and diagrams help effectively represent construction, technical and engineering solutions, and also schematics of different mechanical equipment. ConceptDraw DIAGRAM ector drawing software enhanced with Mechanical Engineering solution from Engineering area of ConceptDraw Solution Park provides wide set of effective drawing tools, predesigned mechanical drawing symbols, templates, samples and examples. Use of standardized and recognized mechanical vector symbols helps you design understandable mechanical drawings, diagrams and mechanical engineering schematics.
The vector stencils library "IGFET" contains 18 symbols of IGFET (insulated-gate field-effect transistor) elements.
Use these shapes for drawing electronic circuit diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
IGFET, N, dep, 2 gates, env
IGFET, N, dep, 2 gates, env, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, dep, 2 gates
IGFET, N, dep, 2 gates, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, enh, 2 gates, env
IGFET, N, enh, 2 gates, env, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, enh, 2 gates
IGFET, N, enh, 2 gates, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, dep, 1 gate, env
IGFET, N, dep, 1 gate, env, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, dep, 1 gate
IGFET, N, dep, 1 gate, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, enh, 1 gate, env
IGFET, N, enh, 1 gate, env, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, N, enh, 1 gate, env
IGFET, N, enh, 1 gate, env, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, P, dep, 2 gates, env
IGFET, P, dep, 2 gates, env, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, dep, 2 gates
IGFET, P, dep, 2 gates, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, enh, 2 gates, env
IGFET, P, enh, 2 gates, env, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, enh, 2 gates
IGFET, P, enh, 2 gates, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, dep, 1 gate, env
IGFET, P, dep, 1 gate, env, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, dep, 1 gate
IGFET, P, dep, 1 gate, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, enh, 1 gate, env
IGFET, P, enh, 1 gate, env, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, P, enh, 1 gate
IGFET, P, enh, 1 gate, IGFET, insulated gate field effect transistor, P-type channel,
IGFET, N, enh
IGFET, N, enh, IGFET, insulated gate field effect transistor, N-type channel,
IGFET, P, enh
IGFET, P, enh, IGFET, insulated gate field effect transistor, P-type channel,